Skip to main content

Advertisement

Log in

[18F]FLT PET for Non-Invasive Monitoring of Early Response to Gene Therapy in Experimental Gliomas

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

The purpose of this study was to investigate the potential of 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT) positron emission tomography (PET) to detect early treatment responses in gliomas. Human glioma cells were stably transduced with genes yielding therapeutic activity, sorted for different levels of exogenous gene expression, and implanted subcutaneously into nude mice. Multimodality imaging during prodrug therapy included (a) magnetic resonance imaging, (b) PET with 9-(4-[18F]fluoro-3-hydroxymethylbutyl)guanine assessing exogenous gene expression, and (c) repeat [18F]FLT PET assessing antiproliferative therapeutic response. All stably transduced gliomas responded to therapy with significant reduction in tumor volume and [18F]FLT accumulation within 3 days after initiation of therapy. The change in [18F]FLT uptake before and after treatment correlated to volumetrically calculated growth rates. Therapeutic efficacy as monitored by [18F]FLT PET correlated to levels of therapeutic gene expression measured in vivo. Thus, [18F]FLT PET assesses early antiproliferative effects, making it a promising radiotracer for the development of novel treatments for glioma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kleihues P, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system (WHO). International Agency for Research on Cancer (IARC), Lyon

    Google Scholar 

  2. Preston-Martin S (1999) Epidemiology. In: Berger MS, Wilson CD (eds) The gliomas. Saunders, Philadelphia, pp 2–11

    Google Scholar 

  3. de Wit MC, de Bruin HG, Eijkenboom W, Sillevis Smitt PA, van den Bent MJ (2004) Immediate post-radiotherapy changes in malignant glioma can mimic tumor progression. Neurology 63:535–537

    PubMed  Google Scholar 

  4. Kumar AJ, Leeds NE, Fuller GN, Van Tassel P, Maor MH, Sawaya RE et al (2000) Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 217:377–384

    PubMed  CAS  Google Scholar 

  5. Shields AF, Grierson JR, Dohmen BM, Machulla HJ, Stayanoff JC, Lawhorn-Crews JM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  6. Buck AK, Schirrmeister H, Hetzel M, Von Der HM, Halter G, Glatting G et al (2002) 3-Deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334

    PubMed  CAS  Google Scholar 

  7. Cobben DC, Jager PL, Elsinga PH, Maas B, Suurmeijer AJ, Hoekstra HJ (2003) 3′-18F-Fluoro-3′-deoxy-L-thymidine: a new tracer for staging metastatic melanoma? J Nucl Med 44:1927–1932

    PubMed  CAS  Google Scholar 

  8. Francis DL, Visvikis D, Costa DC, Arulampalam TH, Townsend C, Luthra SK et al (2003) Potential impact of [18F]3′-deoxy-3′-fluorothymidine versus [18F]fluoro-2-deoxy-D-glucose in positron emission tomography for colorectal cancer. Eur J Nucl Med Mol Imaging 30:988–994

    Article  PubMed  CAS  Google Scholar 

  9. Wagner M, Seitz U, Buck A, Neumaier B, Schultheiss S, Bangerter M et al (2003) 3′-[18F]Fluoro-3′-deoxythymidine ([18F]-FLT) as positron emission tomography tracer for imaging proliferation in a murine B-cell lymphoma model and in the human disease. Cancer Res 63:2681–2687

    PubMed  CAS  Google Scholar 

  10. Chen W, Cloughesy T, Kamdar N, Satyamurthy N, Bergsneider M, Liau L et al (2005) Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 46:945–952

    PubMed  CAS  Google Scholar 

  11. Choi SJ, Kim JS, Kim JH, Oh SJ, Lee JG, Kim CJ et al (2005) [(18)F]3′-Deoxy-3′-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 32:653–659

    Article  PubMed  Google Scholar 

  12. Jacobs AH, Thomas A, Kracht LW, Li H, Dittmar C, Garlip G et al (2005) 18F-Fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 46:1948–1958

    PubMed  CAS  Google Scholar 

  13. Bradbury MS, Hambardzumyan D, Zanzonico PB, Schwartz J, Cai S, Burnazi EM et al (2008) Dynamic small-animal PET imaging of tumor proliferation with 3′-deoxy-3′-18F-fluorothymidine in a genetically engineered mouse model of high-grade gliomas. J Nucl Med 49:422–429

    Article  PubMed  Google Scholar 

  14. Ullrich R, Backes H, Li H, Kracht L, Miletic H, Kesper K et al (2008) Glioma proliferation as assessed by 3′-fluoro-3′-deoxy-L-thymidine positron emission tomography in patients with newly diagnosed high-grade glioma. Clin Cancer Res 14:2049–2055

    Article  PubMed  CAS  Google Scholar 

  15. Jacobs AH, Winkeler A, Hartung M, Slack M, Dittmar C, Kummer C et al (2003) Improved herpes simplex virus type 1 amplicon vectors for proportional coexpression of positron emission tomography marker and therapeutic genes. Hum Gene Ther 14:277–297

    Article  PubMed  CAS  Google Scholar 

  16. Black ME, Newcomb TG, Wilson HM, Loeb LA (1996) Creation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy. Proc Natl Acad Sci USA 93:3525–3529

    Article  PubMed  CAS  Google Scholar 

  17. Machulla HJ, Blocher A, Kuntzsch M, Piert M, Wei R, Grierson JR (2000) Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F]fluorothymidine ([18F]FLT). J Radioanal Nucl Chem 243:843–846

    Article  CAS  Google Scholar 

  18. Wodarski C, Eisenbarth J, Weber K, Henze M, Haberkorn U, Eisenhut M (2000) Synthesis of 3-deoxy-3-[18F]fluoro-thymidine with 2, 3-anhydro-5-O-(4, 4-dimethoxytrityl)-thymidine. J Label Compd Radiopharm 43:1211–1218

    Article  CAS  Google Scholar 

  19. Cizek J, Herholz K, Vollmar S, Schrader R, Klein J, Heiss WD (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22:434–442

    Article  PubMed  Google Scholar 

  20. Herholz K, Wienhard K, Heiss WD (1990) Validity of PET studies in brain tumors. Cerebrovasc Brain Metab Rev 2:240–265

    PubMed  CAS  Google Scholar 

  21. Jacobs AH, Dittmar C, Winkeler A, Garlip G, Heiss WD (2002) Molecular imaging of gliomas. Mol Imaging 1:309–335

    Article  PubMed  CAS  Google Scholar 

  22. Hengstschlager M, Knofler M, Mullner EW, Ogris E, Wintersberger E, Wawra E (1994) Different regulation of thymidine kinase during the cell cycle of normal versus DNA tumor virus-transformed cells. J Biol Chem 269:13836–13842

    PubMed  CAS  Google Scholar 

  23. Toyohara J, Waki A, Takamatsu S, Yonekura Y, Magata Y, Fujibayashi Y (2002) Basis of FLT as a cell proliferation marker: comparative uptake studies with [3H]thymidine and [3H]arabinothymidine, and cell-analysis in 22 asynchronously growing tumor cell lines. Nucl Med Biol 29:281–287

    Article  PubMed  Google Scholar 

  24. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217

    PubMed  CAS  Google Scholar 

  25. Schwartz JL, Tamura Y, Jordan R, Grierson JR, Krohn KA (2003) Monitoring tumor cell proliferation by targeting DNA synthetic processes with thymidine and thymidine analogs. J Nucl Med 44:2027–2032

    PubMed  CAS  Google Scholar 

  26. Kong XB, Zhu QY, Vidal PM, Watanabe KA, Polsky B, Armstrong D et al (1992) Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3′-fluoro-3′-deoxythymidine and 3′-azido-3′-deoxythymidine. Antimicrob Agents Chemother 36:808–818

    PubMed  CAS  Google Scholar 

  27. Chen W, Delaloye S, Silverman DH, Geist C, Czernin J, Sayre J et al (2007) Predicting treatment response of malignant gliomas to bevacizumab and irinotecan by imaging proliferation with [18F] fluorothymidine positron emission tomography: a pilot study. J Clin Oncol 25:4714–4721

    Article  PubMed  CAS  Google Scholar 

  28. Dittmann H, Dohmen BM, Kehlbach R, Bartusek G, Pritzkow M, Sarbia M et al (2002) Early changes in [18F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 29:1462–1469

    Article  PubMed  CAS  Google Scholar 

  29. Leyton J, Latigo JR, Perumal M, Dhaliwal H, He Q, Aboagye EO (2005) Early detection of tumor response to chemotherapy by 3′-deoxy-3′-[18F]fluorothymidine positron emission tomography: the effect of cisplatin on a fibrosarcoma tumor model in vivo. Cancer Res 65:4202–4210

    Article  PubMed  CAS  Google Scholar 

  30. Waldherr C, Mellinghoff IK, Tran C, Halpern BS, Rozengurt N, Safaei A et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3′-deoxy-3′-18F-fluorothymidine PET. J Nucl Med 46:114–120

    PubMed  CAS  Google Scholar 

  31. Rainov NG (2000) A phase III clinical evaluation of herpes simplex virus type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme. Hum Gene Ther 11:2389–2401

    Article  PubMed  CAS  Google Scholar 

  32. Shand N, Weber F, Mariani L, Bernstein M, Gianella-Borradori A, Long Z et al (1999) A phase 1-2 clinical trial of gene therapy for recurrent glioblastoma multiforme by tumor transduction with the herpes simplex thymidine kinase gene followed by ganciclovir. GLI328 European–Canadian Study Group. Hum Gene Ther 10:2325–2335

    Article  PubMed  CAS  Google Scholar 

  33. Sandmair AM, Loimas S, Puranen P, Immonen A, Kossila M, Puranen M et al (2000) Thymidine kinase gene therapy for human malignant glioma, using replication-deficient retroviruses or adenoviruses. Hum Gene Ther 11:2197–2205

    Article  PubMed  CAS  Google Scholar 

  34. Trask TW, Trask RP, Aguilar-Cordova E, Shine HD, Wyde PR, Goodman JC et al (2000) Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol Ther 1:195–203

    Article  PubMed  CAS  Google Scholar 

  35. Markert JM, Medlock MD, Rabkin SD, Gillespie GY, Todo T et al (2000) Conditionally replicating herpes simplex virus mutant, G207 for the treatment of malignant glioma: results of a phase I trial. Gene Ther 7:867–874

    Article  PubMed  CAS  Google Scholar 

  36. Rampling R, Cruickshank G, Papanastassiou V, Nicoll J, Hadley D, Brennan D et al (2000) Toxicity evaluation of replication-competent herpes simplex virus (ICP 34.5 null mutant 1716) in patients with recurrent malignant glioma. Gene Ther 7:859–866

    Article  PubMed  CAS  Google Scholar 

  37. Haberkorn U, Bellemann ME, Gerlach L, Morr I, Trojan H, Brix G et al (1998) Uncoupling of 2-fluoro-2-deoxyglucose transport and phosphorylation in rat hepatoma during gene therapy with HSV thymidine kinase. Gene Ther 5:880–887

    Article  PubMed  CAS  Google Scholar 

  38. Pantuck AJ, Berger F, Zisman A, Nguyen D, Tso CL, Matherly J et al (2002) CL1-SR39: a noninvasive molecular imaging model of prostate cancer suicide gene therapy using positron emission tomography. J Urol 168:1193–1198

    Article  PubMed  CAS  Google Scholar 

  39. Yaghoubi SS, Barrio JR, Namavari M, Satyamurthy N, Phelps ME, Herschman HR et al (2005) Imaging progress of herpes simplex virus type 1 thymidine kinase suicide gene therapy in living subjects with positron emission tomography. Cancer Gene Ther 12:329–339

    Article  PubMed  CAS  Google Scholar 

  40. Muzi M, Spence AM, O’Sullivan F, Mankoff DA, Wells JM, Grierson JR et al (2006) Kinetic analysis of 3′-deoxy-3′-18F-fluorothymidine in patients with gliomas. J Nucl Med 47:1612–1621

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported in part by the Deutsche Forschungsgemeinschaft (DFG-Ja98/1-2), Center for Molecular Medicine Cologne (CMMC-TV46), and 6th FW EU grant EMIL (LSHC-CT-2004-503569).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas H. Jacobs.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rueger, M.A., Ameli, M., Li, H. et al. [18F]FLT PET for Non-Invasive Monitoring of Early Response to Gene Therapy in Experimental Gliomas. Mol Imaging Biol 13, 547–557 (2011). https://doi.org/10.1007/s11307-010-0361-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0361-6

Key words

Navigation