Skip to main content
Log in

Single-Input–Dual-Output Modeling of Image-Based Input Function Estimation

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Quantification of small-animal positron emission tomography (PET) images necessitates knowledge of the plasma input function (PIF). We propose and validate a simplified hybrid single-input–dual-output (HSIDO) algorithm to estimate the PIF.

Procedures

The HSIDO algorithm integrates the peak of the input function from two region-of-interest time–activity curves with a tail segment expressed by a sum of two exponentials. Partial volume parameters are optimized simultaneously. The algorithm is validated using both simulated and real small-animal PET images. In addition, the algorithm is compared to existing techniques in terms of area under curve (AUC) error, bias, and precision of compartmental model micro-parameters.

Results

In general, the HSIDO method generated PIF with significantly (P < 0.05) less AUC error, lower bias, and improved precision of kinetic estimates in comparison to the reference method.

Conclusions

HSIDO is an improved modeling-based PIF estimation method. This method can be applied for quantitative analysis of small-animal dynamic PET studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Acton PD, Zhuang H, Alavi A (2004) Quantification in PET. Radiol Clin North Am 42(6):1055–1062, viii

    Article  PubMed  Google Scholar 

  2. Wienhard K (2002) Measurement of glucose consumption using [18F]fluorodeoxyglucose. Methods 27(3):218–225

    Article  CAS  PubMed  Google Scholar 

  3. Fang YH, Muzic RF Jr (2008) Spillover and partial-volume correction for image-derived input functions for small-animal 18F-FDG PET studies. J Nucl Med 49(4):606–614

    Article  PubMed  Google Scholar 

  4. Laforest R, Sharp TL, Engelbach JA et al (2005) Measurement of input functions in rodents: challenges and solutions. Nucl Med Biol 32(7):679–685

    Article  CAS  PubMed  Google Scholar 

  5. Gambhir SS, Schwaiger M, Huang SC et al (1989) Simple noninvasive quantification method for measuring myocardial glucose utilization in humans employing positron emission tomography and fluorine-18 deoxyglucose. J Nucl Med 30(3):359–366

    CAS  PubMed  Google Scholar 

  6. Hoekstra CJ, Hoekstra OS, Lammertsma AA (1999) On the use of image-derived input functions in oncological fluorine-18 fluorodeoxyglucose positron emission tomography studies. Eur J Nucl Med 26(11):1489–1492

    Article  CAS  PubMed  Google Scholar 

  7. Ohtake T, Kosaka N, Watanabe T et al (1991) Noninvasive method to obtain input function for measuring tissue glucose utilization of thoracic and abdominal organs. J Nucl Med 32(7):1432–1438

    CAS  PubMed  Google Scholar 

  8. Buvat I, Benali H, Frouin F, Bazin JP, Di Paola R (1993) Target apex-seeking in factor analysis of medical image sequences. Phys Med Biol 38(1):123–138

    Article  CAS  PubMed  Google Scholar 

  9. Di Paola R, Bazin JP, Aubry F et al (1982) Handling of dynamic sequences in nuclear medicine. IEEE Trans Nucl Sci NS-29:1310–1321

    Article  Google Scholar 

  10. Sitek A, Gullberg GT, Huesman RH (2002) Correction for ambiguous solutions in factor analysis using a penalized least squares objective. IEEE Trans Med Imaging 21(3):216–225

    Article  PubMed  Google Scholar 

  11. Su Y, Welch MJ, Shoghi KI (2007) The application of maximum likelihood factor analysis (MLFA) with uniqueness constraints on dynamic cardiac microPET data. Phys Med Biol 52(8):2313–2334

    Article  PubMed  Google Scholar 

  12. Su Y, Welch MJ, Shoghi KI (2007) Single input multiple output (SIMO) optimization for input function estimation: a simulation study. Nuclear Science Symposium Conference Record, 2007. NSS '07. IEEE 6:4481–4484

    Google Scholar 

  13. Feng D, Wong KP, Wu CM, Siu WC (1997) A technique for extracting physiological parameters and the required input function simultaneously from PET image measurements: theory and simulation study. IEEE Trans Inf Technol Biomed 1(4):243–254

    Article  CAS  PubMed  Google Scholar 

  14. Wong KP, Feng D, Meikle SR, Fulham MJ (2001) Simultaneous estimation of physiological parameters and the input function——in vivo PET data. IEEE Trans Inf Technol Biomed 5(1):67–76

    Article  CAS  PubMed  Google Scholar 

  15. Feng D, Huang SC, Wang X (1993) Models for computer simulation studies of input functions for tracer kinetic modeling with positron emission tomography. Int J Biomed Comput 32(2):95–110

    Article  CAS  PubMed  Google Scholar 

  16. Ferl GZ, Zhang X, Wu HM, Huang SC (2007) Estimation of the 18F-FDG input function in mice by use of dynamic small-animal PET and minimal blood sample data. J Nucl Med

  17. Meyer C, Weibrecht M, Peligrad DN (2006) Variation of kinetic model parameters due to input peak distortions and noise in simulated 82Rb PET perfusion studies. Nuclear Science Symposium Conference Record, 2006. IEEE 5:2703–2707

    Google Scholar 

  18. Wong K-P, Huang S-C, Fulham MJ (2006) Evaluation of an input function model that incorporates the injection schedule in FDG-PET studies. Nuclear Science Symposium Conference Record, 2006. IEEE 4:2086–2090

    Google Scholar 

  19. Shoghi KI, Welch MJ (2007) Hybrid image and blood sampling input function for quantification of small animal dynamic PET data. Nucl Med Biol 34(8):989–994

    Article  CAS  PubMed  Google Scholar 

  20. Phelps ME (2004) PET : molecular imaging and its biological applications. Springer, New York, 621 p

  21. Segars WP, Tsui BM, Frey EC, Johnson GA, Berr SS (2004) Development of a 4-D digital mouse phantom for molecular imaging research. Mol Imaging Biol 6(3):149–159

    Article  PubMed  Google Scholar 

  22. El Fakhri G, Sitek A, Zimmerman RE, Ouyang J (2006) Generalized five-dimensional dynamic and spectral factor analysis. Med Phys 33(4):1016–1024

    Article  PubMed  Google Scholar 

  23. Su Y, Shoghi KI (2008) Wavelet denoising in voxel based parametric estimation of small animal PET images: a systematic evaluation of spatial constraints and noise reduction algorithms Phys Med Biol 53(21):5899–5915

    Article  PubMed  Google Scholar 

  24. University of California Los Angeles Department of Molecular and Medical Pharmacology UCLA Mouse Quantitation Project. (http://dragon.nuc.ucla.edu). Accessed March 2008

  25. Huang SC, Wu HM, Truong D et al (2006) A public domain dynamic mouse FDG MicroPET image data set for evaluation and validation of input function derivation methods. Nuclear Science Symposium Conference Record, 2006. IEEE 5:2681–2683

    Google Scholar 

  26. Robb RA, Hanson DP, Karwoski RA et al (1989) Analyze: a comprehensive, operator-interactive software package for multidimensional medical image display and analysis. Comput Med Imaging Graph 13(6):433–454

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by internal funding to KIS and partly by funding from the NIH/NHLBI grant 5-PO1-HL-13851 and the Washington University Small Animal Imaging Resource (WUSAIR) R24-CA83060.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kooresh I. Shoghi.

Additional information

Significance: A novel input function model is proposed and validated for image-based estimation of input function. The proposed method will enable accurate quantitative analysis of small-animal PET images.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Su, Y., Shoghi, K.I. Single-Input–Dual-Output Modeling of Image-Based Input Function Estimation. Mol Imaging Biol 12, 286–294 (2010). https://doi.org/10.1007/s11307-009-0273-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-009-0273-5

Key words

Navigation