Skip to main content

Advertisement

Log in

Imaging of Cholinergic and Monoaminergic Neurochemical Changes in Neurodegenerative Disorders

  • Review Article
  • Special Issue: Molecular Imaging in the Evaluation of Neurodegenerative Diseases
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Positron emission tomography (PET) or single photon emission computer tomography (SPECT) imaging provides the means to study neurochemical processes in vivo. These methods have been applied to examine monoaminergic and cholinergic changes in neurodegenerative disorders. These investigations have provided important insights into disorders, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD). The most intensely studied monoaminergic transmitter is dopamine. The extent of presynaptic nigrostriatal dopaminergic denervation can be quantified in PD and may serve as a diagnostic biomarker. Dopaminergic receptor imaging may help to distinguish idiopathic PD from atypical parkinsonian disorders. Cholinergic denervation has been identified not only in AD but also in PD and more severely in parkinsonian dementia. PET or SPECT can also provide biomarkers to follow progression of disease or evaluate the effects of therapeutic interventions. Cholinergic receptor imaging is expected to play a major role in new drug development for dementing disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mesulam MM, Mufson EJ, Wainer BH, Levy AI (1983) Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (CH1-CH-6). Neurosci 10:1185–1201

    Article  CAS  Google Scholar 

  2. Mesulam M, Mash D, Hersh L, Bothwell M, Geula C (1992) Cholinergic innervation of the human striatum, globus pallidus, subthalamic nucleus, substantia nigra, and red nucleus. J Comp Neurol 323:252–268

    Article  PubMed  CAS  Google Scholar 

  3. Heckers S, Geula C, Mesulam M (1992) Cholinergic innervation of the human thalamus: dual origin and differential nuclear distribution. J Comp Neurol 325:68–82

    Article  PubMed  CAS  Google Scholar 

  4. de Lacalle S, Lim C, Sobreviela T, Mufson E, Hersh L, Saper C (1994) Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. J Comp Neurol 345:321–344

    Article  PubMed  Google Scholar 

  5. Oakman S, Faris P, Kerr P, Cozzari C, Hartman B (1995) Distribution of pontomesencephalic cholinergic neurons projecting to substantia nigra differs significantly from those projecting to ventral tegmental area. J Neurosci 15:5859–5869

    PubMed  CAS  Google Scholar 

  6. de Lacalle S, Hersh L, Saper C (1993) Cholinergic innervation of the human cerebellum. J Comp Neurol 328:364–376

    Article  PubMed  Google Scholar 

  7. Fibiger H (1982) The organization and some projections of cholinergic neurons of the mammalian forebrain. Brain Res Rev 4:327–388

    Article  Google Scholar 

  8. Mesulam MM, Geula C (1992) Overlap between acetylcholinesterase-rich and choline acetyltransferase-positive (cholinergic) axons in human cerebral cortex. Brain Res 577:112–120

    Article  PubMed  CAS  Google Scholar 

  9. Weihe E, Tao-Cheng JH, Schafer MK, Erickson JD, Eiden LE (1996) Visualization of the vesicular acetylcholine transporter in cholinergic nerve terminals and its targeting to a specific population of small synaptic vesicles. Proc Natl Acad Sci USA 93:3547–3552

    Article  PubMed  CAS  Google Scholar 

  10. Kuhl DE, Koeppe RA, Fessler JA, et al. (1994) In vivo mapping of cholinergic neurons in the human brain using SPECT and IBVM. J Nucl Med 35:405–410

    PubMed  CAS  Google Scholar 

  11. Kuhl D, Minoshima S, Fessler J, et al. (1996) In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 40:399–410

    Article  PubMed  CAS  Google Scholar 

  12. Mulholland GK, Wieland DM, Kilbourn MR, et al. (1998) [18F]fluoroethoxy-benzovesamicol, a PET radiotracer for the vesicular acetylcholine transporter and cholinergic synapses. Synapse 30:263–274

    Article  PubMed  CAS  Google Scholar 

  13. Wright CI, Geula C, Mesulam MM (1993) Neurological cholinesterases in the normal brain and in Alzheimer’s disease: relationship to plaques, tangles, and patterns of selective vulnerability. Ann Neurol 34:373–384

    Article  PubMed  CAS  Google Scholar 

  14. Mesulam MM, Guillozet A, Shaw P, Levey A, Duysen EG, Lockridge O (2002) Acetylcholinesterase knockouts establish central cholinergic pathways and can use butyrylcholinesterase to hydrolyze acetylcholine. Neuroscience 110:627–639

    Article  PubMed  CAS  Google Scholar 

  15. Shute CC, Lewis PR (1966) Electron microscopy of cholinergic terminals and acetylcholinesterase-containing neurones in the hippocampal formation of the rat. Z Zellforsch Mikrosk Anat 69:334–343

    Article  PubMed  CAS  Google Scholar 

  16. Selden NR, Gitelman DR, Salamon-Murayama N, Parrish TB, Mesulam MM (1988) Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain 121:2249–2257

    Article  Google Scholar 

  17. Heckers S, Geula C, Mesulam MM (1992) Acetylcholinesterase-rich pyramidal neurons in Alzheimer’s disease. Neurobiol Aging 13:455–460

    Article  PubMed  CAS  Google Scholar 

  18. Mesulam MM, Geula C (1991) Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J Comp Neurol 306:193–220

    Article  PubMed  CAS  Google Scholar 

  19. Atack JR, Perry EK, Bonham JR, Candy JM, Perry RH (1986) Molecular forms of acetylcholinesterase and butyrylcholinesterase in the aged human central nervous system. J Neurochem 47:263–277

    Article  PubMed  CAS  Google Scholar 

  20. Reed BR, Jagust WJ (1999) Opening a window on cerebral cholinergic function. PET imaging of acetylcholinesterase. Neurology 52:680–682

    PubMed  CAS  Google Scholar 

  21. Pappata S, Tavitian B, Traykov L, et al. (1996) In vivo imaging of human cerebral acetylcholinesterase. J Neurochem 67:876–879

    Article  PubMed  CAS  Google Scholar 

  22. Finkelstein Y, Wolff M, Biegon A (1988) Brain acetylcholinesterase after acute Parathion poisoning: a comparative quantitative histochemical analysis post mortem. Ann Neurol 24:252–257

    Article  PubMed  CAS  Google Scholar 

  23. Mesulam MM, Geula C, Moran MA (1987) Anatomy of cholinesterase inhibition in Alzheimer’s disease: effect of physostigmine and tetrahydroaminoacridine on plaques and tangles. Ann Neurol 22:683–691

    Article  PubMed  CAS  Google Scholar 

  24. Irie T, Fukushi K, Akimoto Y, Tamagami H, Nozaki T (1994) Design and evaluation of radioactive acetylcholine analogs for mapping brain acetylcholinesterase (AChE) in vivo. Nucl Med Biol 21(6):801–808

    Article  PubMed  CAS  Google Scholar 

  25. Irie T, Fukushi K, Namba H, et al. (1996) Brain acetylcholinesterase activity: validation of a PET tracer in a rat model of Alzheimer’s disease. J Nucl Med 37:649–655

    PubMed  CAS  Google Scholar 

  26. Kilbourn M, Snyder S, Sherman P, Kuhl D (1996) In vivo studies of acetylcholinesterase activity using a labeled substrate, N-[11C]methylpiperdinyl-4-propionate ([11C]PMP). Synapse 22:123–131

    Article  PubMed  CAS  Google Scholar 

  27. Kuhl D, Koeppe R, Snyder S, Minoshima S, Frey K, Kilbourn M (1996) Mapping acetylcholinesterase activity in human brain using PET and N-[11C]Methylpiperidinyl propionate (PMP). J Nucl Med 37(Suppl):21P

    Google Scholar 

  28. Kuhl DE, Koeppe RA, Minoshima S, et al. (1999) In vivo mapping of cerebral acetylcholinesterase activity in aging and Alzheimer’s disease. Neurology 52:691–699

    PubMed  CAS  Google Scholar 

  29. Iyo M, Namba H, Fukushi K, et al. (1997) Measurement of acetylcholinesterase by positron emission tomography in the brain of healthy controls and patients with Alzheimer’s disease. Lancet 349:1805–1809

    Article  PubMed  CAS  Google Scholar 

  30. Namba H, Iyo M, Fukushi K, et al. (1999) Human cerebral acetylcholinesterase activity measured with positron emission tomography: procedure, normal values and effect of age. Eur J Nucl Med 26:135–143

    Article  PubMed  CAS  Google Scholar 

  31. Snyder SE, Gunupudi N, Sherman PS, et al. (2001) Radiolabeled cholinesterase substrates: in vitro methods for determining structure–activity relationships and identification of a positron emission tomography radiopharmaceutical for in vivo measurement of butyrylcholinesterase activity. J Cereb Blood Flow Metab 21:132–143

    Article  PubMed  CAS  Google Scholar 

  32. Paterson D, Nordberg A (2000) Neuronal nicotinic receptors in the human brain. Prog Neurobiol 61:75–111

    Article  PubMed  CAS  Google Scholar 

  33. Conroy WG, Vernallis AB, Berg DK (1992) The alpha 5 gene product assembles with multiple acetylcholine receptor subunits to form distinctive receptor subtypes in brain. Neuron 9:679–691

    Article  PubMed  CAS  Google Scholar 

  34. Flores CM, Rogers SW, Pabreza LA, Wolfe BB, Kellar KJ (1992) A subtype of nicotinic cholinergic receptor in rat brain is composed of alpha 4 and beta 2 subunits and is up-regulated by chronic nicotine treatment. Mol Pharmacol 41:31–37

    PubMed  CAS  Google Scholar 

  35. Nordberg A (2001) Nicotinic receptor abnormalities of Alzheimer’s disease: therapeutic implications. Biol Psychiatry 49:200–210

    Article  PubMed  CAS  Google Scholar 

  36. Benwell ME, Balfour DJ, Anderson JM (1988) Evidence that tobacco smoking increases the density of (−)-[3H]nicotine binding sites in human brain. J Neurochem 50:1243–1247

    Article  PubMed  CAS  Google Scholar 

  37. Nordberg A (1994) Human nicotinic receptors—their role in aging and dementia. Neurochem Int 25:93–97

    Article  PubMed  CAS  Google Scholar 

  38. Sihver W, Langstrom B, Nordberg A (2000) Ligands for in vivo imaging of nicotinic receptor subtypes in Alzheimer brain. Acta Neurol Scand Suppl 176:27–33

    Google Scholar 

  39. Nordberg A, Hartvig P, Lundqvist H, Antoni G, Ulin J, Langstrom B (1989) Uptake and regional distribution of (+)-(R)- and (−)-(S)-N-[Methyl-11C]-nicotine in the brains of rhesus monkey. An attempt to study nicotinic receptors in vivo. J Neural Transm Park Dis Dement Sect 1:195–205

    Article  PubMed  CAS  Google Scholar 

  40. Maziere M, Delforge J (1995) PET imaging [11C]nicotine: historical aspects. In: Domino E (ed) Brain imaging of nicotine and tobacco smoking. Ann Arbor: NPP Books, p 13–28

    Google Scholar 

  41. Kadir A, Almkvist O, Wall A, Langstrom B, Nordberg A (2006) PET imaging of cortical (11)C-nicotine binding correlates with the cognitive function of attention in Alzheimer’s disease. Psychopharmacology (Berl) 188(4):509–520

    Article  CAS  Google Scholar 

  42. Warpman U, Nordberg A (1995) Epibatidine and ABT 418 reveal selective losses of alpha 4 beta 2 nicotinic receptors in Alzheimer brains. Neuroreport 6:2419–2423

    Article  PubMed  CAS  Google Scholar 

  43. Ding YS, Gatley SJ, Fowler JS, et al. (1996) Mapping nicotinic acetylcholine receptors with PET. Synapse 24:403–407

    Article  PubMed  CAS  Google Scholar 

  44. Volkow ND, Ding YS, Fowler JS, Gatley SJ (2001) Imaging brain cholinergic activity with positron emission tomography: its role in the evaluation of cholinergic treatments in Alzheimer’s dementia. Biol Psychiatry 49:211–220

    Article  PubMed  CAS  Google Scholar 

  45. Sihver W, Fasth KJ, Horti AG, et al. (1999) Synthesis and characterization of binding of 5-[76Br]bromo-3-[[2(S)-azetidinyl]methoxy]pyridine, a novel nicotinic acetylcholine receptor ligand, in rat brain. J Neurochem 73:1264–1272

    Article  PubMed  CAS  Google Scholar 

  46. Gundisch D, Koren AO, Horti AG, et al. (2005) In vitro characterization of 6-[18F]fluoro-A-85380, a high-affinity ligand for alpha4beta2* nicotinic acetylcholine receptors. Synapse 55:89–97

    Article  PubMed  CAS  Google Scholar 

  47. Chefer SI, Horti AG, Koren AO, et al. (1999) 2-[18F]F-A-85380: a PET radioligand for alpha4beta2 nicotinic acetylcholine receptors. Neuroreport 10:2715–2721

    Article  PubMed  CAS  Google Scholar 

  48. Mogg AJ, Jones FA, Pullar IA, Sharples CG, Wonnacott S (2004) Functional responses and subunit composition of presynaptic nicotinic receptor subtypes explored using the novel agonist 5-iodo-A-85380. Neuropharmacology 47:848–859

    Article  PubMed  CAS  Google Scholar 

  49. Pichika R, Easwaramoorthy B, Collins D, et al. (2006) Nicotinic alpha4beta2 receptor imaging agents: part II. Synthesis and biological evaluation of 2-[18F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine (18F-nifene) in rodents and imaging by PET in nonhuman primate. Nucl Med Biol 33:295–304

    Article  PubMed  CAS  Google Scholar 

  50. Musachio JL, Villemagne VL, Scheffel UA, et al. (1999) Synthesis of an I-123 analog of A-85380 and preliminary SPECT imaging of nicotinic receptors in baboon. Nucl Med Biol 26:201–207

    Article  PubMed  CAS  Google Scholar 

  51. Pomper MG, Phillips E, Fan H, et al. (2005) Synthesis and biodistribution of radiolabeled alpha 7 nicotinic acetylcholine receptor ligands. J Nucl Med 46:326–334

    PubMed  CAS  Google Scholar 

  52. Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219–233

    Article  PubMed  CAS  Google Scholar 

  53. Kobayashi R, Palkovits M, Hruska R, Rothschild R, Yamamura H (1978) Regional distribution of muscarinic cholinergic receptors in rat brain. Brain Res 154:13–23

    Article  PubMed  CAS  Google Scholar 

  54. Frey K, Ehrenkaufer R, Beaucage S, Agranoff B (1985) Quantitative in vivo receptor binding I. Theory and application to the muscarinic cholinergic receptor. J Neurosci 5:421–428

    PubMed  CAS  Google Scholar 

  55. Mash DC, White WF, Mesulam MM (1988) Distribution of muscarinic receptor subtypes within architectonic subregions of the primate cerebral cortex. J Comp Neurol 278:265–274

    Article  PubMed  CAS  Google Scholar 

  56. Molchan SE, Martinez RA, Hill JL, et al. (1992) Increased cognitive sensitivity to scopolamine with age and a perspective on the scopolamine model. Brain Res Brain Res Rev 17:215–226

    Article  PubMed  CAS  Google Scholar 

  57. Giacobini E (1990) Cholinergic receptors in human brain: effects of aging and Alzheimer disease. J Neurosci Res 27:548–560

    Article  PubMed  CAS  Google Scholar 

  58. Nordberg A, Alafuzoff I, Winblad B (1992) Nicotinic and muscarinic subtypes in the human brain: changes with aging and dementia. J Neurosci Res 31:103–111

    Article  PubMed  CAS  Google Scholar 

  59. Eckelman WC, Reba RC, Rzeszotarski WJ, et al. (1984) External imaging of cerebral muscarinic acetylcholine receptors. Science 223:291–293

    Article  PubMed  CAS  Google Scholar 

  60. Dewey SL, Volkow ND, Logan J, et al. (1990) Age-related decreases in muscarinic cholinergic receptor binding in the human brain measured with positron emission tomography (PET). J Neurosci Res 27:569–575

    Article  PubMed  CAS  Google Scholar 

  61. Zubieta JK, Koeppe RA, Frey KA, et al. (2001) Assessment of muscarinic receptor concentrations in aging and Alzheimer disease with [11C]NMPB and PET. Synapse 39:275–287

    Article  PubMed  CAS  Google Scholar 

  62. Drayer B, Jaszczak R, Coleman E, et al. (1982) Muscarinic cholinergic receptor binding: in vivo depiction using single photon emission computed tomography and radioiodinated quinuclidinyl benzilate. J Comput Assist Tomogr 6:536–543

    Article  PubMed  CAS  Google Scholar 

  63. Weinberger DR, Gibson R, Coppola R, et al. (1991) The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography. Arch Neurol 48:169–176

    PubMed  CAS  Google Scholar 

  64. Carson RE, Kiesewetter DO, Jagoda E, Der MG, Herscovitch P, Eckelman WC (1998) Muscarinic cholinergic receptor measurements with [18F]FP-TZTP: control and competition studies. J Cereb Blood Flow Metab 18:1130–1142

    Article  PubMed  CAS  Google Scholar 

  65. Linvall O, Bjorklund A (1978) Organization of catecholamine neurons in the rat central nervous system. In: Iversen LL, Iversen SD, Snyder SH (eds) Handbook of Psychopharmacology, vol 9. New York: Plenum, p 139–231

    Google Scholar 

  66. Moore RY, Bloom FE (1979) Central catecholamine neuron systems: anatomy and physiology of the norepinephrine and epinephrine systems. Annu Rev Neurosci 2:113–168

    Article  PubMed  CAS  Google Scholar 

  67. Erickson JD, Eiden LE (1993) Functional identification and molecular cloning of a human brain vescile monoamine transporter. J Neurochem 61:2314–2317

    Article  PubMed  CAS  Google Scholar 

  68. Niznik HB (1994) Dopamine receptors and transporters. Pharmacology, structure, and function. New York: Marcel Dekker

    Google Scholar 

  69. Masuo Y, Pelaprat D, Scherman D, Rostene W (1990) [3H]Dihydrotetrabenazine, a new marker for the visualization of dopaminergic denervation in the rat striatum. Neurosci Lett 114:45–50

    Article  PubMed  CAS  Google Scholar 

  70. Vander Borght TM, Sima AA, Kilbourn MR, Desmond TJ, Kuhl DE, Frey KA (1995) [3H]methoxytetrabenazine: a high specific activity ligand for estimating monoaminergic neuronal integrity. Neuroscience 68:955–962

    Article  PubMed  CAS  Google Scholar 

  71. Frey K, Kilbourn M, Robinson T (1997) Reduced striatal vesicular monoamine transporters after neurotoxic but not after behaviorally-sensitizing doses of methamphetamine. Eur J Pharmacol 334:273–279

    Article  PubMed  CAS  Google Scholar 

  72. Naudon L, Leroux-Nicollet I, Costentin J (1994) Short-term treatments with haloperidol or bromocryptine do not alter the density of the monoamine vesicular transporter. Neurosci Lett 173:1–4

    Article  PubMed  CAS  Google Scholar 

  73. Vander Borght T, Kilbourn M, Desmond T, Kuhl D, Frey K (1995) The vesicular monoamine transporter is not regulated by dopaminergic drug treatments. Eur J Pharmacol 294:577–583

    Article  PubMed  CAS  Google Scholar 

  74. Kemmerer ES, Desmond TJ, Albin RL, Kilbourn MR, Frey KA (2003) Treatment effects on nigrostriatal projection integrity in partial 6-OHDA lesions: comparison of l-DOPA and pramipexole. Exp Neurol 183:81–86

    Article  PubMed  CAS  Google Scholar 

  75. Masson J, Sagne C, Hamon M, El Mestikawy S (1999) Neurotransmitter transporters in the central nervous system. Pharmacol Rev 51:439–464

    PubMed  CAS  Google Scholar 

  76. Nirenberg MJ, Chan J, Pohorille A, et al. (1997) The dopamine transporter: comparative ultrastructure of dopaminergic axons in limbic and motor compartments of the nucleus accumbens. J Neurosci 17:6899–6907

    PubMed  CAS  Google Scholar 

  77. Strader CD, Fong TM, Tota MR, Underwood D, Dixon RA (1994) Structure and function of G protein-coupled receptors. Annu Rev Biochem 63:101–132

    Article  PubMed  CAS  Google Scholar 

  78. Sibley DR, Monsma FJ, Jr (1992) Molecular biology of dopamine receptors. Trends Pharmacol Sci 13:61–69

    Article  PubMed  CAS  Google Scholar 

  79. Peroutka SJ (1994) Molecular biology of serotonin (5-HT) receptors. Synapse 18:241–260

    Article  PubMed  CAS  Google Scholar 

  80. Hieble JP, Bondinell WE, Ruffolo RR, Jr (1995) Alpha- and beta-adrenoceptors: from the gene to the clinic. 1. Molecular biology and adrenoceptor subclassification. J Med Chem 38:3415–3444

    Article  PubMed  CAS  Google Scholar 

  81. Garnett ES, Firnau G, Nahmias C (1983) Dopamine visualized in the basal ganglia of living man. Nature 305:137–138

    Article  PubMed  CAS  Google Scholar 

  82. Gjedde A, Reith J, Dyve S, et al. (1991) Dopa decarboxylase activity of the living human brain. Proc Natl Acad Sci USA 88:2721–2725

    Article  PubMed  CAS  Google Scholar 

  83. Nishizawa S, Leyton M, Okazawa H, Benkelfat C, Mzengeza S, Diksic M (1998) Validation of a less-invasive method for measurement of serotonin synthesis rate with alpha-[11C]methyl-tryptophan. J Cereb Blood Flow Metab 18:1121–1129

    Article  PubMed  CAS  Google Scholar 

  84. Shoaf SE, Carson RE, Hommer D, et al. (2000) The suitability of [11C]-alpha-methyl-l-tryptophan as a tracer for serotonin synthesis: studies with dual administration of [11C] and [14C] labeled tracer. J Cereb Blood Flow Metab 20:244–252

    Article  PubMed  CAS  Google Scholar 

  85. Frey KA, Koeppe RA, Kilbourn MR, et al. (1996) Presynaptic monoaminergic vesicles in Parkinson’s disease and normal aging. Ann Neurol 40:873–884

    Article  PubMed  CAS  Google Scholar 

  86. Bohnen NI, Albin RL, Koeppe RA, et al. (2006) Positron emission tomography of monoaminergic vesicular binding in aging and Parkinson disease. J Cereb Blood Flow Metab 26:1198–1212

    PubMed  CAS  Google Scholar 

  87. Farde L, Eriksson L, Blomquist G, Halldin C (1989) Kinetic analysis of central [11C]raclopride binding to D2-dopamine receptors studied by PET—a comparison to the equilibrium analysis. J Cereb Blood Flow Metab 9:696–708

    PubMed  CAS  Google Scholar 

  88. Mukherjee J, Christian BT, Dunigan KA, et al. (2002) Brain imaging of 18F-fallypride in normal volunteers: blood analysis, distribution, test-retest studies, and preliminary assessment of sensitivity to aging effects on dopamine D-2/D-3 receptors. Synapse 46:170–188

    Article  PubMed  CAS  Google Scholar 

  89. Innis RB, Malison RT, al-Tikriti M, et al. (1992) Amphetamine-stimulated dopamine release competes in vivo for [123I]IBZM binding to the D2 receptor in nonhuman primates. Synapse 10:177–184

    Article  PubMed  CAS  Google Scholar 

  90. Volkow ND, Wang GJ, Fowler JS, et al. (1994) Imaging endogenous dopamine competition with [11C]raclopride in the human brain. Synapse 16:255–262

    Article  PubMed  CAS  Google Scholar 

  91. Endres CJ, Kolachana BS, Saunders RC, et al. (1997) Kinetic modeling of [11C]raclopride: combined PET-microdialysis studies. J Cereb Blood Flow Metab 17:932–942

    Article  PubMed  CAS  Google Scholar 

  92. Laruelle M (2000) Imaging synaptic neurotransmission with in vivo binding competition techniques: a critical review. J Cereb Blood Flow Metab 20:423–451

    Article  PubMed  CAS  Google Scholar 

  93. Chan GL, Holden JE, Stoessl AJ, et al. (1998) Reproducibility of the distribution of carbon-11-SCH 23390, a dopamine D1 receptor tracer, in normal subjects. J Nucl Med 39:792–797

    PubMed  CAS  Google Scholar 

  94. Abi-Dargham A, Martinez D, Mawlawi O, et al. (2000) Measurement of striatal and extrastriatal dopamine D1 receptor binding potential with [11C]NNC 112 in humans: validation and reproducibility. J Cereb Blood Flow Metab 20:225–243

    Article  PubMed  CAS  Google Scholar 

  95. Sargent PA, Kjaer KH, Bench CJ, et al. (2000) Brain serotonin1A receptor binding measured by positron emission tomography with [11C]WAY-100635: effects of depression and antidepressant treatment. Arch Gen Psychiatry 57:174–180

    Article  PubMed  CAS  Google Scholar 

  96. Carson RE, Lang L, Watabe H, et al. (2000) PET evaluation of [(18)F]FCWAY, an analog of the 5-HT(1A) receptor antagonist, WAY-100635. Nucl Med Biol 27:493–497

    Article  PubMed  CAS  Google Scholar 

  97. Watabe H, Channing MA, Der MG, et al. (2000) Kinetic analysis of the 5-HT2A ligand [11C]MDL 100,907. J Cereb Blood Flow Metab 20:899–909

    PubMed  CAS  Google Scholar 

  98. Staley JK, Van Dyck CH, Tan PZ, et al. (2001) Comparison of [(18)F]altanserin and [(18)F]deuteroaltanserin for PET imaging of serotonin(2A) receptors in baboon brain: pharmacological studies. Nucl Med Biol 28:271–279

    Article  PubMed  CAS  Google Scholar 

  99. Fowler JS, Volkow ND, Wolf AP, et al. (1989) Mapping cocaine binding sites in human and baboon brain in vivo. Synapse 4:371–377

    Article  PubMed  CAS  Google Scholar 

  100. Frost JJ, Rosier AJ, Reich SG, et al. (1993) Positron emission tomographic imaging of the dopamine transporter with 11C-WIN 35,428 reveals marked declines in mild Parkinson’s disease. Ann Neurol 34:423–431

    Article  PubMed  CAS  Google Scholar 

  101. Volkow ND, Ding YS, Fowler JS, et al. (1995) A new PET ligand for the dopamine transporter: studies in the human brain. J Nucl Med 36:2162–2168

    PubMed  CAS  Google Scholar 

  102. Szabo Z, Kao PF, Scheffel U, et al. (1995) Positron emission tomography imaging of serotonin transporters in the human brain using [11C](+)McN5652. Synapse 20:37–43

    Article  PubMed  CAS  Google Scholar 

  103. Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27:1719–1722

    Article  PubMed  CAS  Google Scholar 

  104. Aubert I, Araujo D, Cecyre D, Robitaille Y, Gauthier S, Quirion R (1992) Comparative alterations of nicotinic and muscarinic binding sites in Alzheimer’s and Parkinson’s diseases. J Neurochem 58:529–541

    Article  PubMed  CAS  Google Scholar 

  105. Davies P, Maloney A (1976) Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet II:1403

    Article  Google Scholar 

  106. Bowen DM, Smith CB, White P, Davison AN (1976) Neurotransmitter-related enzymes and indices of hypoxia in senile dementia and other abiotrophies. Brain 99:459–496

    Article  PubMed  CAS  Google Scholar 

  107. Whitehouse PJ, Hedreen JC, White CL, Price DL (1983) Basal forebrain neurons in the dementia of Parkinson disease. Ann Neurol 13:243–248

    Article  PubMed  CAS  Google Scholar 

  108. Candy JM, Perry RH, Perry EK, et al. (1983) Pathological changes in the nucleus of Meynert in Alzheimer’s and Parkinson’s diseases. J Neurol Sci 59:277–289

    Article  PubMed  CAS  Google Scholar 

  109. Perry E, Martin-Ruiz C, Lee M, et al. (2000) Nicotinic receptor subtypes in human brain ageing, Alzheimer and Lewy body diseases. Eur J Pharmacol 393:215–222

    Article  PubMed  CAS  Google Scholar 

  110. Yu WF, Guan ZZ, Bogdanovic N, Nordberg A (2005) High selective expression of alpha7 nicotinic receptors on astrocytes in the brains of patients with sporadic Alzheimer’s disease and patients carrying Swedish APP 670/671 mutation: a possible association with neuritic plaques. Exp Neurol 192:215–225

    Article  PubMed  CAS  Google Scholar 

  111. Davies P, Verth AH (1977) Regional distribution of muscarinic acetylcholine receptor in normal and Alzheimer’s-type dementia brains. Brain Res 138:385–392

    Article  PubMed  CAS  Google Scholar 

  112. DeKosky ST, Harbaugh RE, Schmitt FA, et al. (1992) Cortical biopsy in Alzheimer’s disease: diagnostic accuracy and neurochemical, neuropathological, and cognitive correlations. Ann Neurol 32:625–632

    Article  PubMed  CAS  Google Scholar 

  113. Ogawa M, Iida Y, Nakagawa M, et al. (2006) Change of central cholinergic receptors following lesions of nucleus basalis magnocellularis in rats: search for an imaging index suitable for the early detection of Alzheimer’s disease. Nucl Med Biol 33:249–254

    Article  PubMed  CAS  Google Scholar 

  114. Araujo D, Lapchak P, Robitaille Y, Gauthier S, Quirion R (1988) Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 50:1914–1923

    Article  PubMed  CAS  Google Scholar 

  115. Rossor MN, Iversen LL, Reynolds GP, Mountjoy CQ, Roth M (1984) Neurochemical characteristics of early and late onset types of Alzheimer’s disease. Br Med J 288:961–964

    CAS  Google Scholar 

  116. Geula C, Mesulam MM (1996) Systematic regional variations in the loss of cortical cholinergic fibers in Alzheimer’s disease. Cereb Cortex 6:165–177

    Article  PubMed  CAS  Google Scholar 

  117. Bohnen NI, Kaufer DI, Ivanco L, et al. (2003) Cortical cholinergic function is more severely affected in Parkinsonian dementia than in Alzheimer’s Disease: an in vivo PET Study. Arch Neurol 60:1745–1748

    Article  PubMed  Google Scholar 

  118. Davis K, Mohs R, Marin D, et al. (1999) Cholinergic markers in elderly patients with early signs of Alzheimer disease. JAMA 281:1401–1406

    Article  PubMed  CAS  Google Scholar 

  119. Tiraboschi P, Hansen LA, Alford M, Masliah E, Thal LJ, Corey-Bloom J (2000) The decline in synapses and cholinergic activity is asynchronous in Alzheimer’s disease. Neurology 55:1278–1283

    PubMed  CAS  Google Scholar 

  120. DeKosky ST, Ikonomovic MD, Styren SD, et al. (2002) Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann Neurol 51:145–155

    Article  PubMed  CAS  Google Scholar 

  121. Kuhl DE, Koeppe RA, Snyder SE, Minoshima S, Frey KA, Kilbourn MR (2006) In vivo butyrylcholinesterase activity is not increased in Alzheimer’s disease synapses. Ann Neurol 59:13–20

    Article  PubMed  CAS  Google Scholar 

  122. Koeppe R, Frey K, Snyder S, Kilbourn M, Kuhl D (1997) Evaluation of two distinct kinetic analyses for use with [C-11]PMP: an irreversible tracer for mapping AChE activity. J Cereb Blood Flow Metab 17(Suppl. 1):S329

    Google Scholar 

  123. Kuhl DE, Minoshima S, Frey KA, Foster NL, Kilbourn MR, Koeppe RA (2000) Limited donepezil inhibition of acetylcholinesterase measured with positron emission tomography in living Alzheimer cerebral cortex. Ann Neurol 48:391–395

    Article  PubMed  CAS  Google Scholar 

  124. Shinotoh H, Aotsuka A, Fukushi K, et al. (2001) Effect of donepezil on brain acetylcholinesterase activity in patients with AD measured by PET. Neurology 56:408–410

    PubMed  CAS  Google Scholar 

  125. Bohnen NI, Kaufer DI, Hendrickson R, et al. (2005) Degree of inhibition of cortical acetylcholinesterase activity and cognitive effects by donepezil treatment in Alzheimer’s disease. J Neurol Neurosurg Psychiatry 76:315–319

    Article  PubMed  CAS  Google Scholar 

  126. Yoshida T, Kuwabara Y, Ichiya Y, et al. (1998) Cerebral muscarinic acetylcholinergic receptor measurement in Alzheimer’s disease patients on 11C-N-methyl-4-piperidyl benzilate—comparison with cerebral blood flow and cerebral glucose metabolism. Ann Nucl Med 12:35–42

    PubMed  CAS  Google Scholar 

  127. Boundy KL, Barnden LR, Katsifis AG, Rowe CC (2005) Reduced posterior cingulate binding of I-123 iodo-dexetimide to muscarinic receptors in mild Alzheimer’s disease. J Clin Neurosci 12:421–425

    Article  PubMed  CAS  Google Scholar 

  128. Nordberg A, Lundqvist H, Hartvig P, et al. (1997) Imaging of nicotinic and muscarinic receptors in Alzheimer’s disease: effect of tacrine treatment. Dement Geriatr Cogn Disord 8:78–84

    PubMed  CAS  Google Scholar 

  129. Nordberg A, Hartvig P, Lilja A, et al. (1990) Decreased uptake and binding of 11C-nicotine in brain of Alzheimer patients as visualized by positron emission tomography. J Neural Transm Park Dis Dement Sect 2:215–224

    Article  PubMed  CAS  Google Scholar 

  130. Nordberg A, Lundqvist H, Hartvig P, Lilja A, Langstrom B (1995) Kinetic analysis of regional (S)(-)11C-nicotine binding in normal and Alzheimer brains—in vivo assessment using positron emission tomography. Alzheimer Dis Assoc Disord 9:21–27

    Article  PubMed  CAS  Google Scholar 

  131. Zaccai J, McCracken C, Brayne C (2005) A systematic review of prevalence and incidence studies of dementia with Lewy bodies. Age Ageing 34:561–566

    Article  PubMed  Google Scholar 

  132. McKeith IG, Dickson DW, Lowe J, et al. (2005) Diagnosis and management of dementia with Lewy bodies: third report of the DLB Consortium. Neurology 65:1863–1872

    Article  PubMed  CAS  Google Scholar 

  133. Walker Z, Costa DC, Walker RW, et al. (2004) Striatal dopamine transporter in dementia with Lewy bodies and Parkinson disease: a comparison. Neurology 62:1568–1572

    PubMed  CAS  Google Scholar 

  134. Koeppe RA, Gilman S, Joshi A, et al. (2005) 11C-DTBZ and 18F-FDG PET measures in differentiating dementias. J Nucl Med 46:936–944

    PubMed  CAS  Google Scholar 

  135. Kish SJ, Shannak K, Hornykiewicz O (1988) Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson’s disease. New Engl J Med 318:876–880

    Article  PubMed  CAS  Google Scholar 

  136. Braak H, Ghebremedhin E, Rub U, Bratzke H, Del Tredici K (2004) Stages in the development of Parkinson’s disease-related pathology. Cell Tissue Res 318:121–134

    Article  PubMed  Google Scholar 

  137. Nahmias C, Garnett ES, Firnau G, Lang A (1985) Striatal dopamine distribution in parkinsonian patients during life. J Neurol Sci 69:223–230

    Article  PubMed  CAS  Google Scholar 

  138. Leenders KL, Salmon EP, Tyrrell P, et al. (1990) The nigrostriatal dopaminergic system assessed in vivo by positron emission tomography in healthy volunteer subjects and patients with Parkinson’s disease. Arch Neurol 47:1290–1298

    PubMed  CAS  Google Scholar 

  139. Ilgin N, Zubieta J, Reich SG, Dannals RF, Ravert HT, Frost JJ (1999) PET imaging of the dopamine transporter in progressive supranuclear palsy and Parkinson’s disease. Neurology 52:1221–1226

    PubMed  CAS  Google Scholar 

  140. Lee CS, Samii A, Sossi V, et al. (2000) In vivo positron emission tomographic evidence for compensatory changes in presynaptic dopaminergic nerve terminals in Parkinson’s disease. Ann Neurol 47:493–503

    Article  PubMed  CAS  Google Scholar 

  141. Brooks DJ, Ibanez V, Sawle GV, et al. (1992) Striatal D2 receptor status in patients with Parkinson’s disease, striatonigral degeneration, and progressive supranuclear palsy, measured with 11C-raclopride and positron emission tomography. Ann Neurol 31:184–192

    Article  PubMed  CAS  Google Scholar 

  142. de la Fuente-Fernandez R, Lu JQ, Sossi V, et al. (2001) Biochemical variations in the synaptic level of dopamine precede motor fluctuations in Parkinson’s disease: PET evidence of increased dopamine turnover. Ann Neurol 49:298–303

    Article  PubMed  Google Scholar 

  143. de la Fuente-Fernandez R, Ruth TJ, Sossi V, Schulzer M, Calne DB, Stoessl AJ (2001) Expectation and dopamine release: mechanism of the placebo effect in Parkinson’s disease. Science 293:1164–1166

    Article  PubMed  Google Scholar 

  144. Rapier C, Lunt GG, Wonnacott S (1990) Nicotinic modulation of [3H]dopamine release from striatal synaptosomes: pharmacological characterisation. J Neurochem 54:937–945

    Article  PubMed  CAS  Google Scholar 

  145. Schneider JS, Van Velson M, Menzaghi F, Lloyd GK (1998) Effects of the nicotinic acetylcholine receptor agonist SIB-1508Y on object retrieval performance in MPTP-treated monkeys: comparison with levodopa treatment. Ann Neurol 43:311–317

    Article  PubMed  CAS  Google Scholar 

  146. Pimlott SL, Piggott M, Owens J, et al. (2004) Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: in vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology 29:108–116

    Article  PubMed  CAS  Google Scholar 

  147. Fujita M, Ichise M, Zoghbi SS, et al. (2006) Widespread decrease of nicotinic acetylcholine receptors in Parkinson’s disease. Ann Neurol 59:174–177

    Article  PubMed  CAS  Google Scholar 

  148. Mahler ME, Cummings JL (1990) Alzheimer disease and the dementia of Parkinson disease: comparative investigations. Alzheimer Dis Assoc Disord 4:133–149

    Article  PubMed  CAS  Google Scholar 

  149. Mattila PM, Roytta M, Lonnberg P, Marjamaki P, Helenius H, Rinne JO (2001) Choline acetytransferase activity and striatal dopamine receptors in Parkinson’s disease in relation to cognitive impairment. Acta Neuropathol (Berl) 102:160–166

    CAS  Google Scholar 

  150. Perry EK, Curtis M, Dick DJ, et al. (1985) Cholinergic correlates of cognitive impairment in Parkinson’s disease: comparisons with Alzheimer’s disease. J Neurol Neurosurg Psychiatry 48:413–421

    PubMed  CAS  Google Scholar 

  151. Arendt T, Bigl V, Arendt A, Tennstedt A (1983) Loss of neurons in the nucleus basalis of Meynert in Alzheimer’s disease, paralysis agitans and Korsakoff’s disease. Acta Neuropathol (Berl) 61:101–108

    Article  CAS  Google Scholar 

  152. Whitehouse PJ, Martino AM, Wagster MV, et al. (1988) Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology 38:720–723

    PubMed  CAS  Google Scholar 

  153. Asahina M, Suhara T, Shinotoh H, Inoue O, Suzuki K, Hattori T (1998) Brain muscarinic receptors in progressive supranuclear palsy and Parkinson’s disease: a positron emission tomographic study. J Neurol Neurosurg Psychiatry 65:155–163

    PubMed  CAS  Google Scholar 

  154. Shinotoh H, Namba H, Yamaguchi M, et al. (1999) Positron emission tomographic measurement of acetylcholinesterase activity reveals differential loss of ascending cholinergic systems in Parkinson’s disease and progressive supranuclear palsy. Ann Neurol 46:62–69

    Article  PubMed  CAS  Google Scholar 

  155. Namba H, Shinotoh H, Iyo M (1998) In vivo measurement of acetylcholinesterase activity of the brains of Alzheimer’s disease and Parkinson’s disease. J Nucl Med 39(Suppl.):95P–96P

    Google Scholar 

  156. Hilker R, Thomas AV, Klein JC, et al. (2005) Dementia in Parkinson disease: functional imaging of cholinergic and dopaminergic pathways. Neurology 65:1716–1722

    Article  PubMed  CAS  Google Scholar 

  157. Bohnen NI, Kaufer DI, Hendrickson R, et al. (2006) Cognitive correlates of cortical cholinergic denervation in Parkinson’s disease and parkinsonian dementia. J Neurol 253:242–247

    Article  PubMed  CAS  Google Scholar 

  158. Dubois B, Danze F, Pillon B, Cusimano G, Lhermitte F, Agid Y (1987) Cholinergic-dependent cognitive deficits in Parkinson’s disease. Ann Neurol 22:26–30

    Article  PubMed  CAS  Google Scholar 

  159. Ruberg M, Ploska A, Javoy-Agid F, Agid Y (1982) Muscarinic binding and choline acetyltransferase activity in Parkinsonian subjects with reference to dementia. Brain Res 232:129–139

    Article  PubMed  CAS  Google Scholar 

  160. Quinn N (1995) Parkinsonism—recognition and differential diagnosis. BMJ 310:447–452

    PubMed  CAS  Google Scholar 

  161. Steele JC, Richardson JC, Olszewski J (1964) Progressive supranuclear palsy: a heterogeneous degeneration involving the brainstem, basal ganglia, and cerebellum, with vertical gaze and pseudobulbar palsy. Arch Neurol 10:333–359

    PubMed  CAS  Google Scholar 

  162. Suzuki M, Desmond TJ, Albin RL, Frey KA (2002) Cholinergic vesicular transporters in progressive supranuclear palsy. Neurology 58:1013–1018

    PubMed  Google Scholar 

  163. Papp MI, Lantos PL (1994) The distribution of oligodendroglial inclusions in multiple system atrophy and its relevance to clinical symptomatology. Brain 117:235–243

    Article  PubMed  Google Scholar 

  164. Feany MB, Ksiezak-Reding H, Liu WK, Vincent I, Yen SH, Dickson DW (1995) Epitope expression and hyperphosphorylation of tau protein in corticobasal degeneration: differentiation from progressive supranuclear palsy. Acta Neuropathol (Berl) 90:37–43

    CAS  Google Scholar 

  165. Gilman S, Chervin RD, Koeppe RA, et al. (2003) Obstructive sleep apnea is related to a thalamic cholinergic deficit in MSA. Neurology 61:35–39

    PubMed  CAS  Google Scholar 

  166. Shinotoh H (2006) Neuroimaging of PD, PSP, CBD and MSA-PET and SPECT studies. J Neurol 253 Suppl 3:iii30–iii34

    Article  PubMed  Google Scholar 

  167. Brooks DJ, Ibanez V, Sawle GV, et al. (1990) Differing patterns of striatal 18F-dopa uptake in Parkinson’s disease, multiple system atrophy, and progressive supranuclear palsy. Ann Neurol 28:547–555

    Article  PubMed  CAS  Google Scholar 

  168. Burn DJ, Sawle GV, Brooks DJ (1994) Differential diagnosis of Parkinson’s disease, multiple system atrophy, and Steele–Richardson–Olszewski syndrome: discriminant analysis of striatal 18F-dopa PET data. J Neurol Neurosurg Psychiatry 57:278–284

    Article  PubMed  CAS  Google Scholar 

  169. Pirker W, Asenbaum S, Bencsits G, et al. (2000) [123I]beta-CIT SPECT in multiple system atrophy, progressive supranuclear palsy, and corticobasal degeneration. Mov Disord 15:1158–1167

    Article  PubMed  CAS  Google Scholar 

  170. Sawle GV, Brooks DJ, Marsden CD, Frackowiak RS (1991) Corticobasal degeneration. A unique pattern of regional cortical oxygen hypometabolism and striatal fluorodopa uptake demonstrated by positron emission tomography. Brain 114 (Pt 1B):541–556

    Article  PubMed  Google Scholar 

  171. Rinne JO, Burn DJ, Mathias CJ, Quinn NP, Marsden CD, Brooks DJ (1995) Positron emission tomography studies on the dopaminergic system and striatal opioid binding in the olivopontocerebellar atrophy variant of multiple system atrophy. Ann Neurol 37:568–573

    Article  PubMed  CAS  Google Scholar 

  172. Gilman S, Frey KA, Koeppe RA, et al. (1996) Decreased striatal monoaminergic terminals in olivopontocerebellar atrophy and multiple system atrophy demonstrated with positron emission tomography. Ann Neurol 40:885–892

    Article  PubMed  CAS  Google Scholar 

  173. Antonini A, Leenders KL, Vontobel P, et al. (1997) Complementary PET studies of striatal neuronal function in the differential diagnosis between multiple system atrophy and Parkinson’s disease. Brain 120(Pt 12):2187–2195

    Article  PubMed  Google Scholar 

  174. Gilman S, Koeppe RA, Junck L, et al. (1999) Decreased striatal monoaminergic terminals in multiple system atrophy detected with positron emission tomography. Ann Neurol 45:769–777

    Article  PubMed  CAS  Google Scholar 

  175. Laureys S, Salmon E, Garraux G, et al. (1999) Fluorodopa uptake and glucose metabolism in early stages of corticobasal degeneration. J Neurol 246:1151–1158

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors have received research support from the NIH, Department of Veterans Affairs and the Michael J. Fox Foundation. The authors would like to thank Jeff Bohnen for graphical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kirk A. Frey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bohnen, N.I., Frey, K.A. Imaging of Cholinergic and Monoaminergic Neurochemical Changes in Neurodegenerative Disorders. Mol Imaging Biol 9, 243–257 (2007). https://doi.org/10.1007/s11307-007-0083-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-007-0083-6

Key words

Navigation