Skip to main content

Advertisement

Log in

Noninvasive Real-time Imaging of Tumors and Metastases Using Tumor-targeting Light-emitting Escherichia coli

  • Research Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

A number of bacteria types are known to preferentially grow in tumors. We have taken advantage of this phenomenon to target luciferase-expressing Escherichia coli to tumors and metastases in mouse models to image them noninvasively.

Methods and Results

After intravenous injection of pLux-expressing E. coli (108 CFU), bioluminescence signals from the bacteria were detected exclusively in tumor tissue after 24 hours. The balanced-lethal host–vector system using the gene encoding aspartate β-semialdehyde dehydrogenase (asd) enabled stable maintenance of the pLux in the tumor-targeting E. coli. This phenomenon of selective tumor targeting and proliferation of E. coli was observed in a diverse range of tumors implanted in nude mice. More importantly, E. coli was capable of targeting both primary tumors and metastases, enabling them to be imaged noninvasively in both nude and immunocompetent mice.

Conclusions

Our results suggest the potential clinical use of this technology for tumor targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Pawelek JM, Low KB, Bermudes D (2003) Bacteria as tumour-targeting vectors. Lancet Oncol 4:548–556

    Article  PubMed  Google Scholar 

  2. Yu YA, Shabahang S, Timiryasova TM et al. (2004) Visualization of tumors and metastases in live animals with bacteria and vaccinia virus encoding light-emitting proteins. Nat Biotechnol 22:313–320

    Article  PubMed  CAS  Google Scholar 

  3. Jain RK, Forbes NS (2001) Can engineered bacteria help control cancer? Proc Natl Acad Sci USA 98:14748–14750

    Article  PubMed  CAS  Google Scholar 

  4. Thiele EH, Arison RN, Boxer GE (1964) Oncolysis by Clostridia. III. Effects of Clostridia and chemotherapeutic agents on rodent tumors. Cancer Res 24:222–233

    PubMed  CAS  Google Scholar 

  5. Mose JR, Mose G, Propst A, Heppner F (1967) Oncolysis of malignant tumors by Clostridium strain M 55. Med Klin 62:189–193

    PubMed  CAS  Google Scholar 

  6. Lemmon MJ, van Zijl P, Fox ME et al. (1997) Anaerobic bacteria as a gene delivery system that is controlled by the tumor microenvironment. Gene Ther 4:791–796

    Article  PubMed  CAS  Google Scholar 

  7. Dang LH, Bettegowda C, Huso DL, Kinzler KW, Vogelstein B (2001) Combination bacteriolytic therapy for the treatment of experimental tumors. Proc Natl Acad Sci U S A 98:15155–15160

    Article  PubMed  CAS  Google Scholar 

  8. Pawelek JM, Low KB, Bermudes D (1997) Tumor-targeted Salmonella as a novel anticancer vector. Cancer Res 57:4537–4544

    PubMed  CAS  Google Scholar 

  9. Zhao M, Yang M, Li XM et al. (2005) Tumor-targeting bacterial therapy with amino acid auxotrophs of GFP-expressing Salmonella typhimurium. Proc Natl Acad Sci U S A 102:755–760

    Article  PubMed  CAS  Google Scholar 

  10. Zhao M, Yang M, Ma H et al. (2006) Targeted therapy with a Salmonella typhimurium leucine–arginine auxotroph cures orthotopic human breast tumors in nude mice. Cancer Res 66:7647–7652

    Article  PubMed  CAS  Google Scholar 

  11. Low KB, Ittensohn M, Le T et al. (1999) Lipid A mutant Salmonella with suppressed virulence and TNFalpha induction retain tumor-targeting in vivo. Nat Biotechnol 17:37–41

    PubMed  CAS  Google Scholar 

  12. Low KB, Ittensohn M, Luo X et al. (2004) Construction of VNP20009: a novel, genetically stable antibiotic-sensitive strain of tumor-targeting Salmonella for parenteral administration in humans. Methods Mol Med 90:47–60

    PubMed  CAS  Google Scholar 

  13. Zhao M, Geller J, Ma H, Yang M, Penman S, Hoffman RM (2007) Monotherapy with a tumor-targeting mutant of Salmonella typhimurium cures orthotopic metastatic mouse models of human prostate cancer. Proc Natl Acad Sci U S A 104:10170–10174

    Article  PubMed  CAS  Google Scholar 

  14. Yu YA, Timiryasova T, Zhang Q, Beltz R, Szalay AA (2003) Optical imaging: bacteria, viruses, and mammalian cells encoding light-emitting proteins reveal the locations of primary tumors and metastases in animals. Anal Bioanal Chem 377:964–972

    Article  PubMed  CAS  Google Scholar 

  15. Silhavy TJ, Berman ML, Enquist LW (1984) Experiments with gene fusions. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  16. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  PubMed  CAS  Google Scholar 

  17. Lee CY, Szittner RB, Meighen EA (1991) The lux genes of the luminous bacterial symbiont, Photobacterium leiognathi, of the ponyfish. Nucleotide sequence, difference in gene organization, and high expression in mutant Escherichia coli. Eur J Biochem 201:161–167

    Article  PubMed  CAS  Google Scholar 

  18. Kang HY, Srinivasan J, Curtiss R 3rd (2002) Immune responses to recombinant pneumococcal PspA antigen delivered by live attenuated Salmonella enterica serovar typhimurium vaccine. Infect Immun 70:1739–1749

    Article  PubMed  CAS  Google Scholar 

  19. Aslakson CJ, Miller FR (1992) Selective events in the metastatic process defined by analysis of the sequential dissemination of subpopulations of a mouse mammary tumor. Cancer Res 52:1399–1405

    PubMed  CAS  Google Scholar 

  20. Karnes WE Jr, Walsh JH, Wu SV et al. (1992) Autonomous proliferation of colon cancer cells that coexpress transforming growth factor alpha and its receptor. Variable effects of receptor-blocking antibody. Gastroenterology 102:474–485

    PubMed  CAS  Google Scholar 

  21. Im SY, Ko HM, Kim JW et al. (1996) Augmentation of tumor metastasis by platelet-activating factor. Cancer Res 56:2662–2665

    PubMed  CAS  Google Scholar 

  22. Hoffman RM (1999) Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Invest New Drugs 17:343–359

    Article  PubMed  CAS  Google Scholar 

  23. Galan JE, Nakayama K, Curtiss R 3rd (1990) Cloning and characterization of the asd gene of Salmonella typhimurium: use in stable maintenance of recombinant plasmids in Salmonella vaccine strains. Gene 94:29–35

    Article  PubMed  CAS  Google Scholar 

  24. Curtiss R III, Nakayama K, Kelly SM (1989) Recombinant avirulent Salmonella vaccine strains with stable maintenance and high level expression of cloned genes in vivo. Immunol Invest 18:583–596

    Article  PubMed  CAS  Google Scholar 

  25. Baish JW, Jain RK (2000) Fractals and cancer. Cancer Res 60:3683–3688

    PubMed  CAS  Google Scholar 

  26. Hobbs SK, Monsky WL, Yuan F et al. (1998) Regulation of transport pathways in tumor vessels: role of tumor type and microenvironment. Proc Natl Acad Sci U S A 95:4607–4612

    Article  PubMed  CAS  Google Scholar 

  27. Hashizume H, Baluk P, Morikawa S et al. (2000) Openings between defective endothelial cells explain tumor vessel leakiness. Am J Pathol 156:1363–1380

    PubMed  CAS  Google Scholar 

  28. Jain RK (1999) Understanding barriers to drug delivery: high resolution in vivo imaging is key. Clin Cancer Res 5:1605–1606

    PubMed  CAS  Google Scholar 

  29. Blattner FR, Plunkett G III, Bloch CA et al (1997) The complete genome sequence of Escherichia coli K-12. Science 277:1453–1474

    Article  PubMed  CAS  Google Scholar 

  30. Sznol M, Lin SL, Bermudes D, Zheng LM, King I (2000) Use of preferentially replicating bacteria for the treatment of cancer. J Clin Invest 105:1027–1030

    Article  PubMed  CAS  Google Scholar 

  31. Fox ME, Lemmon MJ, Mauchline ML et al. (1996) Anaerobic bacteria as a delivery system for cancer gene therapy: in vitro activation of 5-fluorocytosine by genetically engineered Clostridia. Gene Ther 3:173–178

    PubMed  CAS  Google Scholar 

  32. Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the National R&D Program for Cancer Control (0620330-1), Ministry of Health and Welfare, Republic of Korea. H.E.C. was supported by the Korea Science and Engineering Foundation (KOSEF) grant funded by the Korean government (MOST) (No. 2007-04213), J.H.R. by grant no. RTI05-01-01 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE); and H.S.B. by grant no. RTI-04-03-03 from the Regional Technology Innovation Program of the Ministry of Commerce, Industry and Energy (MOCIE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jung-Joon Min.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Min, JJ., Kim, HJ., Park, J. et al. Noninvasive Real-time Imaging of Tumors and Metastases Using Tumor-targeting Light-emitting Escherichia coli . Mol Imaging Biol 10, 54–61 (2008). https://doi.org/10.1007/s11307-007-0120-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0120-5

Key words

Navigation