Skip to main content
Log in

Reproducibility of Semi-quantitative Parameters in FDG-PET Using Two Different PET Scanners: Influence of Attenuation Correction Method and Examination Interval

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study is to evaluate the reproducibility of semi-quantitative parameters obtained from two 2-deoxy-2-[F-18]fluoro-d-glucose-positron emission tomography (FDG–PET) studies using two different PET scanners.

Methods

Forty-five patients underwent FDG–PET examination with two different PET scanners on separate days. Two PET images with different attenuation correction method were generated in each patient, and three regions of interest (ROIs) were placed on the lung tumor and normal organs (mediastinum and liver) in each image. Mean and maximum standardized uptake values (SUVs), tumor-to-mediastinum and tumor-to-liver ratios (T/M and T/L), and the percentage difference in parameters between two PET images (% Diff.) were compared.

Results

All measured values except maximum SUV in the liver and tumor-related parameters (SUV in lung tumor, T/M, T/L) showed no significant difference between two PET images.

Conclusion

The mean measured values showed high reproducibility and demonstrate that follow-up study or measurement of tumor response to anticancer drugs can be undertaken by FDG–PET examination without specifying the particular type of PET scanner.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Delbeke D (1999) Oncological applications of FDG PET imaging. J Nucl Med 40:1706–1715

    PubMed  CAS  Google Scholar 

  2. Wahl R, Quint L, Cieslak R, Aisen A, Koeppe R, Meyer C (1993) “Anatometabolic” tumor imaging: fusion of FDG PET with CT or MRI to localize Foci of increased activity. J Nucl Med 34:1190–1197

    PubMed  CAS  Google Scholar 

  3. Turkington T, Jaszczak R, Pelizzari C, Pelizzari C, Harris C, MacFall J et al. (1993) Accuracy of registration of PET, SPECT and MR images of a brain phantom. J Nucl Med 34:1587–1594

    PubMed  CAS  Google Scholar 

  4. West J, Fitzpatrick JM, Wang MY, Dawant BM, Maurer CR Jr., Kessler RM et al. (1997) Comparison and evaluation of retrospective intermodality brain image registration techmiques. J Comput Assist Tomogr 21:554–566

    Article  PubMed  CAS  Google Scholar 

  5. Uematsu H, Sadato N, Yonekura Y, Tsuchida T, Nakamura S, Sugimoto K et al. (1998) Coregistration of FDG PET and MRI of the head and neck using normal distribution of FDG. J Nucl Med 39:2121–2127

    PubMed  CAS  Google Scholar 

  6. Beyer T, Townsend D, Brun T, Kinahan P, Charron M, Roddy R et al.. (2000) A combined PET/CT scanner for clinical oncology. J Nucl Med 41:784–788

    Google Scholar 

  7. Kluetz P, Meltzer C, Villemagne V, Kinahana P, Chander S, Martinelli M et al (2000) Combined PET/CT imaging in oncology impact on patient management. Clin Positron Imaging 3:223–230

    Article  PubMed  Google Scholar 

  8. Keyes J Jr. (1995) SUV: standard uptake or silly unless value? J Nucl Med 36:1836–1839

    PubMed  Google Scholar 

  9. Huang S-C (2000) Anatomy of SUV. Nucl Med Biol 27:643–646

    Article  PubMed  CAS  Google Scholar 

  10. Lee JR, Madsen MT, Bushnel D, Menda Y (2000) A threshold method to improve standardized uptake value reproducibility. Nucl Med Commun 21:685–690

    Article  PubMed  CAS  Google Scholar 

  11. Young H, Baum R, Cremerius U, Herholz K, Hoekstra O, Lammertsma A et al. (1999) Mesurement of clinical and subclinical tumour response using [18F]-fluorodeoxyglucose and positron emission tomography: review and 1999 EORTC recommendations. Eur J Cancer 35:1773–1782

    Article  PubMed  CAS  Google Scholar 

  12. Ramos C, Erdi Y, Gonen M, Riedel E, Yeung H, Macapinlac H et al. (2001) FDG–PET standardized uptake values in normal anatomical structures using iterative reconstruction segmented attenuation correction and filtered back-projection. Eur J Nucl Med 28:155–164

    Article  PubMed  CAS  Google Scholar 

  13. Nakamoto Y, Osman M, Cohade C, Marshall L, Links J, Kohlmyer S et al. (2002) PET/CT: Comparison of quantitative tracer uptake between germanium and CT transmission attenuation-corrected images. J Nucl Med 43:1137–1143

    PubMed  Google Scholar 

  14. Kamel E, Hany T, Burger C, Treyer V, Lonn A, von Schulthess G et al. (2002) CT vs 68Ge attenuation correction in a combined PET/CT system: evaluation of the effect of lowering the CT tube current. Eur J Nucl Med Mol Imaging 29:346–350

    Article  PubMed  CAS  Google Scholar 

  15. Souvatzoglou M, Ziegler S, Martinez M, Busch R, Dzewas G, Schwaiger M et al. (2007) Standardised uptake values from PET/CT images: comparison with conventional attenuation-corrected PET. Eur J Nucl Med Mol Imaging 34:405–412

    Article  PubMed  CAS  Google Scholar 

  16. Weber W, Ziegler S, Thödtmann R, Hanauske A, Schwaiger M (1999) Reproducibility of metabolic measurements in malignant tumors using FDG PET. J Nucl Med 40:1771–1777

    PubMed  CAS  Google Scholar 

  17. Minn H, Zasadny K, Quint L, Wahl R (1995) Lung cancer: Reproducibility of quantitative measurements for evaluating 2-[F-18]-fluoro-2-deoxy-d-glucose uptake at PET. Radiology 196:167–173

    PubMed  CAS  Google Scholar 

  18. Nakamoto Y, Zasadny K, Minn H, Wahl R (2002) Reproducibility of common semi-quantitative parameters for evaluating lung cancer glucose metabolism with positron emission tomography using 2-deoxy-2-[18F]fluoro-d-glucose. Mol Imaging Biol 4:171–178

    Article  PubMed  Google Scholar 

  19. Paquet N, Albert A, Foidart J, Hustinx R (2004) Within-patient variability of 18F-FDG: standardized uptake values in normal tissue. J Nucl Med 45:784–788

    PubMed  CAS  Google Scholar 

  20. Snedocor GW, Cochran WG (1989) Specific indices of interater reliability. In: Snedocor GW, Cochran WG (eds) Statistical methods. 6th edn. Iowa State University Press, Ames, IO, pp 147–156

    Google Scholar 

  21. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420–428

    Article  Google Scholar 

  22. Hamberg L, Hunter G, Alpert N, Choi N, Babich J, Fischman A (1994) The dose uptake ratio as index of glucose metabolism: useful parameter or oversimplification? J Nucl Med 35:1308–1312

    PubMed  CAS  Google Scholar 

  23. Visvikis D, Cheze-LeRest C, Costa DC, Bomanji J, Gacinovic S, Ell PJ (2001) Influence of OSEM and segmented attenuation correction in the calculation of standard uptake values of [18F]FDG PET.. Eur J Nucl Med 28:1326–1335

    Article  PubMed  CAS  Google Scholar 

  24. Kim CK, Alavi JB, Alavi A, Reivich M (1991) New grading system of cerebral glioma using positron emission tomography with F-18 fluorodeoxyglucose. J Neurooncol 10:85–91

    Article  PubMed  CAS  Google Scholar 

  25. Hustinx R, Smith RJ, Benard F, Bhatnagar A, Alavi A (1999) Can the atandardized uptake value characterize primary brain tumors on FDG-PET? Eur J Nucl Med 26:1501–1509

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuro Tsuchida.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kamibayashi, T., Tsuchida, T., Demura, Y. et al. Reproducibility of Semi-quantitative Parameters in FDG-PET Using Two Different PET Scanners: Influence of Attenuation Correction Method and Examination Interval. Mol Imaging Biol 10, 162–166 (2008). https://doi.org/10.1007/s11307-008-0132-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-008-0132-9

Key words

Navigation