Skip to main content
Log in

11C-Acetate PET in the Evaluation of Brain Glioma: Comparison with 11C-Methionine and 18F-FDG-PET

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of the study is to retrospectively investigate the usefulness of 11C-acetate (ACE)-positron emission tomography (PET) for evaluation of brain glioma, in comparison with 11C-methionine (MET) and 2-deoxy-2-18F-fluoro-d-glucose (FDG).

Procedures

Fifteen patients with brain glioma referred to initial diagnosis were examined with ACE, MET, and FDG-PET. Five patients had low-grade gliomas (grade II), three had anaplastic astrocytomas (grade III), and seven had glioblastomas (grade IV). PET results were evaluated by visual and semiquantitative analysis. For semiquantitative analysis, the standardized uptake value (SUV) and tumor to contralateral normal gray matter (T/N) ratio were calculated. The sensitivity for detection of high-grade gliomas was calculated using visual analysis.

Results

Sensitivities of ACE, MET, and FDG were 90%, 100%, and 40%, respectively. ACE and MET T/N ratios were significantly higher than that of FDG. ACE and FDG SUV in high-grade gliomas were significantly higher than that in low-grade gliomas. No significant differences were observed using MET.

Conclusions

ACE PET is a potentially useful radiotracer for detecting brain gliomas and differentiating high-grade gliomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Coleman RE, Hoffman JM, Hanson MW, Sostman HD, Schold SC (1991) Clinical application of PET for the evaluation of brain tumors. J Nucl Med 32:616–622

    PubMed  CAS  Google Scholar 

  2. Delbeke D, Meyerowitz C, Lapidus RL et al (1995) Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 195:47–52

    PubMed  CAS  Google Scholar 

  3. Kaschten B, Stevenaert A, Sadzot B et al (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  4. Wong TZ, van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12:615–626

    Article  PubMed  Google Scholar 

  5. Weber W, Bartenstein P, Gross MW et al (1997) Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 38:802–808

    PubMed  CAS  Google Scholar 

  6. Oriuchi N, Tomiyoshi K, Inoue T et al (1996) Independent thallium-201 accumulation and fluorine-18-fluorodeoxyglucose metabolism in glioma. J Nucl Med 37:457–462

    PubMed  CAS  Google Scholar 

  7. Ricci PE, Karis JP, Heiserman JE, Fram EK, Bice AN, Drayer BP (1998) Differentiating recurrent tumor from radiation necrosis: time for re-evaluation of positron emission tomography? AJNR 19:407–413

    PubMed  CAS  Google Scholar 

  8. Hatazawa J, Ishiwata K, Itoh M et al (1989) Quantitative evaluation of l-[methyl-C-11]methionine uptake in tumor using positron emission tomography. J Nucl Med 30:1809–1813

    PubMed  CAS  Google Scholar 

  9. Derlon JM, Bourdet C, Bustany P et al (1989) [11C]l-methionine uptake in gliomas. Neurosurgery 25:720–728

    Article  PubMed  CAS  Google Scholar 

  10. Sato N, Suzuki M, Kuwata N et al (1999) Evaluation of the malignancy of glioma using 11C-methionine positron emission tomography and proliferating cell nuclear antigen staining. Neurosurg Rev 22:210–214

    Article  PubMed  CAS  Google Scholar 

  11. Kim S, Chung JK, Im SH et al (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59

    Article  PubMed  CAS  Google Scholar 

  12. Ogawa T, Shishido F, Kanno I et al (1993) Cerebral gliomas: evaluation with methionine-PET. Radiology 186:45–53

    PubMed  CAS  Google Scholar 

  13. Sasaki M, Kuwabara Y, Yoshida T et al (1998) A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 25:1261–1269

    Article  PubMed  CAS  Google Scholar 

  14. Borbély K, Nyáry I, Tóth M, Ericson K, Gulyás B (2006) Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci 15:85–94

    Article  CAS  Google Scholar 

  15. Van Laere K, Ceyssens S, Van Calenbergh F et al (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51

    Article  PubMed  CAS  Google Scholar 

  16. Torii K, Tsuyuguchi N, Kawabe J, Sunada I, Hara M, Shiomi S (2005) Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med 19:677–683

    PubMed  Google Scholar 

  17. Pirotte B, Goldman S, Massager N et al (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med. 45:1293–1298

    PubMed  CAS  Google Scholar 

  18. Buxton DB, Nienaber CA, Luxen A et al (1989) Noninvasive quantitation of regional myocardial oxidative metabolism with [1-11C]acetate and dynamic positron emission tomography. Circulation 79:134–142

    PubMed  CAS  Google Scholar 

  19. Nanni C, Rubello D, Al-Nahhas A, Fanti S (2006) Clinical PET in oncology: not only FDG. Nucl Med Commun 27:685–688

    Article  PubMed  Google Scholar 

  20. Cerdan S, Kunnecke B, Seelig J (1990) Cerebral metabolism of [1,2-13C]acetate as detected by in vivo and in vitro 13C NMR. J Biol Chem 265:12916–12926

    PubMed  CAS  Google Scholar 

  21. Dimitrakopoulou-Strauss A, Strauss LG (2003) PET imaging of prostate cancer with 11C-acetate. J Nucl Med 44:556–558

    PubMed  Google Scholar 

  22. Delbeke D, Pinson CW (2003) 11C-acetate: a new tracer for the evaluation of hepatocellular carcinoma. J Nucl Med 44:222–223

    PubMed  Google Scholar 

  23. Liu RS, Chang CP, Chu LS et al (2006) PET imaging of brain astrocytoma with 1-11C-acetate. Eur J Nucl Med Mol Imaging 33:420–427

    Article  PubMed  CAS  Google Scholar 

  24. Kleihues P, Burger PC, Scheithauer BW (1993) Histological typing of tumors of the central nervous system. World Health Organization international classification of tumors. Springer, Berlin

    Google Scholar 

  25. Pike VW, Eakins MN, Allan RM, Selwyn AP (1982) Preparation of [1-11C] acetate-an agent for the study of myocardial metabolism by positron emission tomography. Int J Appl Radiat Isot 33:505–512

    Article  PubMed  CAS  Google Scholar 

  26. Ishiwata K, Ido T, Vaalburg W (1988) Increased amounts of d-enantiomer dependent on alkaline concentration in the synthesis of l-[methyl-11C]methionine. Appl Radiat Isot 39:311–314

    Article  CAS  Google Scholar 

  27. Toorongian SA, Mulholland GK, Jewett DM, Bachelor MA, Kilbourn MR (1990) Routine production of 2-deoxy-2-[18F]fluoro-d-glucose by direct nucleophilic exchange on a quaternary 4-aminopyridinium resin. Nucl Med Biol 17:273–279

    CAS  Google Scholar 

  28. Yoshimoto M, Waki A, Yonekura Y et al (2001) Characterization of acetate metabolism in tumor cells in relation to cell proliferation: acetate metabolism in tumor cells. Nucl Med Biol 28:117–122

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, Y., Nishiyama, Y., Kimura, N. et al. 11C-Acetate PET in the Evaluation of Brain Glioma: Comparison with 11C-Methionine and 18F-FDG-PET. Mol Imaging Biol 10, 281–287 (2008). https://doi.org/10.1007/s11307-008-0152-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0152-5

Key words

Navigation