Skip to main content

Advertisement

Log in

The Synthesis of 18F-FDS and Its Potential Application in Molecular Imaging

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

2-Deoxy-2-[18F]fluoro-d-glucose (FDG) is the most commonly used positron emission tomography (PET) tracer for oncological and neurological imaging, but it has limitations on detecting tumor or inflammation in brain gray matter. In this study, we describe the development of 2-deoxy-2-[18F]fluorosorbitol (18F-FDS) and its possible application in lesion detection around brain area.

Procedures

18F-FDS was obtained by reduction of FDG using NaBH4 (81 ± 4% yield in 30 min). Cell uptake/efflux experiments in cell culture and small animal PET imaging on tumor and inflammation models were performed.

Results

Despite the low accumulation in cell culture, 18F-FDS had good tumor uptake and contrast in the subcutaneous U87MG tumor model (4.54%ID/g at 30 min post-injection). Minimal uptake in the normal mouse brain facilitated good tumor contrast in both U87MG and GL-26 orthotopic tumor models. 18F-FDS also had increased uptake in the inflamed foci of the TPA-induced acute inflammation model.

Conclusions

Because of the ease of synthesis and favorable in vivo kinetics, 18F-FDS may have potential applications in certain cases where FDG is inadequate (e.g., brain tumor).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gambhir SS, Czernin J, Schwimmer J, Silverman DH, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    PubMed  CAS  Google Scholar 

  2. Shields AF (2006) Positron emission tomography measurement of tumor metabolism and growth: its expanding role in oncology. Mol Imaging Biol 8:141–150

    Article  PubMed  Google Scholar 

  3. Ghesani M, Depuey EG, Rozanski A (2005) Role of 18F-FDG positron emission tomography (PET) in the assessment of myocardial viability. Echocardiography 22:165–177

    Article  PubMed  Google Scholar 

  4. Cizek J, Herholz K, Vollmar S, Schrader R, Klein J, Heiss WD (2004) Fast and robust registration of PET and MR images of human brain. Neuroimage 22:434–442

    Article  PubMed  Google Scholar 

  5. Smith TA (2001) The rate-limiting step for tumor [18F]fluoro-2-deoxy-d-glucose (FDG) incorporation. Nucl Med Biol 28:1–4

    Article  PubMed  CAS  Google Scholar 

  6. Benard F, Romsa J, Hustinx R (2003) Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 33:148–162

    Article  PubMed  Google Scholar 

  7. Rajendran JG, Mankoff DA, O'Sullivan F (2004) Hypoxia and glucose metabolism in malignant tumors: evaluation by [18F]fluoromisonidazole and [18F]fluorodeoxyglucose positron emission tomography imaging. Clin Cancer Res 10:2245–2252

    Article  PubMed  CAS  Google Scholar 

  8. Talbot JN, Kerrou K, Gault N et al. (2006) PET and malignant cerebral tumors. Presse Med 35:1347–1353

    Article  PubMed  Google Scholar 

  9. Hustinx R, Pourdehnad M, Kaschten B, Alavi A (2005) PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 43:35–47

    Article  PubMed  Google Scholar 

  10. Scott ME, Viola RE (1998) The use of fluoro- and deoxy-substrate analogs to examine binding specificity and catalysis in the enzymes of the sorbitol pathway. Carbohydr Res 313:247–253

    Article  PubMed  CAS  Google Scholar 

  11. Hsu AR, Hou LC, Veeravagu A, Tse V, Chen X (2006) In vivo near-infrared fluorescence imaging of integrin avb3 in an orthotopic glioblastoma model. Mol Imaging Biol. 8:315–323

    Article  PubMed  Google Scholar 

  12. Cai W, Zhang X, Wu Y, Chen X (2006) A thiol-reactive 18F-labeling agent, N-[2-(4–18F-fluorobenzamido)ethyl]maleimide (18F-FBEM), and the synthesis of RGD peptide-based tracer for PET imaging of avb3 integrin expression. J Nucl Med 47:1172–1180

    PubMed  CAS  Google Scholar 

  13. Zhang X, Cai W, Cao F, et al. (2006) 18F-labeled bombesin analogs for targeting GRP receptor-expressing prostate cancer. J Nucl Med 47:492–501

    PubMed  CAS  Google Scholar 

  14. Jeffery J, Jornvall H (1983) Enzyme relationships in a sorbitol pathway that bypasses glycolysis and pentose phosphates in glucose metabolism. Proc Natl Acad Sci U S A 80:901–905

    Article  PubMed  CAS  Google Scholar 

  15. Trikha M, Zhou Z, Timar J, et al. (2002) Multiple roles for platelet GPIIb/IIIa and avb3 integrins in tumor growth, angiogenesis, and metastasis. Cancer Res 62:2824–2833

    PubMed  CAS  Google Scholar 

  16. Pauly TA, Ekstrom JL, Beebe DA, et al. (2003) X-ray crystallographic and kinetic studies of human sorbitol dehydrogenase. Structure 11:1071–1085

    Article  PubMed  CAS  Google Scholar 

  17. Deichen JT, Prante O, Gack M, Schmiedehausen K, Kuwert T (2003) Uptake of [18F]fluorodeoxyglucose in human monocyte-macrophages in vitro. Eur J Nucl Med Mol Imaging 30:267–273

    Article  PubMed  CAS  Google Scholar 

  18. Studenov AR, Berridge MS (2001) Synthesis and properties of 18F-labeled potential myocardial blood flow tracers. Nucl Med Biol 28:683–693

    Article  PubMed  CAS  Google Scholar 

  19. Okazawa H, Yonekura Y, Fujibayashi Y, et al. (1996) Measurement of regional cerebral blood flow with copper-62-PTSM and a three-compartment model. J Nucl Med 37:1089–1093

    PubMed  CAS  Google Scholar 

  20. Strauss LG (1996) Fluorine-18 deoxyglucose and false-positive results: a major problem in the diagnostics of oncological patients. Eur J Nucl Med 23:1409–1415

    Article  PubMed  CAS  Google Scholar 

  21. Shreve PD (1998) Focal fluorine-18 fluorodeoxyglucose accumulation in inflammatory pancreatic disease. Eur J Nucl Med 25:259–264

    Article  PubMed  CAS  Google Scholar 

  22. Nakamoto Y, Saga T, Ishimori T, et al. (2000) FDG-PET of autoimmune-related pancreatitis: preliminary results. Eur J Nucl Med 27:1835–1838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Cancer Institute (NCI; R01 CA119053, R21, CA121842, R21 CA102123, ICMIC P50 CA114747, CCNE U54 CA119367, and R24 CA93862), Department of Defense (DOD; W81XWH-07-1-0374, W81XWH-04-1-0697, W81XWH-06-1-0665, W81XWH-06-1-0042, and DAMD17-03-1-0143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyuan Chen.

Additional information

Zi-Bo Li and Zhanhong Wu contributed equally to this work

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, ZB., Wu, Z., Cao, Q. et al. The Synthesis of 18F-FDS and Its Potential Application in Molecular Imaging. Mol Imaging Biol 10, 92–98 (2008). https://doi.org/10.1007/s11307-007-0125-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0125-0

Key words

Navigation