Skip to main content
Log in

Biodistribution and Clearance of Small Molecule Hapten Chelates for Pretargeted Radioimmunotherapy

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The favorable pharmacokinetics and clinical safety profile of metal-chelated 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) suggests that it might be an ideal hapten for pretargeted radioimmunotherapy. In an effort to minimize hapten retention in normal tissues and determine the effect of various chemical adducts on in vivo properties, a series of DOTA-based derivatives were evaluated.

Procedures

Biodistribution and whole-body clearance were evaluated for 177Lu-labeled DOTA, DOTA-biotin, a di-DOTA peptide, and DOTA-aminobenzene in normal CD1 mice. Kidney, liver, and bone marrow doses were estimated using standard Medical Internal Radiation Dose methodology.

Results

All haptens demonstrated similar low tissue and whole-body retention, with 2–4% of the injected dose remaining in mice 4 h postinjection. The kidney is predicted to be dose limiting for all 177Lu-labeled haptens tested with an estimated kidney dose of approximately 0.1 mGy/MBq.

Conclusions

We present here a group of DOTA-based haptens that exhibit rapid clearance and exceptionally low whole-body retention 4 h postinjection. Aminobenzene, tyrosine–lysine, and biotin groups have minimal effects on the blood clearance and biodistribution of 177Lu-DOTA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Boerman OC, van Schaijk FG, Oyen WJ, Corstens FH (2003) Pretargeted radioimmunotherapy of cancer: progress step by step. J Nucl Med 44:400–411

    PubMed  Google Scholar 

  2. Gruaz-Guyon A, Raguin O, Barbet J (2005) Recent advances in pretargeted radioimmunotherapy. Curr Med Chem 12:319–338

    PubMed  CAS  Google Scholar 

  3. Goodwin DA, Meares CF, McCall MJ, McTigue M, Chaovapong W (1988) Pre-targeted immunoscintigraphy of murine tumors with indium-111-labeled bifunctional haptens. J Nucl Med 29:226–234

    PubMed  CAS  Google Scholar 

  4. Axworthy DB, Reno JM, Hylarides MD et al (2000) Cure of human carcinoma xenografts by a single dose of pretargeted yttrium-90 with negligible toxicity. Proc Natl Acad Sci USA 97:1802–1807

    Article  PubMed  CAS  Google Scholar 

  5. Subbiah K, Hamlin DK, Pagel JM et al (2003) Comparison of immunoscintigraphy, efficacy, and toxicity of conventional and pretargeted radioimmunotherapy in CD20-expressing human lymphoma xenografts. J Nucl Med 44:437–445

    PubMed  CAS  Google Scholar 

  6. Pagel JM, Orgun N, Hamlin DK et al (2009) A comparative analysis of conventional and pretargeted radioimmunotherapy of B-cell lymphomas by targeting CD20, CD22, and HLA-DR singly and in combinations. Blood 113:4903–4913

    Article  PubMed  CAS  Google Scholar 

  7. Sharkey RM, Karacay H, Johnson CR et al (2009) Pretargeted versus directly targeted radioimmunotherapy combined with anti-CD20 antibody consolidation therapy of non-Hodgkin lymphoma. J Nucl Med 50:444–453

    Article  PubMed  CAS  Google Scholar 

  8. Hamblett KJ, Kegley BB, Hamlin DK et al (2002) A streptavidin–biotin binding system that minimizes blocking by endogenous biotin. Bioconjug Chem 13:588–598

    Article  PubMed  CAS  Google Scholar 

  9. Forster GJ, Santos EB, Smith-Jones PM, Zanzonico P, Larson SM (2006) Pretargeted radioimmunotherapy with a single-chain antibody/streptavidin construct and radiolabeled DOTA-biotin: strategies for reduction of the renal dose. J Nucl Med 47:140–149

    PubMed  CAS  Google Scholar 

  10. Sharkey RM, McBride WJ, Karacay H et al (2003) A universal pretargeting system for cancer detection and therapy using bispecific antibody. Cancer Res 63:354–363

    PubMed  CAS  Google Scholar 

  11. Gautherot E, Rouvier E, Daniel L et al (2000) Pretargeted radioimmunotherapy of human colorectal xenografts with bispecific antibody and 131I-labeled bivalent hapten. J Nucl Med 41:480–487

    PubMed  CAS  Google Scholar 

  12. Chen X, Park R, Tohme M et al (2004) MicroPET and autoradiographic imaging of breast cancer alpha v-integrin expression using 18F- and 64Cu-labeled RGD peptide. Bioconjug Chem 15:41–49

    Article  PubMed  Google Scholar 

  13. Chen X, Sievers E, Hou Y et al (2005) Integrin alpha v beta 3-targeted imaging of lung cancer. Neoplasia 7:271–279

    Article  PubMed  CAS  Google Scholar 

  14. Garrison JC, Rold TL, Sieckman GL et al (2007) In vivo evaluation and small-animal PET/CT of a prostate cancer mouse model using 64Cu bombesin analogs: side-by-side comparison of the CB-TE2A and DOTA chelation systems. J Nucl Med 48:1327–1337

    Article  PubMed  CAS  Google Scholar 

  15. Zhang H, Schuhmacher J, Waser B et al (2007) DOTA-PESIN, a DOTA-conjugated bombesin derivative designed for the imaging and targeted radionuclide treatment of bombesin receptor-positive tumours. Eur J Nucl Med Mol Imaging 34:1198–1208

    Article  PubMed  Google Scholar 

  16. Schmitt A, Bernhardt P, Nilsson O et al (2005) Differences in biodistribution between 99mTc-depreotide, 111In-DTPA-octreotide, and 177Lu-DOTA-Tyr3-octreotate in a small cell lung cancer animal model. Cancer Biother Radiopharm 20:231–236

    Article  PubMed  CAS  Google Scholar 

  17. Wild D, Behe M, Wicki A et al (2006) [Lys40(Ahx-DTPA-111In)NH2]exendin-4, a very promising ligand for glucagon-like peptide-1 (GLP-1) receptor targeting. J Nucl Med 47:2025–2033

    PubMed  CAS  Google Scholar 

  18. Haubner R, Wester HJ, Burkhart F et al (2001) Glycosylated RGD-containing peptides: tracer for tumor targeting and angiogenesis imaging with improved biokinetics. J Nucl Med 42:326–336

    PubMed  CAS  Google Scholar 

  19. Ferreira CL, Lamsa E, Woods M et al (2010) Evaluation of bifunctional chelates for the development of gallium-based radiopharmaceuticals. Bioconjug Chem 21:531–536

    Article  CAS  Google Scholar 

  20. Cutler CS, Smith CJ, Ehrhardt GJ et al (2000) Current and potential therapeutic uses of lanthanide radioisotopes. Cancer Biother Radiopharm 15:531–545

    Article  PubMed  CAS  Google Scholar 

  21. Le Mignon MM, Chambon C, Warrington S, Davies R, Bonnemain B (1990) Gd-DOTA. Pharmacokinetics and tolerability after intravenous injection into healthy volunteers. Invest Radiol 25:933–937

    Article  PubMed  Google Scholar 

  22. Bourrinet P, Martel E, El Amrani AI et al (2007) Cardiovascular safety of gadoterate meglumine (Gd-DOTA). Invest Radiol 42:63–77

    Article  PubMed  CAS  Google Scholar 

  23. Orcutt KD, Ackerman ME, Cieslewicz M et al (2010) A modular IgG-scFv bispecific antibody topology. Protein Eng Des Sel 23:221–228

    Article  PubMed  CAS  Google Scholar 

  24. Banerjee SR, Foss CA, Castanares M et al (2008) Synthesis and evaluation of technetium-99m- and rhenium-labeled inhibitors of the prostate-specific membrane antigen (PSMA). J Med Chem 51:4504–4517

    Article  PubMed  CAS  Google Scholar 

  25. Humblet V, Misra P, Frangioni JV (2006) An HPLC/mass spectrometry platform for the development of multimodality contrast agents and targeted therapeutics: prostate-specific membrane antigen small molecule derivatives. Contrast Media Mol Imaging 1:196–211

    Article  PubMed  CAS  Google Scholar 

  26. Misra P, Humblet V, Pannier N, Maison W, Frangioni JV (2007) Production of multimeric prostate-specific membrane antigen small-molecule radiotracers using a solid-phase 99mTc preloading strategy. J Nucl Med 48:1379–1389

    Article  PubMed  CAS  Google Scholar 

  27. Stabin MG, Siegel JA (2003) Physical models and dose factors for use in internal dose assessment. Health Phys 85:294–310

    Article  PubMed  CAS  Google Scholar 

  28. Wessels BW, Bolch WE, Bouchet LG et al (2004) Bone marrow dosimetry using blood-based models for radiolabeled antibody therapy: a multiinstitutional comparison. J Nucl Med 45:1725–1733

    PubMed  Google Scholar 

  29. Emami B, Lyman J, Brown A et al (1991) Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys 21:109–122

    PubMed  CAS  Google Scholar 

  30. Barbet J, Peltier P, Bardet S et al (1998) Radioimmunodetection of medullary thyroid carcinoma using indium-111 bivalent hapten and anti-CEA × anti-DTPA-indium bispecific antibody. J Nucl Med 39:1172–1178

    PubMed  CAS  Google Scholar 

  31. Knox SJ, Goris ML, Tempero M et al (2000) Phase II trial of yttrium-90-DOTA-biotin pretargeted by NR-LU-10 antibody/streptavidin in patients with metastatic colon cancer. Clin Cancer Res 6:406–414

    PubMed  CAS  Google Scholar 

  32. Lin Y, Pagel JM, Axworthy D et al (2006) A genetically engineered anti-CD45 single-chain antibody–streptavidin fusion protein for pretargeted radioimmunotherapy of hematologic malignancies. Cancer Res 66:3884–3892

    Article  PubMed  CAS  Google Scholar 

  33. Behr TM, Goldenberg DM, Becker W (1998) Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur J Nucl Med 25:201–212

    Article  PubMed  CAS  Google Scholar 

  34. Kraeber-Bodere F, Rousseau C, Bodet-Milin C et al (2006) Targeting, toxicity, and efficacy of 2-step, pretargeted radioimmunotherapy using a chimeric bispecific antibody and 131I-labeled bivalent hapten in a phase I optimization clinical trial. J Nucl Med 47:247–255

    PubMed  CAS  Google Scholar 

  35. Fisher DR, Shen S, Meredith RF (2009) MIRD dose estimate report No. 20: radiation absorbed-dose estimates for 111In- and 90Y-ibritumomab tiuxetan. J Nucl Med 50:644–652

    Article  PubMed  CAS  Google Scholar 

  36. Zacchetti A, Coliva A, Luison E et al (2009) (177)Lu- labeled MOv18 as compared to (131)I- or (90)Y-labeled MOv18 has the better therapeutic effect in eradication of alpha folate receptor-expressing tumor xenografts. Nucl Med Biol 36:759–770

    Article  PubMed  CAS  Google Scholar 

  37. Jaggi JS, Seshan SV, McDevitt MR et al (2006) Mitigation of radiation nephropathy after internal alpha-particle irradiation of kidneys. Int J Radiat Oncol Biol Phys 64:1503–1512

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Elaine P. Lunsford and Gaurav Gulati for technical assistance and Hak Soo Choi for helpful discussions. This work was supported by the Lewis Family Fund (JVF), National Institutes of Health grant R01-CA-101830 (KDW), and a National Science Foundation Graduate Research Fellowship (KDO).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Dane Wittrup.

Additional information

Significance:

We present here a quantitative in vivo analysis of four 177Lu-labeled DOTA-based small molecules in an effort to determine what form(s) of the DOTA chelate result in the fastest clearance and lowest tissue retention for pretargeted radioimmunotherapy applications and also to determine how various chemical moieties affect in vivo behavior of small molecules.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Orcutt, K.D., Nasr, K.A., Whitehead, D.G. et al. Biodistribution and Clearance of Small Molecule Hapten Chelates for Pretargeted Radioimmunotherapy. Mol Imaging Biol 13, 215–221 (2011). https://doi.org/10.1007/s11307-010-0353-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-010-0353-6

Key words

Navigation