Skip to main content

Advertisement

Log in

Quantitative PET Imaging of VEGF Receptor Expression

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

Vascular endothelial growth factor (VEGF)/VEGF receptor (VEGFR) signaling pathway plays pivotal roles in regulating tumor angiogenesis. Quantitative positron emission tomography (PET) imaging of VEGFR will facilitate the planning of whether, and when, to start anti-angiogenic treatment and enable more robust and effective monitoring of such treatment.

Materials and methods

VEGF121 was conjugated with DOTA (1,4,7,10-tetra-azacylododecane N,N′,N′′,N′′′-tetraacetic acid) and then labeled with 64Cu for PET imaging of mice bearing different-sized human glioblastoma U87MG tumors (n = 15). Western blotting and immunofluorescence staining of tumor tissue was carried out to correlate with/validate the imaging results.

Results

The specific activity of 64Cu-DOTA-VEGF121 was 3.2 GBq/mg. The uptake of 64Cu-DOTA-VEGF121 in the tumor peaked when the tumor size was about 100–250 mm3. Both small and large tumors had lower tracer uptake indicating a narrow range of tumor size with high VEGFR-2 expression. All tumors had similarly low VEGFR-1 expression. Most importantly, the tumor uptake value obtained from PET imaging had good linear correlation with the relative tumor tissue VEGFR-2 expression as measured by Western blot, where r 2 equals 0.68 based on the PET uptake at 4 h post-injection. Histology of the frozen tumor tissue corroborates well with the imaging results.

Conclusion

The tumor uptake of 64Cu-DOTA-VEGF121 measured by small-animal PET imaging reflects tumor VEGFR-2 expression level in vivo. Such correlation may facilitate future treatment planning and treatment monitoring of cancer and potentially other angiogenesis-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carmeliet P (2005) Angiogenesis in life, disease and medicine. Nature 438:932–936

    Article  CAS  PubMed  Google Scholar 

  2. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    Article  CAS  PubMed  Google Scholar 

  3. Hicklin DJ, Ellis LM (2005) Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol 23:1011–1027

    Article  CAS  PubMed  Google Scholar 

  4. Ferrara N (2004) Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 25:581–611

    Article  CAS  PubMed  Google Scholar 

  5. Ferrara N (2005) The role of VEGF in the regulation of physiological and pathological angiogenesis. EXS 94:209–231

    PubMed  Google Scholar 

  6. Yamaji-Kegan K, Su Q, Angelini DJ, Champion HC, Johns RA (2006) Hypoxia-induced mitogenic factor has proangiogenic and proinflammatory effects in the lung via VEGF and VEGF receptor-2. Am J Physiol Lung Cell Mol Physiol 291:L1159–L1168

    Article  CAS  PubMed  Google Scholar 

  7. Shibuya M (2006) Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol 39:469–478

    CAS  PubMed  Google Scholar 

  8. Hillman GG, Wang Y, Kucuk O et al (2004) Genistein potentiates inhibition of tumor growth by radiation in a prostate cancer orthotopic model. Mol Cancer Ther 3:1271–1279

    CAS  PubMed  Google Scholar 

  9. Cebe-Suarez S, Zehnder-Fjallman A, Ballmer-Hofer K (2006) The role of VEGF receptors in angiogenesis; complex partnerships. Cell Mol Life Sci 63:601–615

    Article  CAS  PubMed  Google Scholar 

  10. Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  11. Cai W, Chen X (2007) Multimodality imaging of vascular endothelial growth factor and vascular endothelial growth factor receptor expression. Front Biosci 12:4267–4279

    Article  CAS  PubMed  Google Scholar 

  12. Nagengast WB, de Vries EG, Hospers GA et al (2007) In vivo VEGF imaging with radiolabeled bevacizumab in a human ovarian tumor xenograft. J Nucl Med 48:1313–1319

    Article  CAS  PubMed  Google Scholar 

  13. Stollman TH, Scheer MG, Leenders WP et al (2008) Specific imaging of VEGF-A expression with radiolabeled anti-VEGF monoclonal antibody. Int J Cancer 122:2310–2314

    Article  CAS  PubMed  Google Scholar 

  14. Korpanty G, Carbon JG, Grayburn PA, Fleming JB, Brekken RA (2007) Monitoring response to anticancer therapy by targeting microbubbles to tumor vasculature. Clin Cancer Res 13:323–330

    Article  CAS  PubMed  Google Scholar 

  15. Willmann JK, Paulmurugan R, Chen K et al (2008) US imaging of tumor angiogenesis with microbubbles targeted to vascular endothelial growth factor receptor type 2 in mice. Radiology 246:508–518

    Article  PubMed  Google Scholar 

  16. Cheung AM, Brown AS, Cucevic V et al (2007) Detecting vascular changes in tumour xenografts using micro-ultrasound and micro-CT following treatment with VEGFR-2 blocking antibodies. Ultrasound Med Biol 33:1259–1268

    Article  PubMed  Google Scholar 

  17. Backer MV, Gaynutdinov TI, Patel V et al (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429

    Article  CAS  PubMed  Google Scholar 

  18. Backer MV, Patel V, Jehning BT, Backer JM (2006) Self-assembled “dock and lock” system for linking payloads to targeting proteins. Bioconjug Chem 17:912–919

    Article  CAS  PubMed  Google Scholar 

  19. Lu E, Wagner WR, Schellenberger U et al (2003) Targeted in vivo labeling of receptors for vascular endothelial growth factor: approach to identification of ischemic tissue. Circulation 108:97–103

    Article  CAS  PubMed  Google Scholar 

  20. Blankenberg FG, Mandl S, Cao YA et al (2004) Tumor imaging using a standardized radiolabeled adapter protein docked to vascular endothelial growth factor. J Nucl Med 45:1373–1380

    CAS  PubMed  Google Scholar 

  21. Blankenberg FG, Backer MV, Levashova Z, Patel V, Backer JM (2006) In vivo tumor angiogenesis imaging with site-specific labeled 99mTc-HYNIC-VEGF. Eur J Nucl Med Mol Imaging 33:841–848

    Article  PubMed  Google Scholar 

  22. Cornelissen B, Oltenfreiter R, Kersemans V et al (2005) In vivo and in vivo evaluation of [123I]-VEGF165 as a potential tumor marker. Nucl Med Biol 32:431–436

    Article  CAS  PubMed  Google Scholar 

  23. Li S, Peck-Radosavljevic M, Kienast O et al (2004) Iodine-123-vascular endothelial growth factor-165 (123I-VEGF165). Biodistribution, safety and radiation dosimetry in patients with pancreatic carcinoma. Q J Nucl Med Mol Imaging 48:198–206

    CAS  PubMed  Google Scholar 

  24. Li S, Peck-Radosavljevic M, Kienast O et al (2003) Imaging gastrointestinal tumours using vascular endothelial growth factor-165 (VEGF165) receptor scintigraphy. Ann Oncol 14:1274–1277

    Article  CAS  PubMed  Google Scholar 

  25. Chan C, Sandhu J, Guha A et al (2005) A human transferrin-vascular endothelial growth factor (hnTf-VEGF) fusion protein containing an integrated binding site for 111In for imaging tumor angiogenesis. J Nucl Med 46:1745–1752

    CAS  PubMed  Google Scholar 

  26. Backer MV, Levashova Z, Patel V et al (2007) Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med 13:504–509

    Article  CAS  PubMed  Google Scholar 

  27. Cai W, Chen K, Mohamedali KA et al (2006) PET of vascular endothelial growth factor receptor expression. J Nucl Med 47:2048–2056

    CAS  PubMed  Google Scholar 

  28. Hsu AR, Cai W, Veeravagu A et al (2007) Multimodality molecular imaging of glioblastoma growth inhibition with vasculature-targeting fusion toxin VEGF121/rGel. J Nucl Med 48:445–454

    CAS  PubMed  Google Scholar 

  29. Rodriguez-Porcel M, Cai W, Gheysens O et al (2008) Imaging of VEGF receptor in a rat myocardial infarction model using positron emission tomography. J Nucl Med 49:4667–4673

    Article  Google Scholar 

  30. Wang H, Cai W, Chen K et al (2007) A new PET tracer specific for vascular endothelial growth factor receptor 2. Eur J Nucl Med Mol Imaging 34:2001–2010

    Article  CAS  PubMed  Google Scholar 

  31. Willmann JK, Chen K, Wang H et al (2008) Monitoring of the biologic response to murine hindlimb ischemia using 64Cu-labeled vascular endothelial growth factor-121 positron emission tomography. Circulation 117:915–922

    Article  CAS  PubMed  Google Scholar 

  32. Cai W, Shin DW, Chen K et al (2006) Peptide-labeled near-infrared quantum dots for imaging tumor vasculature in living subjects. Nano Lett 6:669–676

    Article  CAS  PubMed  Google Scholar 

  33. Cai W, Olafsen T, Zhang X et al (2007) PET imaging of colorectal cancer in xenograft-bearing mice by use of an 18F-labeled T84.66 anti-carcinoembryonic antigen diabody. J Nucl Med 48:304–310

    Article  CAS  PubMed  Google Scholar 

  34. Cai W, Zhang X, Wu Y, Chen X (2006) A thiol-reactive 18F-labeling agent, N-[2-(4–18F-fluorobenzamido)ethyl]maleimide (18F-FBEM), and the synthesis of RGD peptide-based tracer for PET imaging of avb3 integrin expression. J Nucl Med 47:1172–1180

    CAS  PubMed  Google Scholar 

  35. Cai W, Rao J, Gambhir SS, Chen X (2006) How molecular imaging is speeding up anti-angiogenic drug development. Mol Cancer Ther 5:2624–2633

    Article  CAS  PubMed  Google Scholar 

  36. Kelloff GJ, Hoffman JM, Johnson B et al (2005) Progress and promise of FDG-PET imaging for cancer patient management and oncologic drug development. Clin Cancer Res 11:2785–2808

    Article  CAS  PubMed  Google Scholar 

  37. Gambhir SS, Czernin J, Schwimmer J et al (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    CAS  PubMed  Google Scholar 

  38. Zhang X, Xiong Z, Wu X et al (2006) Quantitative PET imaging of tumor integrin avb3 expression with 18F-FRGD2. J Nucl Med 47:113–121

    CAS  PubMed  Google Scholar 

  39. Cai W, Chen K, He L et al (2007) Quantitative PET of EGFR expression in xenograft-bearing mice using 64Cu-labeled cetuximab, a chimeric anti-EGFR monoclonal antibody. Eur J Nucl Med Mol Imaging 34:850–858

    Article  CAS  PubMed  Google Scholar 

  40. Cai W, Ebrahimnejad A, Chen K et al (2007) Quantitative radioimmunoPET imaging of EphA2 in tumour-bearing mice. Eur J Nucl Med Mol Imaging 34:2024–2036

    Article  CAS  PubMed  Google Scholar 

  41. Yoshimoto M, Kinuya S, Kawashima A et al (2006) Radioiodinated VEGF to image tumor angiogenesis in a LS180 tumor xenograft model. Nucl Med Biol 33:963–969

    Article  CAS  PubMed  Google Scholar 

  42. Boswell CA, Sun X, Niu W et al (2004) Comparative in vivo stability of copper-64-labeled cross-bridged and conventional tetraazamacrocyclic complexes. J Med Chem 47:1465–1474

    Article  CAS  PubMed  Google Scholar 

  43. Sprague JE, Peng Y, Sun X et al (2004) Preparation and biological evaluation of Copper-64-labeled Tyr3-octreotate using a cross-bridged macrocyclic chelator. Clin Cancer Res 10:8674–8682

    Article  CAS  PubMed  Google Scholar 

  44. Smith SV (2008) Sarar technology for the application of Copper-64 in biology and materials science. Q J Nucl Med Mol Imaging 52:193–202

    CAS  PubMed  Google Scholar 

  45. Keyt BA, Nguyen HV, Berleau LT et al (1996) Identification of vascular endothelial growth factor determinants for binding KDR and FLT-1 receptors. Generation of receptor-selective VEGF variants by site-directed mutagenesis. J Biol Chem 271:5638–5646

    Article  CAS  PubMed  Google Scholar 

  46. Frese KK, Tuveson DA (2007) Maximizing mouse cancer models. Nat Rev Cancer 7:645–658

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Cancer Institute (NCI) (R01 CA119053, R21 CA121842, R21 CA102123, P50 CA114747, U54 CA119367, and R24 CA93862), the Department of Defense (DOD) (W81XWH-07-1-0374, W81XWH-04-1-0697, W81XWH-06-1-0665, W81XWH-06-1-0042), and Benedict Cassen Postdoctoral Fellowship (to W. Cai and Z-B Li) from the Education and Research Foundation of the Society of Nuclear Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Additional information

Kai Chen and Weibo Cai contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, K., Cai, W., Li, ZB. et al. Quantitative PET Imaging of VEGF Receptor Expression. Mol Imaging Biol 11, 15–22 (2009). https://doi.org/10.1007/s11307-008-0172-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0172-1

Key words

Navigation