Skip to main content

Advertisement

Log in

11C-l-Methionine Positron Emission Tomography in the Clinical Management of Cerebral Gliomas

  • Review Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) using l-[methyl-11C]-methionine (MET) is the most popular amino acid imaging modality in oncology, although its use is restricted to PET centers with an in-house cyclotron facility. This review focuses on the role of MET–PET in imaging of cerebral gliomas. The biological background of tumor imaging with methionine is discussed with particular emphasis on cellular amino acid transport, amino acid utilization in brain, normal metabolism of methionine, and its alterations in cancer. The role of MET–PET in clinical management of cerebral gliomas in initial diagnosis, differentiation of tumor recurrence from radiation injury, grading, prognostication, tumor-extent delineation, biopsy planning, surgical resection and radiotherapy planning, and assessment of response to therapy is also reviewed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Oertel J, von Buttlar E, Schroeder HW, Gaab MR (2005) Prognosis of gliomas in the 1970s and today. Neurosurg Focus 18:e12

    PubMed  Google Scholar 

  2. Jacobs AH, Kracht LW, Gossmann A, et al. (2005) Imaging in neurooncology. NeuroRx 2:333–347

    PubMed  Google Scholar 

  3. Hustinx R, Pourdehnad M, Kaschten B, Alavi A (2005) PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 43:35–47

    PubMed  Google Scholar 

  4. Wong TZ, van der Westhuizen GJ, Coleman RE (2002) Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 12:615–626

    PubMed  Google Scholar 

  5. Kubota K (2001) From tumor biology to clinical Pet: a review of positron emission tomography (PET) in oncology. Ann Nucl Med 15:471–486

    PubMed  CAS  Google Scholar 

  6. Langen KJ, Weckesser M (1999) Recent advances of PET in the diagnosis of brain tumors. Front Radiat Ther Oncol 33:9–22

    PubMed  CAS  Google Scholar 

  7. Kondziolka D, Lunsford LD, Martinez AJ (1993) Unreliability of contemporary neurodiagnostic imaging in evaluating suspected adult supratentorial (low-grade) astrocytoma. J Neurosurg 79:533–536

    PubMed  CAS  Google Scholar 

  8. Jansen EP, Dewit LG, van Herk M, Bartelink H (2000) Target volumes in radiotherapy for high-grade malignant glioma of the brain. Radiother Oncol 56:151–156

    PubMed  CAS  Google Scholar 

  9. Warburg O (1956) On respiratory impairment in cancer cells. Science 124:269–270

    PubMed  CAS  Google Scholar 

  10. Di Chiro G, DeLaPaz RL, Brooks RA, Sokoloff L, Kornblith PL, Smith BH, Patronas NJ, Kufta CV, Kessler RM, Johnston GS, Manning RG, Wolf AP (1982) Glucose utilization of cerebral gliomas measured by [18F] fluorodeoxyglucose and positron emission tomography. Neurology 32:1323–1329

    PubMed  Google Scholar 

  11. Di Chiro G (1987) Positron emission tomography using [18F] fluorodeoxyglucose in brain tumors. A powerful diagnostic and prognostic tool. Invest Radiol 22:360–371

    PubMed  Google Scholar 

  12. Padma MV, Said S, Jacobs M, et al. (2003) Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 64:227–237

    PubMed  CAS  Google Scholar 

  13. Benard F, Romsa J, Hustinx R (2003) Imaging gliomas with positron emission tomography and single-photon emission computed tomography. Semin Nucl Med 33:148–162

    PubMed  Google Scholar 

  14. Kubota K, Ishiwata K, Yamada S, et al. (1992) Dose-responsive effect of radiotherapy on the tumor uptake of l-[methyl-11C]methionine; feasibility for monitoring recurrence of tumor. Int J Radiat Appl Instrum B 19:27–32

    CAS  Google Scholar 

  15. Nguyen QH, Szeto E, Mansberg R, Mansberg V (2005) Paravertebral infection (phlegmon) demonstrated by FDG dual-head coincidence imaging in a patient with multiple malignancies. Clin Nucl Med 30:241–243

    PubMed  Google Scholar 

  16. Kubota R, Kubota K, Yamada S, et al. (1995) Methionine uptake by tumor tissue: a microautoradiographic comparison with FDG. J Nucl Med 36:484–492

    PubMed  CAS  Google Scholar 

  17. Langleben DD, Segall GM (2000) PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 41:1861–1867

    PubMed  CAS  Google Scholar 

  18. Chao ST, Suh JH, Raja S, Lee SY, Barnett G (2001) The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 96:191–197

    PubMed  CAS  Google Scholar 

  19. Isselbacher KJ (1972) Increased uptake of amino acids and 2-deoxy-2-glucose by virus-transformed cells in culture. Proc Natl Acad Sci USA 69:585–589

    PubMed  CAS  Google Scholar 

  20. Jager PL, Vaalburg W, Pruim J, de Vries EG, Langen KJ, Piers DA (2001) Radiolabeled amino acids: basic aspects and clinical applications in oncology. J Nucl Med 42:432–445

    PubMed  CAS  Google Scholar 

  21. Bergstrom M, Collins VP, Ehrin E, et al. (1983) Discrepancies in brain tumor extent as shown by computed tomography and positron emission tomography using [68Ga]EDTA, [11C]glucose, and [11C]methionine. J Comput Assist Tomogr 7:1062–1066

    PubMed  CAS  Google Scholar 

  22. Ericson K, Lilja A, Bergstrom M, et al. (1985) Positron emission tomography with ([11C]methyl)-l-methionine, [11C]d-glucose, and [68Ga]EDTA in supratentorial tumors. J Comput Assist Tomogr 9:683–689

    PubMed  CAS  Google Scholar 

  23. Mosskin M, Ericson K, Hindmarsh T, et al. (1989) Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 30:225–232

    PubMed  CAS  Google Scholar 

  24. Derlon JH, Bourdet C, Bustany P, et al. (1989) (11C)-l-Methionine uptake in gliomas. Neurosurgery 25:720–728

    PubMed  CAS  Google Scholar 

  25. Ogawa T, Miura S, Murakami M, et al. (1996) Quantitative evaluation of neutral amino acid transport in cerebral gliomas using positron emission tomography and fluorine-18 fluorophenylalanine. Eur J Nucl Med 23:889–895

    PubMed  CAS  Google Scholar 

  26. Wienhard K, Herholz K, Coenen HH, Rudolf J, Kling P, Stocklin G, Heiss WD (1991) Increased amino acid transport into brain tumors measured by PET of l-(2–18F)fluorotyrosine. J Nucl Med 32:1338–1346

    PubMed  CAS  Google Scholar 

  27. Wester HJ, Herz M, Weber W, et al. (1999) Synthesis and radiopharmacology of O-(2-[18F]fluoroethyl)-l-tyrosine for tumor imaging. J Nucl Med 40:205–212

    PubMed  CAS  Google Scholar 

  28. Shoup TM, Olson J, Hoffman JM, et al. (1999) Synthesis and evaluation of [18F]l-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med 40:331–338

    PubMed  CAS  Google Scholar 

  29. Weber WA, Wester HJ, Grosu AL, et al. (2000) O-(2-[18F]fluoroethyl)-l-tyrosine and l-[methyl-11C]methionine uptake in brain tumours: initial results of a comparative study. Eur J Nucl Med 27:542–549

    PubMed  CAS  Google Scholar 

  30. Pauleit D, Stoffels G, Schaden W, et al. (2005) PET with O-(2–18F-Fluoroethyl)-l-tyrosine in peripheral tumors: first clinical results. J Nucl Med 46:411–416

    PubMed  CAS  Google Scholar 

  31. Akhurst T, Beattie B, Gogiberidze G, et al. (2006) [18F]FACBC imaging of recurrent gliomas: a comparison with [11C]methionine and MRI. J Nucl Med 47:79P(Abstract)

    Google Scholar 

  32. Plotkin M, Eisenacher J, Bruhn H, et al. (2004) 123I-IMT SPECT and 1H MR-spectroscopy at 3.0 T in the differential diagnosis of recurrent or residual gliomas: a comparative study. J Neurooncol 70:49–58

    PubMed  Google Scholar 

  33. Weber W, Bartenstein P, Gross MW, et al. (1997) Fluorine-18-FDG PET and iodine-123-IMT SPECT in the evaluation of brain tumors. J Nucl Med 38:802–808

    PubMed  CAS  Google Scholar 

  34. Langen KJ, Ziemons K, Kiwit JC, et al. (1997) 3-[123I]iodo-alpha-methyltyrosine and [methyl-11C]-l-methionine uptake in cerebral gliomas: a comparative study using SPECT and PET. J Nucl Med 38:517–522

    PubMed  CAS  Google Scholar 

  35. Christensen HN (1990) Role of amino acid transport and countertransport in nutrition and metabolism. Physiol Rev 70:43–77

    PubMed  CAS  Google Scholar 

  36. Palacin M, Estevez R, Bertran J, Zorzano A (1998) Molecular biology of mammalian plasma membrane amino acid transporters. Physiol Rev 78:969–1054

    PubMed  CAS  Google Scholar 

  37. Wagner CA, Lang F, Broer S (2001) Function and structure of heterodimeric amino acid transporters. Am J Physiol Cell Physiol 281:C1077–C1093

    PubMed  CAS  Google Scholar 

  38. Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183–252

    PubMed  CAS  Google Scholar 

  39. Fuchs BC, Bode BP (2005) Amino acid transporters ASCT2 and LAT1 in cancer: partners in crime? Semin Cancer Biol 15:254–266

    PubMed  CAS  Google Scholar 

  40. Broer S, Broer A, Hamprecht B (1995) The 4F2hc surface antigen is necessary for expression of system L-like neutral amino acid-transport activity in C6-BU-1 rat glioma cells: evidence from expression studies in Xenopus laevis oocytes. Biochem J 312:863–870

    PubMed  CAS  Google Scholar 

  41. Kanai Y, Segawa H, Miyamoto K, Uchino H, Takeda E, Endou H (1998) Expression cloning and characterization of a transporter for large neutral amino acids activated by the heavy chain of 4F2 antigen (CD98). J Biol Chem 273:23629–23632

    PubMed  CAS  Google Scholar 

  42. Yanagida O, Kanai Y, Chairoungdua A, et al. (2001) Human L-type amino acid transporter 1 (LAT1): characterization of function and expression in tumor cell lines. Biochim Biophys Acta 1514:291–302

    PubMed  CAS  Google Scholar 

  43. Kim do K, Kim IJ, Hwang S, et al. (2004) System L-amino acid transporters are differently expressed in rat astrocyte and C6 glioma cells. Neurosci Res 50:437–446

    PubMed  Google Scholar 

  44. Killian DM, Chikhale PJ (2001) Predominant functional activity of the large, neutral amino acid transporter (LAT1) isoform at the cerebrovasculature. Neurosci Lett 306:1–4

    PubMed  CAS  Google Scholar 

  45. Pineda M, Fernandez E, Torrents D, et al. (1999) Identification of a membrane protein, LAT-2, that Co-expresses with 4F2 heavy chain, an L-type amino acid transport activity with broad specificity for small and large zwitterionic amino acids. J Biol Chem 274:19738–19744

    PubMed  CAS  Google Scholar 

  46. Hyde R, Taylor PM, Hundal HS (2003) Amino acid transporters: roles in amino acid sensing and signaling in animal cells. Biochem J 372:1–18

    Google Scholar 

  47. Sun Y, Deibler GE, Sokoloff L, Smith CB (1992) Determination of regional rates of cerebral protein synthesis adjusted for regional differences in recycling of leucine derived from protein degradation into the precursor pool in conscious adult rats. J Neurochem 59:863–873

    PubMed  CAS  Google Scholar 

  48. Smith CB, Schmidt KC, Qin M (2005) Measurement of regional rates of cerebral protein synthesis with l-[1–11C]leucine and PET with correction for recycling of tissue amino acids: II. Validation in rhesus monkeys. J Cereb Blood Flow Metab 25:629–640

    PubMed  CAS  Google Scholar 

  49. Bertz AL, Goldstein GW (1978) Polarity of the blood brain barrier: neutral amino acid transport into isolated brain capillaries. Science 202:225–227

    Google Scholar 

  50. Mann GE, Yudilevich DL, Sobrevia L (2003) Regulation of amino acid and glucose transporters in endothelial and smooth muscle cells. Physiol Rev 83:183–252

    PubMed  CAS  Google Scholar 

  51. Lerner J, Larimore DL (1986) Comparative aspects of the apparent Michaelis constant for neutral amino acid transport in several animal tissues. Comp Biochem Physiol 84B:235–248

    CAS  Google Scholar 

  52. Momma S, Aoyagi M, Rapoport SI, Smith QR (1987) Phenylalanine transport across the blood brain barrier as studied with the in situ brain perfusion technique. J Neurochem 48:1291–1300

    PubMed  CAS  Google Scholar 

  53. Hargreaves KM, Pardridge WM (1988) Neutral amino acid transport at the human blood–brain barrier. J Biol Chem 263:19392–19397

    PubMed  CAS  Google Scholar 

  54. Shulkin BL, Betz AL, Koeppe RA, Agranoff BW (1995) Inhibition of neutral amino acid transport across the human blood-brain barrier by phenylalanine. J Neurochem 64:1252–1257

    Article  PubMed  CAS  Google Scholar 

  55. O’Tuama LA, Phillips PC, Smith QR, et al. (1991) l -methionine uptake by human cerebral cortex: maturation from infancy to old age. J Nucl Med 32:16–22

    PubMed  CAS  Google Scholar 

  56. Knudsen GM, Pettigrew KD, Patlak CS, Hertz MM, Paulson OB (1990) Assymetrical transport of amino acids across the blood brain barrier in humans. J Cerb Blood Flow Metab 10:698–706

    CAS  Google Scholar 

  57. Shahbazian FM, Jacobs M, Lajtha A (1986) Regional and cellular differences in rat brain protein synthesis in vivo and in slices during development. Int J Dev Neurosci 4:209–215

    PubMed  CAS  Google Scholar 

  58. Ingvar MC, Maeder P, Sokoloff L, Smith CB (1985) Effects of ageing on local rates of cerebral protein synthesis in Sprague–Dawley rats. Brain 108:155–170

    PubMed  Google Scholar 

  59. Brookes N (1988) Neutral amino acid transport in astrocytes: characterization of Na dependent and Na independent components of alpha-aminoisobutyric acid uptake. J Neurochem 51:1913–1918

    PubMed  CAS  Google Scholar 

  60. Tabor CW, Tabor H (1976) 1,4-Diaminobutane(putrescine), spermidine, and spermine. Annu Rev Biochem 45:285–306

    PubMed  CAS  Google Scholar 

  61. Bachrach U (1993) Function of naturally occuring polyamines. Academic, New York, pp 1–211

    Google Scholar 

  62. Gosule LC, Schellman JA (1976) Compact form of DNA induced by spermidine. Nature 259:333–335

    PubMed  CAS  Google Scholar 

  63. Marton LJ, Heby O (1974) Polyamine metabolism in tumor, spleen and liver of tumor-bearing rats. Int J Cancer 13:619–628

    PubMed  CAS  Google Scholar 

  64. Kremzner LT (1970) Metabolism of polyamines in the nervous system. Fed Proc 29:1583–1588

    PubMed  CAS  Google Scholar 

  65. Heby O (1981) Role of polyamines in the control of cell proliferation and differentiation. Differentiation 19:1–20

    PubMed  CAS  Google Scholar 

  66. Harik SI, Sutton CH (1979) Putrescine as a biochemical marker of malignant brain tumors. Cancer Res 39:5010–5015

    PubMed  CAS  Google Scholar 

  67. Goldman SS, Volkow ND, Brodie J, Flamm ES (1986) Putrescine metabolism in human brain tumors. J Neurooncol 4:23–29

    PubMed  CAS  Google Scholar 

  68. Ernestus RI, Rohn G, Schroder R, et al. (1996) Polyamine metabolism in gliomas. J Neurooncol 29:167–174

    PubMed  CAS  Google Scholar 

  69. Ernestus RI, Rohn G, Schroder R, et al. (2001) Polyamine metabolism in brain tumours: diagnostic relevance of quantitative biochemistry. J Neurol Neurosurg Psychiatry 71:88–92

    PubMed  CAS  Google Scholar 

  70. Hoffman RM (1985) Altered methionine metabolism and transmethylation in cancer. Anticancer Res 5:1–30

    PubMed  CAS  Google Scholar 

  71. Judde JG, Ellis M, Frost P (1989) Biochemical analysis of the role of transmethylation in the methionine dependence of tumor cells. Cancer Res 49:4859–4865

    PubMed  CAS  Google Scholar 

  72. Miyagawa T, Oku T, Uehara H, et al. (1998) “Facilitated” amino acid transport is upregulated in brain tumors. J Cereb Blood Flow Metab 18:500–509

    PubMed  CAS  Google Scholar 

  73. Lin J, Raoof DA, Thomas DG, et al. (2004) L-type amino acid transporter-1 overexpression and melphalan sensitivity in Barrett’s adenocarcinoma. Neoplasia 6:74–84

    PubMed  CAS  Google Scholar 

  74. Rossier G, Meier C, Bauch C, et al. (1999) LAT2, a new basolateral 4F2hc/CD98-associated amino acid transporter of kidney and intestine. J Biol Chem 274:34948–34954

    PubMed  CAS  Google Scholar 

  75. Segawa H, Fukasawa Y, Miyamoto K, Takeda E, Endou H, Kanai Y (1999) Identification and functional characterization of a Na+independent neutral amino acid transporter with broad substrate selectivity. J Biol Chem 274:19745–19751

    PubMed  CAS  Google Scholar 

  76. Stern PH, Wallace CD, Hoffman RM (1984) Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 119:29–34

    PubMed  CAS  Google Scholar 

  77. Tisdale M (1980) Effect of methionine deprivation on methylation and synthesis of macromolecules. Br J Cancer 42:121–128

    PubMed  CAS  Google Scholar 

  78. Kreis W, Goodenow M (1978) Methionine requirement and replacement by homocysteine in tissue cultures of selected rodent and human malignant and normal cells. Cancer Res 38:2259–2262

    PubMed  CAS  Google Scholar 

  79. Mecham J, Rowitch D, Wallace CD, Stern PH, Hoffman RM (1983) The metabolic defect of methionine dependence occurs frequently in human tumor cell lines. Biochem Biophys Res Commun 117:429–434

    PubMed  CAS  Google Scholar 

  80. Peterkofsky A, Jesensky C, Capra JD (1966) The role of methylated bases in the biological activity of E. coli leucine tRNA. Cold Spring Harbor Symp Quant Biol 31:515–524

    PubMed  CAS  Google Scholar 

  81. Capra JD, Peterkofasky A (1968) Effect on in vitro methylation on the chromatographic and coding properties of methyl-deficient leucine transfer RNA. J Mol Biol 33:591–607

    PubMed  CAS  Google Scholar 

  82. Gefter ML, Russell R (1969) Role modifications in tyrosine transfer RNA: a modified base affecting ribosome binding. J Mol Biol 39:145–157

    PubMed  CAS  Google Scholar 

  83. Ginsburg I, Cornelis P, Giveon D, Littauer U (1979) Functionally impaired tRNA from ethionine treated rats as detected in injected Xenopus oocytes. Nucleic Acids Res 6:657–672

    Google Scholar 

  84. Viale G (1969) Overmethylated t-RNAs in human gliomas. Rev Neurobiol 15:505–516

    CAS  Google Scholar 

  85. Hoffman RM (1985) Altered methionine metabolism and transmethylation in cancer. Anticancer Res 5:1–30

    PubMed  CAS  Google Scholar 

  86. Langen KJ, Muhlensiepen H, Holschbach M, Hautzel H, Jansen P, Coenen HH (2000) Transport mechanisms of 3-[123I]iodo-alpha-methyl-l-tyrosine in a human glioma cell line: comparison with [3H]methyl]-l-methionine. J Nucl Med 41:1250–1255

    PubMed  CAS  Google Scholar 

  87. Langen KJ, Bonnie R, Muhlensiepen H, et al. (2001) 3-[123I]iodo-alpha-methyl-l-tyrosine transport and 4F2 antigen expression in human glioma cells. Nucl Med Biol 28:5–11

    PubMed  CAS  Google Scholar 

  88. Sasajima T, Miyagawa T, Oku T, Gelovani JG, Finn R, Blasberg R (2004) Proliferation-dependent changes in amino acid transport and glucose metabolism in glioma cell lines. Eur J Nucl Med Mol Imaging 31:1244–1256

    PubMed  CAS  Google Scholar 

  89. Narayanan TK, Said S, Mukherjee J, Christian B, Satter M, Dunigan K, Shi B, Jacobs M, Bernstein T, Padma M, Mantil J (2002) A comparative study on the uptake and incorporation of radiolabeled methionine, choline and fluorodeoxyglucose in human astrocytoma. Mol Imaging Biol 4:147–156

    PubMed  CAS  Google Scholar 

  90. Clavo AC, Wahl RL (1996) Effects of hypoxia on the uptake of tritiated thymidine, l-leucine, l-methionine and FDG in cultured cancer cells. J Nucl Med 37:502–506

    PubMed  CAS  Google Scholar 

  91. Ishiwata K, Kubota K, Murakami M, Kubota R, Senda M (1993) A comparative study on protein incorporation of l-[methyl-3H]methionine, l-[1–14C]leucine and l-2-[18F]fluorotyrosine in tumor bearing mice. Nucl Med Biol 20:895–899

    PubMed  CAS  Google Scholar 

  92. Ishiwata K, Vaalburg W, Elsinga PH, Paans AM, Woldring MG (1988) Comparison of l-[1–11C]methionine and l-methyl-[11C]methionine for measuring in vivo protein synthesis rates with PET. J Nucl Med 29:1419–1427

    PubMed  CAS  Google Scholar 

  93. Kubota K, Matsuzawa T, Takahashi T, et al. (1989) Rapid and sensitive response of carbon-11-l-methionine tumor uptake to irradiation. J Nucl Med 30:2012–2016

    PubMed  CAS  Google Scholar 

  94. Reinhardt MJ, Kubota K, Yamada S, Iwata R, Yaegashi H (1997) Assessment of cancer recurrence in residual tumors after fractionated radiotherapy: a comparison of fluorodeoxyglucose, l-methionine and thymidine. J Nucl Med 38:280–287

    PubMed  CAS  Google Scholar 

  95. Planas AM, Prenant C, Mazoyer BM, Comar D, Giamberardino LD (1992) Regional cerebral l-(14C-methyl) methionine incorporation into proteins: evidence for methionine recycling in the rat brain. J Cereb Blood Flow Metab 12:603–612

    PubMed  CAS  Google Scholar 

  96. Smith CB, Deibler GE, Eng N, Schmidt K, Sokoloff L (1988) Measurement of local cerebral protein synthesis in vivo: influence of recycling of amino acids derived from protein degradation. Proc Natl Acad Sci U S A 85:9341–9345

    PubMed  CAS  Google Scholar 

  97. Dethy S, Goldman S, Blecic S, Luxen A, Levivier M, Hildebrand J (1994) Carbon-11-methionine and fluorine-18-FDG PET study in brain hematoma. J Nucl Med 35:1162–1166

    PubMed  CAS  Google Scholar 

  98. Dethy S, Manto M, Kentos A, et al. (1995) PET findings in a brain abscess associated with a silent atrial septal defect. Clin Neurol Neurosurg 97:349–353

    PubMed  CAS  Google Scholar 

  99. Comar D, Cartron J, Maziere M, Marazano C (1976) Labelling and metabolism of methionine-methyl-11 C. Eur J Nucl Med 1:11–14

    PubMed  CAS  Google Scholar 

  100. Davis J, Yano Y, Cahoon J, Budinger TF (1982) Preparation of 11C-methyl iodide and l-[S-methyl-11C]methionine by an automated continuous flow process. Int J Appl Radiat Isot 33:363–369

    PubMed  CAS  Google Scholar 

  101. Langstrom B, Antoni G, Gullberg P, Halldin C, Malmborg P, Nagren K, Rimland A, Svard H (1987) Synthesis of l- and d-[methyl-11C]methionine. J Nucl Med 28:1037–1040

    PubMed  CAS  Google Scholar 

  102. Herholz K, Holzer T, Bauer B, et al. (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    PubMed  CAS  Google Scholar 

  103. Braun V, Dempf S, Weller R, Reske SN, Schachenmayr W, Richter HP (2002) Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data—results of a pilot study in 32 surgical cases. Acta Neurochir (Wien) 144:777–782

    CAS  Google Scholar 

  104. Chung JK, Kim YK, Kim S, et al. (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo- or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182

    PubMed  CAS  Google Scholar 

  105. Kracht LW, Miletic H, Busch S, et al. (2004) Delineation of brain tumor extent with [11C]l-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170

    PubMed  CAS  Google Scholar 

  106. Ogawa T, Shishido F, Kanno I, et al. (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53

    PubMed  CAS  Google Scholar 

  107. Viader F, Derlon JM, Petit-Taboue MC, et al. (1993) Recurrent oligodendroglioma diagnosed with 11C-l-methionine and PET: a case report. Eur Neurol 33:248–251

    PubMed  CAS  Google Scholar 

  108. Ribom D, Schoenmaekers M, Engler H, Smits A (2005) Evaluation of 11C-methionine PET as a surrogate endpoint after treatment of grade 2 gliomas. J Neurooncol 71:325–332

    PubMed  CAS  Google Scholar 

  109. Massager N, David P, Goldman S, et al. (2000) Combined magnetic resonance imaging- and positron emission tomography-guided stereotactic biopsy in brainstem mass lesions: diagnostic yield in a series of 30 patients. J Neurosurg 93:951–957

    PubMed  CAS  Google Scholar 

  110. Ishii K, Ogawa T, Hatazawa J, et al. (1993) High l-methyl-[11C]methionine uptake in brain abscess: a PET study. J Comput Assist Tomogr 17:660–661

    Article  PubMed  CAS  Google Scholar 

  111. Haynes RB, Sackett DL, Tugwell P (1983) Problems in the handling of clinical and research evidence by medical practitioners. Arch Intern Med 143:1971–1975

    PubMed  CAS  Google Scholar 

  112. Kaschten B, Stevenaert A, Sadzot B, et al. (1998) Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 39:778–785

    PubMed  CAS  Google Scholar 

  113. Utriainen M, Metsahonkala L, Salmi TT, et al. (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1386

    PubMed  Google Scholar 

  114. Kameyama M, Shirane R, Itoh J, et al. (1990) The accumulation of 11C-methionine in cerebral glioma patients studied with PET. Acta Neurochir (Wien) 104:8–12

    CAS  Google Scholar 

  115. Nariai T, Tanaka Y, Wakimoto H, et al. (2005) Usefulness of l-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507

    PubMed  Google Scholar 

  116. Sasaki M, Kuwabara Y, Yoshida T, et al. (1998) A comparative study of thallium-201 SPET, carbon-11 methionine PET and fluorine-18 fluorodeoxyglucose PET for the differentiation of astrocytic tumours. Eur J Nucl Med 25:1261–1269

    PubMed  CAS  Google Scholar 

  117. Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L (2006) [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. Am J Neuroradiol 27:1432–1437

    PubMed  CAS  Google Scholar 

  118. Borbely K, Nyary I, Toth M, Ericson K, Gulyas B (2006) Optimization of semi-quantification in metabolic PET studies with 18F-fluorodeoxyglucose and 11C-methionine in the determination of malignancy of gliomas. J Neurol Sci 246:85–94

    PubMed  CAS  Google Scholar 

  119. Kracht LW, Friese M, Herholz K, et al. (2003) Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873

    Article  PubMed  CAS  Google Scholar 

  120. De Witte O, Goldberg I, Wikler D, et al. (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750

    PubMed  Google Scholar 

  121. Kim S, Chung JK, Im SH, et al. (2005) 11C-methionine PET as a prognostic marker in patients with glioma: comparison with 18F-FDG PET. Eur J Nucl Med Mol Imaging 32:52–59

    PubMed  CAS  Google Scholar 

  122. Tovi M (1993) MR imaging in cerebral gliomas analysis of tumour tissue components. Acta Radiol Suppl 384:1–24

    PubMed  CAS  Google Scholar 

  123. Hawighorst H, Schreiber W, Knopp MV, et al. (1996) Macroscopic tumor volume of malignant glioma determined by contrast-enhanced magnetic resonance imaging with and without magnetization transfer contrast. Magn Reson Imaging 14:1119–1126

    PubMed  CAS  Google Scholar 

  124. Watanabe M, Tanaka R, Takeda N (1992) Magnetic resonance imaging and histopathology of cerebral gliomas. Neuroradiology 34:463–469

    PubMed  CAS  Google Scholar 

  125. Miwa K, Shinoda J, Yano H, et al. (2004) Discrepancy between lesion distributions on methionine PET and MR images in patients with glioblastoma multiforme: insight from a PET and MR fusion image study. J Neurol Neurosurg Psychiatry 75:1457–1462

    PubMed  CAS  Google Scholar 

  126. Tang BN-T, Sadeghi N, Branle F, De Witte O, Wikler D, Goldman S (2005) Semi-quantification of methionine uptake and flair signal for the evaluation of chemotherapy in low-grade oligodendroglioma. J Neurooncol 71:161–168

    PubMed  CAS  Google Scholar 

  127. Nariai T, Senda M, Ishii K, et al. (1997) Three-dimensional imaging of cortical structure, function and glioma for tumor resection. J Nucl Med 38:1563–1568

    PubMed  CAS  Google Scholar 

  128. Levivier M, Massager N, Wikler D, et al. (2004) Use of stereotactic PET images in dosimetry planning of radiosurgery for brain tumors: clinical experience and proposed classification. J Nucl Med 45:1146–1154

    PubMed  Google Scholar 

  129. Voges J, Herholz K, Holzer T, et al. (1997) 11C-methionine and 18F-2-fluorodeoxyglucose positron emission tomography: a tool for diagnosis of cerebral glioma and monitoring after brachytherapy with 125I seeds. Stereotact Funct Neurosurg 69:129–135

    PubMed  CAS  Google Scholar 

  130. Ogawa T, Inugami A, Hatazawa J, et al. (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and l-methyl-11C-methionine. AJNR Am J Neuroradiol 17:345–353

    PubMed  CAS  Google Scholar 

  131. Grosu AL, Lachner R, Wiedenmann N, et al. (2003) Validation of a method for automatic image fusion (BrainLAB System) of CT data and 11C-methionine-PET data for stereotactic radiotherapy using a LINAC: first clinical experience. Int J Radiat Oncol Biol Phys 56:1450–1463

    PubMed  Google Scholar 

  132. von Schulthess GK, Steinert HC, Hany TF (2006) Integrated PET/CT: current applications and future directions. Radiology 238:405–422

    Google Scholar 

  133. Kaplan AM, Bandy DJ, Manwaring KH, et al. (1999) Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg 91:797–803

    Article  PubMed  CAS  Google Scholar 

  134. Pirotte B, Goldman S, Dewitte O, et al. (2006) Integrated positron emission tomography and magnetic resonance imaging-guided resection of brain tumors: a report of 103 consecutive procedures. J Neurosurg 104:238–253

    PubMed  Google Scholar 

  135. Pirotte B, Goldman S, Van Bogaert P, et al. (2005) Integration of [11C]methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57:128–139

    PubMed  Google Scholar 

  136. Jena R, Price SJ, Baker C, et al. (2005) Diffusion tensor imaging: possible implications for radiotherapy treatment planning of patients with high-grade glioma. Clin Oncol (R Coll Radiol) 17:581–590

    CAS  Google Scholar 

  137. Maes F, Collignon A, Vandermeulen D, Marchal G, Suetens P (1997) Multimodality image registration by maximization of mutual information. IEEE Trans Med Imaging 16:187–198

    PubMed  CAS  Google Scholar 

  138. Nuutinen J, Sonninen P, Lehikoinen P, et al. (2000) Radiotherapy treatment planning and long-term follow-up with [(11)C]methionine PET in patients with low-grade astrocytoma. Int J Radiat Oncol Biol Phys 48:43–52

    PubMed  CAS  Google Scholar 

  139. Grosu AL, Weber WA, Riedel E, et al. (2005) l -(methyl-11C) methionine positron emission tomography for target delineation in resected high-grade gliomas before radiotherapy. Int J Radiat Oncol Biol Phys 63:64–74

    PubMed  CAS  Google Scholar 

  140. Pirotte B, Goldman S, Massager N, et al. (2004) Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J Neurosurg 101:476–483

    PubMed  CAS  Google Scholar 

  141. Goldman S, Levivier M, Pirotte B, et al. (1997) Regional methionine and glucose uptake in high-grade gliomas: a comparative study on PET-guided stereotactic biopsy. J Nucl Med 38:1459–1462

    PubMed  CAS  Google Scholar 

  142. Pirotte B, Goldman S, Salzberg S, et al. (2003) Combined positron emission tomography and magnetic resonance imaging for the planning of stereotactic brain biopsies in children: experience in 9 cases. Pediatr Neurosurg 38:146–155

    PubMed  Google Scholar 

  143. Pirotte B, Goldman S, David P, et al. (1997) Stereotactic brain biopsy guided by positron emission tomography (PET) with [F-18]fluorodeoxyglucose and [C-11]methionine. Acta Neurochir Suppl 68:133–138

    PubMed  CAS  Google Scholar 

  144. Pirotte B, Goldman S, Massager N, et al. (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:1293–1298

    PubMed  CAS  Google Scholar 

  145. Roelcke U, von Ammon K, Hausmann O, et al. (1999) Operated low grade astrocytomas: a long-term PET study on the effect of radiotherapy. J Neurol Neurosurg Psychiatry 66:648–653

    PubMed  Google Scholar 

  146. Bernays RL, Kollias SS, Khan N, Brandner S, Meier S, Yonekawa Y (2002) Histological yield, complications, and technological considerations in 114 consecutive frameless stereotactic biopsy procedures aided by open intraoperative magnetic resonance imaging. J Neurosurg 97:354–362

    PubMed  Google Scholar 

  147. Herholz K, Kracht LW, Heiss WD (2003) Monitoring the effect of chemotherapy in a mixed glioma by C-11-methionine PET. J Neuroimaging 13:269–271

    PubMed  CAS  Google Scholar 

  148. Sorensen J, Savitcheva II, Engler H, Langstrom B (2000) 3. Utility of PET and 11C-methionine in the paediatric brain tumors. Clin Positron Imaging 3:157

    PubMed  Google Scholar 

  149. Gambhir SS, Czernin J, Schwimmer J, Sliverman DHS, Coleman RE, Phelps ME (2001) A tabulated summary of the FDG PET literature. J Nucl Med 42:1S–93S

    PubMed  CAS  Google Scholar 

  150. Lilja A, Lundqvist H, Olsson Y, Spannare B, Gullberg P, Langtrom B (1989) Positron emission tomography and computed tomography in differential diagnosis between recurrent or residual glioma and treatment-induced brain lesions. Acta Radiol 30:121–128

    PubMed  CAS  Google Scholar 

  151. Ogawa T, Kanno I, Shishido F, et al. (1991) Clinical value of PET with 18F-fluorodeoxyglucose and l-methyl-11C-methionine for diagnosis of recurrent brain tumor and radiation injury. Acta Radiol 32:197–202

    Article  PubMed  CAS  Google Scholar 

  152. Sasaki M, Ichiya Y, Kuwabara Y, et al. (1996) Hyperperfusion and hypermetabolism in brain radiation necrosis with epileptic activity. J Nucl Med 37:1174–1176

    PubMed  CAS  Google Scholar 

  153. Sonoda Y, Kumabe T, Takahashi T, Shirane R, Yoshimoto T (1998) Clinical usefulness of 11C-MET PET and 201T1 SPECT for differentiation of recurrent glioma from radiation necrosis. Neurol Med Chir (Tokyo) 38:342–347

    Article  CAS  Google Scholar 

  154. Tsuyuguchi N, Takami T, Sunada I, et al. (2004) Methionine positron emission tomography for differentiation of recurrent brain tumor and radiation necrosis after stereotactic radiosurgery—in malignant glioma. Ann Nucl Med 18:291–296

    PubMed  CAS  Google Scholar 

  155. Van Laere K, Ceyssens S, Van Calenbergh F, et al. (2005) Direct comparison of 18F-FDG and 11C-methionine PET in suspected recurrence of glioma: sensitivity, inter-observer variability and prognostic value. Eur J Nucl Med Mol Imaging 32:39–51

    PubMed  CAS  Google Scholar 

  156. Thiel A, Pietrzyk U, Sturm V, Herholz K, Hovels M, Schroder R (2000) Enhanced accuracy in differential diagnosis of radiation necrosis by positron emission tomography-magnetic resonance imaging coregistration: technical case report. Neurosurgery 46:232–234

    PubMed  CAS  Google Scholar 

  157. Tsuyuguchi N, Sunada I, Iwai Y, et al. (2003) Methionine positron emission tomography of recurrent metastatic brain tumor and radiation necrosis after stereotactic radiosurgery: is a differential diagnosis possible? J Neurosurg 98:1056–1064

    PubMed  Google Scholar 

  158. Tang BNT, Levivier M, Heureux M, et al. (2006) 11C-methionine PET for the diagnosis and management of recurrent pituitary adenomas. Eur J Nucl Med Mol Imaging 33:169–178

    PubMed  CAS  Google Scholar 

  159. Ogawa T, Hatazawa J, Inugami A, et al. (1995) Carbon-11-methionine PET evaluation of intracerebral hematoma: distinguishing neoplastic from non-neoplastic hematoma. J Nucl Med 36:2175–2179

    PubMed  CAS  Google Scholar 

  160. Becherer A, Karanikas G, Szabo M, et al. (2003) Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 30:1561–1567

    PubMed  CAS  Google Scholar 

  161. Mosskin M, von Holst H, Bergstrom M, et al. (1987) Positron emission tomography with 11C-methionine and computed tomography of intracranial tumours compared with histopathologic examination of multiple biopsies. Acta Radiol 28:673–681

    PubMed  CAS  Google Scholar 

  162. Lord SJ, Irwig L, Simes RJ (2006) When is measuring sensitivity and specificity sufficient to evaluate a diagnostic test, and when do we need randomized trials? Ann Intern Med 144:850–855

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Mantil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singhal, T., Narayanan, T.K., Jain, V. et al. 11C-l-Methionine Positron Emission Tomography in the Clinical Management of Cerebral Gliomas. Mol Imaging Biol 10, 1–18 (2008). https://doi.org/10.1007/s11307-007-0115-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0115-2

Key words

Navigation