Skip to main content

Advertisement

Log in

FLT-PET Imaging of Radiation Responses in Murine Tumors

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Background

3′-[F-18]Fluoro-3′-deoxythymidine (FLT) traces thymidine phosphorylation catalyzed by thymidine kinase during cell proliferation. Knowing the rate of cell proliferation during cancer treatment, such as radiation therapy, would be valuable in assessing whether tumor recurrence is likely and might indicate the need for additional treatments. However, the relationship between FLT kinetics and the effects of radiation is not well-understood. Nor has the method for optimal quantification of FLT uptake within the irradiated tumor microenvironment been extensively examined.

Materials and Methods

We performed dynamic FLT-positron emission tomography (PET) studies (60 min) on 22 mice implanted subcutaneously with syngeneic mammary MCaK tumors bilaterally in the shoulder area. A day before the FLT-PET imaging, the tumor on the right side was irradiated with a single dose (0, 2.5, 5, 10, or 20 Gy) or with fractionated exposures (4 × 2.5 Gy given in 12 h intervals). Standardized uptake value (SUVs) of FLT on tumors at 10 and 60 min post injection were calculated; model fitting was used to estimate the kinetic parameters. Significant radiation-induced changes were shown by comparing the irradiated tumor with the control tumor in the same animal and by comparing it to nonirradiated mice. The effect of radiation on MCaK cell cycle parameters and FLT uptake was also examined in vitro.

Results

In vivo FLT kinetics were sensitive to radiation doses of 5 Gy and higher (administered 1 day earlier), as judged by SUV semiquantitative measures and by modeling. Single irradiation with 10 Gy had greater impact on SUVs and kinetic parameters than fractionated exposures. Overall, the uptake constant K i appeared to be the best marker for these radiation effects. FLT uptake by irradiated cells in vitro at various doses gave similar findings, and the in vitro FLT uptake correlated well with K i . Radiation-induced G2/M arrest appeared to influence FLT uptake, and this was more pronounced after single than fractionated doses.

Conclusion

The kinetics of FLT uptake into murine mammary tumors was altered 1 day after radiation treatment. The dose-dependent response correlated well with in vitro FLT cellular uptake. Parameters (e.g., K i ) derived from FLT kinetics are expected to be useful for assessing the efficacy of irradiation treatment of tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Boothman DA, Davis TW, Sahijdak WM (1994) Enhanced expression of thymidine kinase in human cells following ionizing radiation. Int J Radiat Oncol Biol Phys 30:391–398

    PubMed  CAS  Google Scholar 

  2. Been LB, Suurmeijer AJ, Cobben DC, Jager PL, Hoekstra HJ, Elsinga PH (2004) [18F]FLT-PET in oncology: current status and opportunities. Eur J Nucl Med Mol Imaging 31:1659–1672

    Article  PubMed  Google Scholar 

  3. Kong XB, Zhu QY, Vidal PM et al (1992) Comparisons of anti-human immunodeficiency virus activities, cellular transport, and plasma and intracellular pharmacokinetics of 3¢-fluoro-3¢-deoxythymidine and 3¢-azido-3¢-deoxythymidine. Antimicrob Agents Chemother 36:808–818

    PubMed  CAS  Google Scholar 

  4. Vesselle H, Grierson J, Muzi M et al (2002) In vivo validation of 3¢deoxy-3¢-[(18)F]fluorothymidine ([(18)F]FLT) as a proliferation imaging tracer in humans: correlation of [(18)F]FLT uptake by positron emission tomography with Ki-67 immunohistochemistry and flow cytometry in human lung tumors. Clin Cancer Res 8:3315–3323

    PubMed  CAS  Google Scholar 

  5. Buck AK, Halter G, Schirrmeister H et al (2003) Imaging proliferation in lung tumors with PET: 18F-FLT versus 18F-FDG. J Nucl Med 44:1426–1431

    PubMed  CAS  Google Scholar 

  6. Buck AK, Schirrmeister H, Hetzel M et al (2002) 3-deoxy-3-[(18)F]fluorothymidine-positron emission tomography for noninvasive assessment of proliferation in pulmonary nodules. Cancer Res 62:3331–3334

    PubMed  CAS  Google Scholar 

  7. Mathews MB, Bernstein RM, Franza BR Jr, Garrels JI (1984) Identity of the proliferating cell nuclear antigen and cyclin. Nature 309:374–376

    Article  PubMed  CAS  Google Scholar 

  8. Shields AF, Grierson JR, Dohmen BM et al (1998) Imaging proliferation in vivo with [F-18]FLT and positron emission tomography. Nat Med 4:1334–1336

    Article  PubMed  CAS  Google Scholar 

  9. Mankoff DA, Shields AF, Krohn KA (2005) PET imaging of cellular proliferation. Radiol Clin North Am 43:153–167

    Article  PubMed  Google Scholar 

  10. Waldherr C, Mellinghoff IK, Tran C et al (2005) Monitoring antiproliferative responses to kinase inhibitor therapy in mice with 3¢-deoxy-3¢-18F-fluorothymidine PET. J Nucl Med 46:114–120

    PubMed  CAS  Google Scholar 

  11. Barthel H, Cleij MC, Collingridge DR et al (2003) 3¢-deoxy-3¢-[18F]fluorothymidine as a new marker for monitoring tumor response to antiproliferative therapy in vivo with positron emission tomography. Cancer Res 63:3791–3798

    PubMed  CAS  Google Scholar 

  12. Dittmann H, Dohmen BM, Kehlbach R et al (2002) Early changes in [18F]FLT uptake after chemotherapy: an experimental study. Eur J Nucl Med Mol Imaging 29:1462–1469

    Article  PubMed  CAS  Google Scholar 

  13. Oyama N, Ponde DE, Dence C, Kim J, Tai YC, Welch MJ (2004) Monitoring of therapy in androgen-dependent prostate tumor model by measuring tumor proliferation. J Nucl Med 45:519–525

    PubMed  CAS  Google Scholar 

  14. Schoder H, Gonen M (2007) Screening for cancer with PET and PET/CT:potential and limitations. J Nucl Med 48:4S–18S

    Article  PubMed  CAS  Google Scholar 

  15. Cook G, Maisey MN, Fogelman I (1999) Normal variants, artefacts and interpretative pitfalls in PET imaging with 18-fluoro-2-deoxyglucose and carbon-11 methionine. Eur J Nucl Med 26:1363–1378

    Article  PubMed  CAS  Google Scholar 

  16. Molthoff CFM, Klabbers BM, Berkhof J et al (2007) Monitoring response to radiotherapy in human squamous cell cancer bearing nude mice: comparison of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) and 3-[18F]fluoro-3-deoxythymidine (FLT). Mol Imaging Biol 9:340–347

    Article  PubMed  Google Scholar 

  17. Kubota K, Ishiwata K, Kubota R et al (1991) Tracer feasibility for monitoring tumor radiotherapy: a quadruple tracer study with fluorine-18-fluorodeoxyglucose or fluorine-18-fluorodeoxyuridine, L-[methyl-14C]methionine, [6-3H]thymidine, and gallium-67. J Nucl Med 32:2118–2123

    PubMed  CAS  Google Scholar 

  18. Zasadny K, Wahl RL (1993) Standardized uptake values of normal tissues at PET with 2-[fluorine-18]-fluoro-2-deoxy-D-glucose: variation with body weight and a method for correction. Radiology 189:847–850

    PubMed  CAS  Google Scholar 

  19. Keyes JJ (1995) SUV: standard uptake or silly useless value? J Nucl Med 36:1836–1839

    PubMed  Google Scholar 

  20. Huang S (2000) Anatomy of SUV. Nucl Med Biol 27:643–646

    Article  PubMed  CAS  Google Scholar 

  21. Phelps ME (2004) PET: molecular imaging and its biological applications. Springer, New York

    Google Scholar 

  22. Muzi M, Vesselle H, Grierson JR et al (2005) Kinetic analysis of 3′-deoxy-3′-fluorothymidine PET studies: validation studies in patients with lung cancer. J Nucl Med 46:274–282

    PubMed  CAS  Google Scholar 

  23. Satyamurthy N, Amarasekera B, Alvord CW, Barrio JR, Phelps ME (2002) Tantalum [18O]water target for the production of [18F]fluoride with high reactivity for the preparation of 2-deoxy-2-[18F]fluoro-D-glucose. Mol Imaging Biol 4:65–70

    Article  PubMed  CAS  Google Scholar 

  24. Pollack A, Terry NH, White RA, Cao S, Meistrich ML, Milas L (1994) Proliferation kinetics of recruited cells in a mouse mammary carcinoma. Cancer Res 54:811–817

    PubMed  CAS  Google Scholar 

  25. Loening AM, Gambhir SS (2003) AMIDE: a free software tool for multimodality medical image analysis. Mol Imaging 2:131–137

    Article  PubMed  Google Scholar 

  26. Muzi M, Mankoff DA, Grierson JR, Wells JM, Vesselle H, Krohn KA (2005) Kinetic modeling of 3¢-deoxy-3¢-fluorothymidine in somatic tumors: mathematical studies. J Nucl Med 46:371–380

    PubMed  CAS  Google Scholar 

  27. Huang SC, Phelps ME, Hoffman EJ, Sideris K, Selin CJ, Kuhl DE (1980) Noninvasive determination of local cerebral metabolic rate of glucose in man. Am J Physiol 238:E69–E82

    PubMed  CAS  Google Scholar 

  28. Phelps ME, Huang SC, Hoffman EJ, Selin CE, Kuhl DE (1979) Tomographic measurement of regional cerebral glucose metabolic rate in man with (F-18) fluorodeoxyglucose: validation of method. Ann Neurol 6:371–388

    Article  PubMed  CAS  Google Scholar 

  29. Sokoloff L, Reivich M, Kennedy C et al (1977) The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28:897–916

    Article  PubMed  CAS  Google Scholar 

  30. Mankoff DA, Shields AF, Graham MM, Link JM, Eary JF, Krohn KA (1998) Kinetic analysis of 2-[carbon-11]thymidine PET imaging studies: compartmental model and mathematical analysis. J Nucl Med 39:1043–1055

    PubMed  CAS  Google Scholar 

  31. Lee JR, Madsen MT, Bushnel D, Menda Y (2000) A threshold method to improve standardized uptake value reproducibility. Nucl Med Commun 21:685–690

    Article  PubMed  CAS  Google Scholar 

  32. Rasey JS, Grierson JR, Wiens LW, Kolb PD, Schwartz JL (2002) Validation of FLT uptake as a measure of thymidine kinase-1 activity in A549 carcinoma cells. J Nucl Med 43:1210–1217

    PubMed  CAS  Google Scholar 

  33. Ellims PH, Van der Weyden MB, Medley G (1981) Thymidine kinase isoenzymes in human malignant lymphoma. Cancer Res 41:691–695

    PubMed  CAS  Google Scholar 

  34. Larson SM, Weiden PL, Grunbaum Z et al (1981) Positron imaging feasibility studies. I: characteristics of [3H]thymidine uptake in rodent and canine neoplasms: concise communication. J Nucl Med 22:869–874

    PubMed  CAS  Google Scholar 

  35. Jeong MH, Jin YH, Kang EY, Jo WS, Park HT, Lee JD, Yoo YJ, Jeong SJ (2004) The modulation of radiation-induced cell death by genistein in K562 cells: activation of thymidine kinase 1. Cell Res 14:295–302

    Article  PubMed  CAS  Google Scholar 

  36. Hoffman EJ, Huang SC, Phelps ME (1979) Quantitation in positron emission computed tomography. 1. Effect of object size. J Comput Assist Tomogr 3:299–308

    Article  PubMed  CAS  Google Scholar 

  37. Demaria S, Ng B, Devitt ML et al (2004) Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys 58:862–870

    PubMed  Google Scholar 

  38. Hamada N, Matsumoto H, Hara T, Kobayashi Y (2007) Intercellular and intracellular signaling pathways mediating ionizing radiation-induced bystander effects. J Radiat Res (Tokyo) 48:87–95

    Article  CAS  Google Scholar 

  39. Patlak C, Blasberg RG (1983) Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 3:1–7

    PubMed  CAS  Google Scholar 

  40. Soret M, Bacharach SL, Buvat I (2007) Partial-volume effect in PET tumor imaging. J Nucl Med 48:932–945

    Article  PubMed  Google Scholar 

  41. Wu HM, Sui G, Lee CC, Prins ML, Ladno W, Lin HD, Yu AS, Phelps ME, Huang SC (2007) In vivo quantitation of glucose metabolism in mice using microPET imaging and a microfluidic device. J Nucl Med 48:837–845

    Article  PubMed  CAS  Google Scholar 

  42. Huang SC, Wu HM, Kreissl M, Stout D, Chatziioannou A, Truong D, Schelbert HR (2005) Evaluation of partial volume effects in mouse cardiac MicroPET images using a 4D digital mouse phantom. Mol Imaging Biol 7:134

    Article  Google Scholar 

  43. Ferl GZ, Wu HM, Zhang X, Huang SC (2007) Estimation of the 18F-FDG Input function in mice using dynamic microPET and minimal blood sample data. J Nucl Med 48:2037–2045

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Dr. Arion Chatziioannou and the staff in the small-animal imaging facility at Crump Institute for Molecular Imaging for performing the mouse PET imaging, Dr. Michael Kreissl for taking serial blood samples, and Dr. N. Satyamurthy and his staff in the UCLA medical cyclotron facility for producing the tracer FLT used in this study. This work was partly supported by DOE cooperative agreement DE-FC03-02ER63420, and by NIH grants RO1-EB001943 and P50-CA086306.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. C. Huang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pan, M.H., Huang, S.C., Liao, Y.P. et al. FLT-PET Imaging of Radiation Responses in Murine Tumors. Mol Imaging Biol 10, 325–334 (2008). https://doi.org/10.1007/s11307-008-0158-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0158-z

Key words

Navigation