Skip to main content
Log in

Functional Imaging of Cerebral Blood Flow and Glucose Metabolism in Parkinson’s Disease and Huntington’s Disease

  • Review Article
  • Special Issue: Molecular Imaging in the Evaluation of Neurodegenerative Diseases
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Brain imaging of cerebral blood flow and glucose metabolism has been playing key roles in describing pathophysiology of Parkinson’s disease (PD) and Huntington’s disease (HD), respectively. Many biomarkers have been developed in recent years to investigate the abnormality in molecular substrate, track the time course of disease progression, and evaluate the efficacy of novel experimental therapeutics. A growing body of literature has emerged on neurobiology of these two movement disorders in resting states and in response to brain activation tasks. In this paper, we review the latest applications of these approaches in patients and normal volunteers at rest conditions. The discussions focus on brain mapping studies with univariate and multivariate statistical analyses on a voxel basis. In particular, we present data to validate the reproducibility and reliability of unique spatial covariance patterns related with PD and HD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Worsley KJ, Poline JB, Friston KJ, Evans AC (1997) Characterizing the response of PET and fMRI data using multivariate linear models. NeuroImage 6:305–319

    Article  PubMed  CAS  Google Scholar 

  2. Friston KJ, Holmes A, Poline JB, Price CJ, Frith CD (1996) Detecting activations in PET and fMRI: levels of inference and power. NeuroImage 4:223–235

    Article  PubMed  CAS  Google Scholar 

  3. Lin FH, McIntosh AR, Agnew JA, Eden GF, Zeffiro TA, Belliveau JW (2003) Multivariate analysis of neuronal interactions in the generalized partial least squares framework: simulations and empirical studies. NeuroImage 20:625–642

    Article  PubMed  Google Scholar 

  4. Alexander G, Moeller J (1994) Application of the scaled subprofile model to functional imaging in neuropsychiatric disorders: a principal component approach to modeling brain function in disease. Hum Brain Mapp 2:1–16

    Article  Google Scholar 

  5. Eidelberg D, Moeller JR, Dhawan V, Spetsieris P, Takikawa S, Ishikawa T, et al. (1994) The metabolic topography of parkinsonism. J Cereb Blood Flow Metab 14:783–801

    PubMed  CAS  Google Scholar 

  6. Zuendorf G, Kerrouche N, Herholz K, Baron JC (2003) Efficient principal component analysis for multivariate 3D voxel-based mapping of brain functional imaging data sets as applied to FDG-PET and normal aging. Hum Brain Mapp 18:13–21

    Article  PubMed  Google Scholar 

  7. Ma Y, Tang C, Spetsieris PG, Dhawan V, Eidelberg D (2006) Abnormal metabolic network activity in Parkinson’s disease: test–retest reproducibility. J Cereb Blood Flow Metab (in press). DOI 10.1038/sj.jcbfm.9600358

  8. Feigin A, Fukuda M, Dhawan V, Przedborski S, Jackson-Lewis V, Mentis MJ, et al. (2001) Metabolic correlates of levodopa response in Parkinson’s disease. Neurology 57:2083–2088

    PubMed  CAS  Google Scholar 

  9. Trost M, Carbon M, Edwards C, Ma Y, Raymond D, Mentis MJ, et al. (2002) Primary dystonia: is abnormal functional brain architecture linked to genotype? Ann Neurol 52:853–856

    Article  PubMed  Google Scholar 

  10. Scarmeas N, Habeck CG, Zarahn E, Anderson KE, Park A, Hilton J, et al. (2004) Covariance PET patterns in early Alzheimer’s disease and subjects with cognitive impairment but no dementia: utility in group discrimination and correlations with functional performance. NeuroImage 23:35–45

    Article  PubMed  Google Scholar 

  11. Eckert T, Eidelberg D (2005) Neuroimaging and therapeutics in movement disorders. NeuroRx 2:361–371

    Article  PubMed  Google Scholar 

  12. Mosconi L, Perani D, Sorbi S, Herholz K, Nacmias B, Holthoff V, et al. (2004) MCI conversion to dementia and the APOE genotype: a prediction study with FDG-PET. Neurology 63:2332–2340

    PubMed  CAS  Google Scholar 

  13. Huang C, Eidelberg D, Habeck C, Moeller J, Svensson L, Tarabula T, et al. (2006) Imaging markers of mild cognitive impairment: multivariate analysis of CBF SPECT. Neurobiol Aging (in press). DOI 10.1016/j.neurobiolaging.2006.05.017

  14. Salmon E, Kerrouche N, Herholz K, Perani D, Holthoff V, Beuthien-Baumann B, et al. (2006) Decomposition of metabolic brain clusters in the frontal variant of frontotemporal dementia. NeuroImage 30:871–878

    Article  PubMed  Google Scholar 

  15. Kerrouche N, Herholz K, Mielke R, Holthoff V, Baron JC (2006) 18FDG-PET in vascular dementia: differentiation from Alzheimer’s disease using voxel-based multivariate analysis. J Cereb Blood Flow Metab 26:1213–1221

    PubMed  CAS  Google Scholar 

  16. Eustache F, Piolino P, Giffard B, Viader F, De La Sayette V, Baron JC, et al. (2004) ‘In the course of time’: a PET study of the cerebral substrates of autobiographical amnesia in Alzheimer’s disease. Brain 127:1549–1560

    Article  PubMed  Google Scholar 

  17. Carbon M, Su S, Dhawan V, Raymond D, Bressman S, Eidelberg D (2004) Regional metabolism in primary torsion dystonia: effects of penetrance and genotype. Neurology 62:1384–1390

    PubMed  CAS  Google Scholar 

  18. Asanuma K, Ma Y, Huang C, Carbon M, Edwards C, Raymond D, et al. (2005) The metabolic pathology of dopa-responsive dystonia. Ann Neurol 57:596–600

    Article  PubMed  CAS  Google Scholar 

  19. Ghilardi MF, Carbon M, Silvestri G, Dhawan V, Tagliati M, Bressman S, et al. (2003) Impaired sequence learning in carriers of the DYT1 dystonia mutation. Ann Neurol 54:102–109

    Article  PubMed  Google Scholar 

  20. Detante O, Vercueil L, Thobois S, Broussolle E, Costes N, Lavenne F, et al. (2004) Globus pallidus internus stimulation in primary generalized dystonia: a H215O PET study. Brain 127:1899–1908

    Article  PubMed  Google Scholar 

  21. Yianni J, Bradley K, Soper N, O’Sullivan V, Nandi D, Gregory R, et al. (2005) Effect of GPi DBS on functional imaging of the brain in dystonia. J Clin Neurosci 12:137–141

    Article  PubMed  Google Scholar 

  22. Ma Y, Dhawan V, Freed C, Fahn S, Eidelberg D (2005) PET and embryonic dopamine cell transplantation in Parkinson’s disease. In: Broderick PA, Rabni DN, Kolodny EH (eds) Bioimaging in neurodegeneration. New Jersey: Humana Press, pp 45–58

    Google Scholar 

  23. Brownell AL, Canales K, Chen YI, Jenkins BG, Owen C, Livni E, et al. (2003) Mapping of brain function after MPTP-induced neurotoxicity in a primate Parkinson’s disease model. NeuroImage 20:1064–1075

    Article  PubMed  Google Scholar 

  24. Otsuka M, Ichiya Y, Hosokawa S, Kuwabara Y, Tahara T, Fukumura T, et al. (1991) Striatal blood flow, glucose metabolism and 18F-dopa uptake: difference in Parkinson’s disease and atypical parkinsonism. J Neurol Neurosurg Psychiatry 54:898–904

    Article  PubMed  CAS  Google Scholar 

  25. Okada K, Suyama N, Oguro H, Yamaguchi S, Kobayashi S (1999) Medication-induced hallucination and cerebral blood flow in Parkinson’s disease. J Neurol 246:365–368

    Article  PubMed  CAS  Google Scholar 

  26. Emborg ME, Carbon M, Holden JE, During MJ, Ma Y, Tang C, et al. (2006) Subthalamic glutamic acid decarboxylase gene therapy: changes in motor function and cortical metabolism. J Cereb Blood Flow Metab (in press). DOI 10.1038/sj.jcbfm.9600364

  27. Otsuka M, Ichiya Y, Kuwabara Y, Hosokawa S, Sasaki M, Yoshida T, et al. (1996) Glucose metabolism in the cortical and subcortical brain structures in multiple system atrophy and Parkinson’s disease: a positron emission tomographic study. J Neurol Sci 144:77–83

    Article  PubMed  CAS  Google Scholar 

  28. Antonini A, Kazumata K, Feigin A, Mandel F, Dhawan V, Margouleff C, et al. (1998) Differential diagnosis of parkinsonism with [18F]fluorodeoxyglucose and PET. Mov Disord 13:268–274

    Article  PubMed  CAS  Google Scholar 

  29. Klein RC, de Jong BM, de Vries JJ, Leenders KL (2005) Direct comparison between regional cerebral metabolism in progressive supranuclear palsy and Parkinson’s disease. Mov Disord 20:1021–1030

    Article  PubMed  Google Scholar 

  30. Eckert T, Barnes A, Dhawan V, Frucht S, Gordon MF, Feigin AS, et al. (2005) FDG-PET in the differential diagnosis of parkinsonian disorders. NeuroImage 26:912–921

    Article  PubMed  Google Scholar 

  31. Moeller JR, Nakamura T, Mentis MJ, Dhawan V, Spetsieres P, Antonini A, et al. (1999) Reproducibility of regional metabolic covariance patterns: comparison of four populations. J Nucl Med 40:1264–1269

    PubMed  CAS  Google Scholar 

  32. Trost M, Su PC, Barnes A, Su SL, Yen RF, Tseng HM, et al. (2003) Evolving metabolic changes during the first postoperative year after subthalamotomy. J Neurosurg 99:872–878

    Article  PubMed  Google Scholar 

  33. Lozza C, Baron JC, Eidelberg D, Mentis MJ, Carbon M, Marie RM (2004) Executive processes in Parkinson’s disease: FDG-PET and network analysis. Hum Brain Mapp 22:236–245

    Article  PubMed  Google Scholar 

  34. Kaasinen V, Maguire RP, Hundemer HP, Leenders KL (2006) Corticostriatal covariance patterns of 6-[18F]fluoro-l-dopa and [18F]fluorodeoxyglucose PET in Parkinson’s disease. J Neurol 253:340–348

    Article  PubMed  CAS  Google Scholar 

  35. Eidelberg D, Moeller JR, Ishikawa T, Dhawan V, Spetsieris P, Chaly T, et al. (1995) Assessment of disease severity in parkinsonism with fluorine-18-fluorodeoxyglucose and PET. J Nucl Med 36:378–383

    PubMed  CAS  Google Scholar 

  36. Eidelberg D, Moeller JR, Kazumata K, Antonini A, Sterio D, Dhawan V, et al. (1997) Metabolic correlates of pallidal neuronal activity in Parkinson’s disease. Brain 120:1315–1324

    Article  PubMed  Google Scholar 

  37. Asanuma K, Tang C, Ma Y, Dhawan V, Mattis P, Edwards C, et al. (2006) Network modulation in the treatment of Parkinson’s disease. Brain 129:2667–2678

    Article  PubMed  Google Scholar 

  38. Huang C, Mattis P, Tang C, Perrine K, Carbon M, Eidelberg D (2006) Metabolic brain networks associated with cognitive function in Parkinson’s disease. NeuroImage 34:714–723

    Google Scholar 

  39. Mentis MJ, McIntosh AR, Perrine K, Dhawan V, Berlin B, Feigin A, et al. (2002) Relationships among the metabolic patterns that correlate with mnemonic, visuospatial, and mood symptoms in Parkinson’s disease. Am J Psychiatry 159:746–754

    Article  PubMed  Google Scholar 

  40. Spetsieris P, Ma Y, Dhawan V, Moeller JR, Eidelberg D. (2006) Highly automated computer-aided diagnosis of neurological disorders using functional brain imaging. Proc SPIE Int Soc Opt Eng-Medical Imaging 6144(5M):1–12

    Google Scholar 

  41. Feigin A, Antonini A, Fukuda M, De Notaris R, Benti R, Pezzoli G, et al. (2002) Tc-99m ethylene cysteinate dimer SPECT in the differential diagnosis of parkinsonism. Mov Disord 17:1265–1270

    Article  PubMed  Google Scholar 

  42. Eckert T, Van Laere KV, Tang C, Lewis DE, Santens P, Eidelberg D (2006) Quantification of PD-related network expression with ECD SPECT. Eur J Nucl Med Mol Imaging (in press). DOI 10.1007/s00259-006-0261-9

  43. Carroll TJ, Teneggi V, Jobin M, Squassante L, Treyer V, Hany TF, et al. (2002) Absolute quantification of cerebral blood flow with magnetic resonance, reproducibility of the method, and comparison with H2(15)O positron emission tomography. J Cereb Blood Flow Metab 22:1149–1156

    Article  PubMed  Google Scholar 

  44. Yen YF, Field AS, Martin EM, Ari N, Burdette JH, Moody DM, et al. (2002) Test–retest reproducibility of quantitative CBF measurements using FAIR perfusion MRI and acetazolamide challenge. Magn Reson Med 47:921–928

    Article  PubMed  Google Scholar 

  45. Spilt A, Box FM, van der Geest RJ, Reiber JH, Kunz P, Kamper AM, et al. (2002) Reproducibility of total cerebral blood flow measurements using phase contrast magnetic resonance imaging. J Magn Reson Imaging 16:1–5

    Article  PubMed  Google Scholar 

  46. Floyd TF, Ratcliffe SJ, Wang J, Resch B, Detre JA (2003) Precision of the CASL-perfusion MRI technique for the measurement of cerebral blood flow in whole brain and vascular territories. J Magn Reson Imaging 18:649–655

    Article  PubMed  Google Scholar 

  47. Huang C, Feigin A, Ma Y, Eidelberg D (2005) Imaging measures of longitudinal change in Parkinson’s disease. Neurology 64:A235

    Google Scholar 

  48. Sestini S, Scotto di Luzio A, Ammannati F, De Cristofaro MT, Passeri A, Martini S, et al. (2002) Changes in regional cerebral blood flow caused by deep-brain stimulation of the subthalamic nucleus in Parkinson’s disease. J Nucl Med 43:725–732

    PubMed  Google Scholar 

  49. Ceballos-Baumann AO, Boecker H, Bartenstein P, von Falkenhayn I, Riescher H, Conrad B, et al. (1999) A positron emission tomographic study of subthalamic nucleus stimulation in Parkinson disease: enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Arch Neurol 56:997–1003

    Article  PubMed  CAS  Google Scholar 

  50. Schroeder U, Kuehler A, Lange KW, Haslinger B, Tronnier VM, Krause M, et al. (2003) Subthalamic nucleus stimulation affects a frontotemporal network: a PET study. Ann Neurol 54:445–450

    Article  PubMed  Google Scholar 

  51. Carbon M, Eidelberg D (2006) Functional imaging of sequence learning in Parkinson’s disease. J Neurol Sci 248:72–77

    Google Scholar 

  52. Su PC, Ma Y, Fukuda M, Mentis MJ, Tseng HM, Yen RF, et al. (2001) Metabolic changes following subthalamotomy for advanced Parkinson’s disease. Ann Neurol 50:514–520

    Article  PubMed  CAS  Google Scholar 

  53. Fukuda M, Mentis MJ, Ma Y, Dhawan V, Antonini A, Lang AE, et al. (2001) Networks mediating the clinical effects of pallidal brain stimulation for Parkinson’s disease: a PET study of resting-state glucose metabolism. Brain 124:1601–1609

    Article  PubMed  CAS  Google Scholar 

  54. Trost M, Su S, Su P, Yen RF, Tseng HM, Barnes A, et al. (2006) Network modulation by the subthalamic nucleus in the treatment of Parkinson’s disease. NeuroImage 31:301–307

    Article  PubMed  Google Scholar 

  55. Hilker R, Voges J, Weisenbach S, Kalbe E, Burghaus L, Ghaemi M, et al. (2004) Subthalamic nucleus stimulation restores glucose metabolism in associative and limbic cortices and in cerebellum: evidence from a FDG-PET study in advanced Parkinson’s disease. J Cereb Blood Flow Metab 24:7–16

    Article  PubMed  CAS  Google Scholar 

  56. Drucker-Colin R, Verdugo-Diaz L, Morgado-Valle C, Solis-Maldonado G, Ondarza R, Boll C, et al. (1999) Transplant of cultured neuron-like differentiated chromaffin cells in a Parkinson’s disease patient. A preliminary report. Arch Med Res 30:33–39

    Article  PubMed  CAS  Google Scholar 

  57. Feigin A, Tang C, Ma Y, Dhawan V, During MJ, Kaplitt MG, et al. (2006) Gene therapy for Parkinson’s disease with AAV-GAD: interim FDG-PET results. Neurology 66 (5, Suppl 2)

  58. Aylward EH, Codori AM, Rosenblatt A, Sherr M, Brandt J, Stine OC, et al. (2000) Rate of caudate atrophy in presymptomatic and symptomatic stages of Huntington’s disease. Mov Disord 15:552–560

    Article  PubMed  CAS  Google Scholar 

  59. Rosas HD, Goodman J, Chen YI, Jenkins BG, Kennedy DN, Makris N, et al. (2001) Striatal volume loss in HD as measured by MRI and the influence of CAG repeat. Neurology 57:1025–1028

    PubMed  CAS  Google Scholar 

  60. Thieben MJ, Duggins AJ, Good CD, Gomes L, Mahant N, Richards F, et al. (2002) The distribution of structural neuropathology in pre-clinical Huntington’s disease. Brain 125:1815–1818

    Article  PubMed  CAS  Google Scholar 

  61. Antonini A, Leenders KL, Spiegel R, Meier D, Vontobel P, Weigell-Weber M, et al. (1996) Striatal glucose metabolism and dopamine D2 receptor binding in asymptomatic gene carriers and patients with Huntington’s disease. Brain 119:2085–2095

    Article  PubMed  Google Scholar 

  62. Weeks RA, Piccini P, Harding AE, Brooks DJ (1996) Striatal D1 and D2 dopamine receptor loss in asymptomatic mutation carriers of Huntington’s disease. Ann Neurol 40:49–54

    Article  PubMed  CAS  Google Scholar 

  63. van Oostrom JC, Maguire RP, Verschuuren-Bemelmans CC, Veenma-van der Duin L, Pruim J, Roos RA, et al. (2005) Striatal dopamine D2 receptors, metabolism, and volume in preclinical Huntington disease. Neurology 65:941–943

    Article  PubMed  CAS  Google Scholar 

  64. Backman L, Robins-Wahlin TB, Lundin A, Ginovart N, Farde L (1997) Cognitive deficits in Huntington’s disease are predicted by dopaminergic PET markers and brain volumes. Brain 120:2207–2217

    Article  PubMed  Google Scholar 

  65. Antonini A, Leenders KL, Eidelberg D (1998) [11C]raclopride-PET studies of the Huntington’s disease rate of progression: relevance of the trinucleotide repeat length. Ann Neurol 43:253–255

    Article  PubMed  CAS  Google Scholar 

  66. Andrews TC, Weeks RA, Turjanski N, Gunn RN, Watkins LH, Sahakian B, et al. (1999) Huntington’s disease progression. PET and clinical observations. Brain 122:2353–2363

    Article  PubMed  Google Scholar 

  67. Pavese N, Andrews TC, Brooks DJ, Ho AK, Rosser AE, Barker RA, et al. (2003) Progressive striatal and cortical dopamine receptor dysfunction in Huntington’s disease: a PET study. Brain 126:1127–1135

    Article  PubMed  Google Scholar 

  68. Araujo DM, Cherry SR, Tatsukawa KJ, Toyokuni T, Kornblum HI (2000) Deficits in striatal dopamine D(2) receptors and energy metabolism detected by in vivo microPET imaging in a rat model of Huntington’s disease. Exp Neurol 166:287–297

    Article  PubMed  CAS  Google Scholar 

  69. Kuwert T, Noth J, Scholz D, Schwarz M, Lange HW, Topper R, et al. (1993) Comparison of somatosensory evoked potentials with striatal glucose consumption measured by positron emission tomography in the early diagnosis of Huntington’s disease. Mov Disord 8:98–106

    Article  PubMed  CAS  Google Scholar 

  70. Hayden MR, Martin WR, Stoessl AJ, Clark C, Hollenberg S, Adam MJ, et al. (1986) Positron emission tomography in the early diagnosis of Huntington’s disease. Neurology 36:888–894

    PubMed  CAS  Google Scholar 

  71. Young AB, Penney JB, Starosta-Rubinstein S, Markel DS, Berent S, Giordani B, et al. (1986) PET scan investigations of Huntington’s disease: cerebral metabolic correlates of neurological features and functional decline. Ann Neurol 20:296–303

    Article  PubMed  CAS  Google Scholar 

  72. Berent S, Giordani B, Lehtinen S, Markel D, Penney JB, Buchtel HA, et al. (1988) Positron emission tomographic scan investigations of Huntington’s disease: cerebral metabolic correlates of cognitive function. Ann Neurol 23:541–546

    Article  PubMed  CAS  Google Scholar 

  73. Kuwert T, Lange HW, Langen KJ, Herzog H, Aulich A, Feinendegen LE (1990) Cortical and subcortical glucose consumption measured by PET in patients with Huntington’s disease. Brain 113:1405–1423

    Article  PubMed  Google Scholar 

  74. Grafton ST, Mazziotta JC, Pahl JJ, St George-Hyslop P, Haines JL, Gusella J, et al. (1992) Serial changes of cerebral glucose metabolism and caudate size in persons at risk for Huntington’s disease. Arch Neurol 49:1161–1167

    PubMed  CAS  Google Scholar 

  75. Martin WR, Clark C, Ammann W, Stoessl AJ, Shtybel W, Hayden MR (1992) Cortical glucose metabolism in Huntington’s disease. Neurology 42:223–229

    PubMed  CAS  Google Scholar 

  76. Sax DS, Powsner R, Kim A, Tilak S, Bhatia R, Cupples LA, et al. (1996) Evidence of cortical metabolic dysfunction in early Huntington’s disease by single-photon-emission computed tomography. Mov Disord 11:671–677

    Article  PubMed  CAS  Google Scholar 

  77. Ciarmiello A, Cannella M, Lastoria S, Simonelli M, Frati L, Rubinsztein DC, et al. (2006) Brain white-matter volume loss and glucose hypometabolism precede the clinical symptoms of Huntington’s disease. J Nucl Med 47:215–222

    PubMed  CAS  Google Scholar 

  78. Langbehn DR, Brinkman RR, Falush D, Paulsen JS, Hayden MR (2004) A new model for prediction of the age of onset and penetrance for Huntington’s disease based on CAG length. Clin Genet 65:267–277

    Article  PubMed  CAS  Google Scholar 

  79. Ma Y, Feigin A, Rachakonda S, Dhawan V, Eidelberg D. (2006) Evolution of metabolic brain networks in presymptomatic Huntington’s disease: a longitudinal PET study. J Nucl Med 47:209p

    Google Scholar 

  80. Feigin A, Leenders KL, Moeller JR, Missimer J, Kuenig G, Spetsieris P, et al. (2001) Metabolic network abnormalities in early Huntington’s disease: an [(18)F]FDG-PET study. J Nucl Med 42:1591–1595

    PubMed  CAS  Google Scholar 

  81. Ma Y, Feigin A, Okulski J, Dhawan V, Chaly T, Eidelberg D (2003) Implementation of atrophy correction in metabolic mapping studies of presymptomatic Huntington’s disease. J Cereb Blood Flow Metab S629

  82. Feigin A, Ghilardi MF, Huang C, Ma Y, Carbon M, Guttman M, et al. (2006) Preclinical Huntington’s disease: compensatory brain responses during learning. Ann Neurol 59:53–59

    Article  PubMed  Google Scholar 

  83. Hersch SM (2003) Huntington’s disease: prospects for neuroprotective therapy 10 years after the discovery of the causative genetic mutation. Curr Opin Neurol 16:501–506

    Article  PubMed  Google Scholar 

  84. Wang X, Sarkar A, Cicchetti F, Yu M, Zhu A, Jokivarsi K, et al. (2005) Cerebral PET imaging and histological evidence of transglutaminase inhibitor cystamine induced neuroprotection in transgenic R6/2 mouse model of Huntington’s disease. J Neurol Sci 231:57–66

    Article  PubMed  CAS  Google Scholar 

  85. Schumacher JM, Hantraye P, Brownell AL, Riche D, Madras BK, Davenport PD, et al. (1992) A primate model of Huntington’s disease: functional neural transplantation and CT-guided stereotactic procedures. Cell Transplant 1:313–322

    PubMed  CAS  Google Scholar 

  86. Gaura V, Bachoud-Levi AC, Ribeiro MJ, Nguyen JP, Frouin V, Baudic S, et al. (2004) Striatal neural grafting improves cortical metabolism in Huntington’s disease patients. Brain 127:65–72

    Article  PubMed  Google Scholar 

  87. Furtado S, Sossi V, Hauser RA, Samii A, Schulzer M, Murphy CB, et al. (2005) Positron emission tomography after fetal transplantation in Huntington’s disease. Ann Neurol 58:331–337

    Article  PubMed  Google Scholar 

  88. Moro E, Lang AE, Strafella AP, Poon YY, Arango PM, Dagher A, et al. (2004) Bilateral globus pallidus stimulation for Huntington’s disease. Ann Neurol 56:290–294

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NIH RO1 NS 35069 and 37564.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yilong Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, Y., Eidelberg, D. Functional Imaging of Cerebral Blood Flow and Glucose Metabolism in Parkinson’s Disease and Huntington’s Disease. Mol Imaging Biol 9, 223–233 (2007). https://doi.org/10.1007/s11307-007-0085-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0085-4

Key words

Navigation