Skip to main content
Log in

Dual-Time-Point FDG-PET/CT for the Detection of Hepatic Metastases

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

To prove the sensitivity of dual-time-point imaging with 18F-flourodeoxyglucose-positron emission tomography (18F-FDG-PET) of the liver to evaluate possible changes in the tumor-to-background ratio considering an improved detection rate of liver lesions.

Procedures

Image acquisition for the first whole-body scan started at a mean time point of 69 min (55–110 min). The mean time interval between the injection of 18F-FDG and the second delayed scan was 100 min (85–166 min).

Results

Of 90 proven liver metastases in 34 patients, the first scan detected 53 (59%) liver lesions correctly, whereas in the second, delayed scan 81 (90%) lesions were diagnosed correctly (p<0.001). The mean Standardized uptake values in the first and second delayed scan were 6.59 g/ml versus 8.09 g/ml, respectively (p<0.001). Tumor-to-background ratio of the first and second delayed scan were 2.0 and 2.7, respectively (p = 0.04).

Conclusions

Dual-time-point-imaging of the liver showed a significant increase of tumor-to-background ratio and hypermetabolic lesion diameter. Although, 30% of all verified liver lesions could only be detected in the second delayed scan 10% of all malignant liver lesions were missed with FDG-PET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. American Cancer Society (1999) Cancer facts and figures: 1999. American Cancer Society, Atlanta, GA

    Google Scholar 

  2. Lehnert T, Knaebel HP, Duck M, Bulzebruck H, Herfarth C (1999) Sequential hepatic and pulmonary resections for metastatic colorectal cancer. Br J Surg 86:241–243

    Article  PubMed  CAS  Google Scholar 

  3. Nakamura S, Suzuki S, Baba S (1997) Resection of liver metastases of colorectal carcinoma. World J Surg 21:741–747

    Article  PubMed  CAS  Google Scholar 

  4. Kubo Y, Kurita A, Saeki T, Yokoyama N, Tanada M, Takiyama W, Saeki H, Takashima S (1996) Chemotherapy for peritoneal dissemination in gastric cancer under ureteral catheterization. Gan To Kagaku Ryoho 23:1951–1957

    PubMed  CAS  Google Scholar 

  5. Huebner RH, Park KC, Shepherd JC et al (2000) A meta-analysis of the literature for the whole-body FDG PET detection of recurrent colorectal cancer. J Nucl Med 41:1177–1189

    PubMed  CAS  Google Scholar 

  6. Brix G, Ziegler SI, Bellemann ME, Doll J, Schosser R, Lucht R, Krieter H, Nosske D, Haberkorn U (2001) Quantification of [18F]FDG uptake in the normal liver using dynamic PET: impact and modeling of the dual hepatic blood supply. J Nucl Med 42:1265–1273

    PubMed  CAS  Google Scholar 

  7. Weber G, Cantero A (1955) Glucose-6-phosphatase activity in normal, pre-cancerous, and neoplastic tissues. Cancer Res 15:105–108

    PubMed  CAS  Google Scholar 

  8. Weber G, Morris HP (1963) Comparative biochemistry of hepatomas. III. Carbohydrate enzymes in liver tumors of different growth rates. Cancer Res 23:987–994

    PubMed  CAS  Google Scholar 

  9. Matthies A, Hickeson M, Cuchiara A, Alavi A (2002) Dual time point 18F-FDG PET for the evaluation of pulmonary nodules. J Nucl Med 43:871–875

    PubMed  Google Scholar 

  10. Hamberg LM, Hunter GJ, Alpert NM, Choi NC, Babich JW, Fischman AJ (1994) The dose uptake ratio as an index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 35:1308–1312

    PubMed  CAS  Google Scholar 

  11. Lodge MA, Lucas JD, Marsden PK, Cronin BF, O'Doherty MJ, Smith MAA (1999) PET study of 18-FDG uptake in soft tissue masses. Eur J Nucl Med 26:22–30

    Article  PubMed  CAS  Google Scholar 

  12. Zhuang H, Pourdehnad M, Lambright ES, Yamamoto AJ, Lanuti M, Li P, Mozley PD, Rossman MD, Albelda SM, Alavi A (2001) Dual time point 18F-FDG PET imaging for differentiating malignant from inflammatory processes. J Nucl Med 42:1412–1417

    PubMed  CAS  Google Scholar 

  13. Newcombe RG (1998) Improved confidence intervals for the difference between binomial proportions based on paired data. Stat Med 17:873–890

    Article  PubMed  CAS  Google Scholar 

  14. Rohren EM, Turkington TG, Coleman RE (2004) Clinical applications of PET in oncology. Radiology 231:305–332

    Article  PubMed  Google Scholar 

  15. Kinkel K, Lu Y, Both M, Warren RS, Thoeni RF (2002) Detection of hepatic metastases from cancers of the gastrointestinal tract by using noninvasive imaging methods (US, CT, MR imaging, PET): a meta-analysis. Radiology 224:748–756

    Article  PubMed  Google Scholar 

  16. Munk OL, Bass L, Roelsgaard K, Bender D, Hansen SB, Keiding S (2001) Liver kinetics of glucose analogs measured in pigs by PET: importance of dual-input blood sampling. J Nucl Med 42:795–801

    PubMed  CAS  Google Scholar 

  17. Beaulieu S, Kinahan P, Tseng J et al (2003) SUV varies with time after injection in 18F-FDG PET of breast: characterisation and method to adjust for time differences. J Nucl Med 44:1044–1050

    PubMed  Google Scholar 

  18. Nishiyama Y, Yamamoto Y, Fukunaga K, Kimura N, Miki A, Sasakawa Y, Wakabayashi H, Satoh K, Ohkawa M (2006) Dual-time-point 18F-FDG PET for the evaluation of gallbladder carcinoma. J Nucl Med 47:633–638

    PubMed  Google Scholar 

  19. Kumar R, Loving VA, Chauhan A, Zhuang H, Mitchell S, Alavi A (2005) Potential of dual-time-point imaging to improve breast cancer diagnosis with 18F-FDG PET. J Nucl Med 46:1819–1824

    PubMed  Google Scholar 

  20. Sanghera B, Wong WL, Lodge MA, Hain S, Stott D, Lowe J, Lemon C, Goodchild K, Saunders M (2005) Potential novel application of dual time point SUV measurements as a predictor of survival in head and neck cancer. Nucl Med Commun 26:861–867

    Article  PubMed  Google Scholar 

  21. Conrad GR, Sinha P (2003) Narrow time-window dual-point 18F-FDG PET for the diagnosis of thoracic malignancy. Nucl Med Commun 24:1129–1137 Nov

    Article  PubMed  CAS  Google Scholar 

  22. Patz EF Jr, Lowe VJ, Hoffman JM, Paine SS, Burrowes P, Coleman RE, Goodman PC (1993) Focal pulmonary abnormalities: evaluation with F-18 fluorodeoxyglucose PET scanning. Radiology 188:487–490

    PubMed  Google Scholar 

  23. Hubner KF, Buonocore E, Gould HR, Thie J, Smith GT, Stephens S, Dickey J (1996) Differentiating benign from malignant lung lesions using “quantitative” parameters of FDG PET images. Clin Nucl Med 21:941–949

    Article  PubMed  CAS  Google Scholar 

  24. Torizuka T, Zasadny KR, Recker B, Wahl RL (1998) Untreated primary lung and breast cancers: correlation between F-18 FDG kinetic rate constants and findings of in vitro studies. Radiology 207:767–774

    PubMed  CAS  Google Scholar 

  25. Cook GJ, Maisey MN, Fogelman I (1999) Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 26:1363–1378

    Article  PubMed  CAS  Google Scholar 

  26. Kato T, Fukatsu H, Ito K, Tadokoro M, Ota T, Ikeda M, Isomura T, Ito S, Nishino M, Ishigaki T (1995) Fluorodeoxyglucose positron emission tomography in pancreatic cancer: an unsolved problem. Eur J Nucl Med 22:32–39

    Article  PubMed  CAS  Google Scholar 

  27. Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A (1999) Can the standardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 26:1501–1509

    Article  PubMed  CAS  Google Scholar 

  28. Zhuang H, Duarte PS, Pourdehnad M, Li P, Alavi A (2000) Standardized uptake value as an unreliable index of renal disease on fluorodeoxyglucose PET imaging. Clin Nucl Med 25:358–360

    Article  PubMed  CAS  Google Scholar 

  29. Thie JA (2007) Optimizing dual-time and serial positron emission tomography and single photon emission computed tomography scans for diagnoses and therapy monitoring. Mol Imaging Biol 9(6):348–356

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Albert Dirisamer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dirisamer, A., Halpern, B.S., Schima, W. et al. Dual-Time-Point FDG-PET/CT for the Detection of Hepatic Metastases. Mol Imaging Biol 10, 335–340 (2008). https://doi.org/10.1007/s11307-008-0159-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0159-y

Key words

Navigation