Skip to main content

Advertisement

Log in

Basic Evaluation of FES-hERL PET Tracer-Reporter Gene System for In Vivo Monitoring of Adenoviral-Mediated Gene Therapy

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The purpose of the study is to evaluate the feasibility of human estrogen receptor α ligand binding domain (hERL) as a reporter gene in combination with positron emission tomography (PET) probe, 16α-[18F]fluoro-17β-estradiol (FES), in an adenovirus gene delivery system.

Methods

An adenoviral vector (test), carrying hERL gene and a model angiogenesis therapeutic gene (human thymidine phosphorylase, hTP) was constructed along with a control vector. In vitro radioligand binding and expression studies were performed on various cell lines. The control and test viruses were injected into contralateral adductor muscles of a rat followed by FES-PET imaging and immunohistochemical staining of resected muscle samples.

Results

A high FES uptake accompanied by hERL and hTP expression was obtained both in vitro and in vivo by the test adenovirus infection.

Conclusion

Considering the versatile tissue permeability of the probe, highly efficient gene expression, and safeness for human use, we expect our reporter gene system to have favorable characteristics for clinical application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ott MG, Schmidt M, Schwarzwaelder K et al (2006) Correction of X-linked chronic granulomatous disease by gene therapy, augmented by insertional activation of MDS1-EVI1, PRDM16 or SETBP1. Nat Med 12:401–409

    Article  PubMed  CAS  Google Scholar 

  2. Stewart DJ, Hilton JD, Arnold JM et al (2006) Angiogenic gene therapy in patients with nonrevascularizable ischemic heart disease: a phase 2 randomized, controlled trial of AdVEGF(121) (AdVEGF121) versus maximum medical treatment. Gene Ther 13:1503–1511

    Article  PubMed  CAS  Google Scholar 

  3. Penuelas I, Boan J, Marti-Climent JM et al (2004) Positron emission tomography and gene therapy: basic concepts and experimental approaches for in vivo gene expression imaging. Mol Imaging Biol 6:225–238

    Article  PubMed  Google Scholar 

  4. Tjuvajev JG, Stockhammer G, Desai R et al (1995) Imaging the expression of transfected genes in vivo. Cancer Res 55:6126–6132

    PubMed  CAS  Google Scholar 

  5. Tjuvajev JG, Finn R, Watanabe K et al (1996) Noninvasive imaging of herpes virus thymidine kinase gene transfer and expression: a potential method for monitoring clinical gene therapy. Cancer Res 56:4087–4095

    PubMed  CAS  Google Scholar 

  6. Gambhir SS, Barrio JR, Wu L et al (1998) Imaging of adenoviral-directed herpes simplex virus type 1 thymidine kinase reporter gene expression in mice with radiolabeled ganciclovir. J Nucl Med 39:2003–2011

    PubMed  CAS  Google Scholar 

  7. Gambhir SS, Bauer E, Black ME et al (2000) A mutant herpes simplex virus type 1 thymidine kinase reporter gene shows improved sensitivity for imaging reporter gene expression with positron emission tomography. Proc Natl Acad Sci U S A 97:2785–2790

    Article  PubMed  CAS  Google Scholar 

  8. MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791

    Article  PubMed  CAS  Google Scholar 

  9. Kundra V, Mannting F, Jones AG, Kassis AI (2002) Noninvasive monitoring of somatostatin receptor type 2 chimeric gene transfer. J Nucl Med 43:406–412

    PubMed  CAS  Google Scholar 

  10. Vadysirisack DD, Shen DH, Jhiang SM (2006) Correlation of Na+/I-symporter expression and activity: implications of Na+/I-symporter as an imaging reporter gene. J Nucl Med 47:182–190

    PubMed  CAS  Google Scholar 

  11. Buursma AR, Beerens AM, de Vries EF et al (2005) The human norepinephrine transporter in combination with 11C-m-hydroxyephedrine as a reporter gene/reporter probe for PET of gene therapy. J Nucl Med 46:2068–2075

    PubMed  CAS  Google Scholar 

  12. Serganova I, Blasberg R (2005) Reporter gene imaging: potential impact on therapy. Nucl Med Biol 32:763–780

    Article  PubMed  CAS  Google Scholar 

  13. Furukawa T, Lohith TG, Takamatsu S, Mori T, Tanaka T, Fujibayashi Y (2006) Potential of the FES-hERL PET reporter gene system–basic evaluation for gene therapy monitoring. Nucl Med Biol 33:145–151

    Article  PubMed  CAS  Google Scholar 

  14. Takamatsu S, Furukawa T, Mori T, Yonekura Y, Fujibayashi Y (2005) Noninvasive imaging of transplanted living functional cells transfected with a reporter estrogen receptor gene. Nucl Med Biol 32:821–829

    Article  PubMed  CAS  Google Scholar 

  15. McGuire AH, Dehdashti F, Siegel BA et al (1991) Positron tomographic assessment of 16 alpha-[18F] fluoro-17 beta-estradiol uptake in metastatic breast carcinoma. J Nucl Med 32:1526–1531

    PubMed  CAS  Google Scholar 

  16. Linden HM, Stekhova SA, Link JM et al (2006) Quantitative fluoroestradiol positron emission tomography imaging predicts response to endocrine treatment in breast cancer. J Clin Oncol 24:2793–2799

    Article  PubMed  CAS  Google Scholar 

  17. Bouis D, Boelens MC, Peters E et al (2003) Combination of vascular endothelial growth factor (VEGF) and thymidine phosphorylase (TP) to improve angiogenic gene therapy. Angiogenesis 6:185–192

    Article  PubMed  CAS  Google Scholar 

  18. Li W, Tanaka K, Ihaya A et al (2005) Gene therapy for chronic myocardial ischemia using platelet-derived endothelial cell growth factor in dogs. Am J Physiol Heart Circ Physiol 288:H408–415

    Article  PubMed  CAS  Google Scholar 

  19. Yamada N, Li W, Ihaya A et al (2006) Platelet-derived endothelial cell growth factor gene therapy for limb ischemia. J Vasc Surg 44:1322–1328

    Article  PubMed  Google Scholar 

  20. He TC, Zhou S, da Costa LT, Yu J, Kinzler KW, Vogelstein B (1998) A simplified system for generating recombinant adenoviruses. Proc Natl Acad Sci U S A 95:2509–2514

    Article  PubMed  CAS  Google Scholar 

  21. Mori T, Kasamatsu S, Mosdzianowski C, Welch MJ, Yonekura Y, Fujibayashi Y (2006) Automatic synthesis of 16 alpha-[(18)F]fluoro-17beta-estradiol using a cassette-type [(18)F]fluorodeoxyglucose synthesizer. Nucl Med Biol 33:281–286

    Article  PubMed  CAS  Google Scholar 

  22. St George JA (2003) Gene therapy progress and prospects: adenoviral vectors. Gene Ther 10:1135–1141

    Article  PubMed  CAS  Google Scholar 

  23. Carson SD (2001) Receptor for the group B coxsackieviruses and adenoviruses: CAR. Rev Med Virol 11:219–226

    Article  PubMed  CAS  Google Scholar 

  24. Yu Y, Annala AJ, Barrio JR et al (2000) Quantification of target gene expression by imaging reporter gene expression in living animals. Nat Med 6:933–937

    Article  PubMed  CAS  Google Scholar 

  25. Wang Y, Iyer M, Annala AJ, Chappell S, Mauro V, Gambhir SS (2005) Noninvasive monitoring of target gene expression by imaging reporter gene expression in living animals using improved bicistronic vectors. J Nucl Med 46:667–674

    PubMed  CAS  Google Scholar 

  26. Ray P, Wu AM, Gambhir SS (2003) Optical bioluminescence and positron emission tomography imaging of a novel fusion reporter gene in tumor xenografts of living mice. Cancer Res 63:1160–1165

    PubMed  CAS  Google Scholar 

  27. Sun X, Annala AJ, Yaghoubi SS et al (2001) Quantitative imaging of gene induction in living animals. Gene Ther 8:1572–1579

    Article  PubMed  CAS  Google Scholar 

  28. Niu G, Anderson RD, Madsen MT, Graham MM, Oberley LW, Domann FE (2006) Dual-expressing adenoviral vectors encoding the sodium iodide symporter for use in noninvasive radiological imaging of therapeutic gene transfer. Nucl Med Biol 33:391–398

    Article  PubMed  CAS  Google Scholar 

  29. Kiesewetter DO, Kilbourn MR, Landvatter SW, Heiman DF, Katzenellenbogen JA, Welch MJ (1984) Preparation of four fluorine- 18-labeled estrogens and their selective uptakes in target tissues of immature rats. J Nucl Med 25:1212–1221

    PubMed  CAS  Google Scholar 

  30. Mankoff DA, Tewson TJ, Eary JF (1997) Analysis of blood clearance and labeled metabolites for the estrogen receptor tracer [F-18]-16 alpha-fluoroestradiol (FES). Nucl Med Biol 24:341–348

    Article  PubMed  CAS  Google Scholar 

  31. Yamada R, Watanabe M, Omura T. et al. (2005) Development of a small animal PET scanner using DOI detectors. IEEE Nuclear Science Symposium and Medical Imaging Conference Abstract, Puerto Rico

Download references

Acknowledgements

We thank Mr. Shingo Kasamatsu, chief engineer of our center and Mr. Toshinao Nakakoji of CMI, Inc. for their excellent support during FES synthesis and professional operation of the cyclotron, respectively. We also thank Dr. Sakon Noriki and Mr. Kato, Department of Tumor Pathology, University of Fukui, for their kind guidance in immunohistochemistry. This work was partly supported by the 21st Century COE program “Biomedical Imaging Technology Integration Program” from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) Japan and a grant for the Collaboration of Regional Entities for the Advancement of technological excellence program “Regenerative Cell Therapy” from the Japan Science and Technology Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasuhisa Fujibayashi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lohith, T.G., Furukawa, T., Mori, T. et al. Basic Evaluation of FES-hERL PET Tracer-Reporter Gene System for In Vivo Monitoring of Adenoviral-Mediated Gene Therapy. Mol Imaging Biol 10, 245–252 (2008). https://doi.org/10.1007/s11307-008-0149-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0149-0

Key words

Navigation