Skip to main content

Advertisement

Log in

Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells

  • Brief Article
  • Published:
Molecular Imaging and Biology Aims and scope Submit manuscript

Abstract

Purpose

A new fluorescent analog of d-glucose was recently developed by [Yoshioka K, Takahashi H, Homma T, Sato M, Ki Bong O, Nemoto Y, Matsuoka H (1996) A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta 1289:5–9] and shown to be transported into normal cells. The purpose of this preliminary study was to assess the use of this fluorescent 2-deoxyglucose analog, 2-[N-(7-nitrobenz-2-oxa-1,3-diaxol-4-yl)amino]-2-deoxyglucose (2-NBDG), as a sensitive probe for monitoring glucose uptake into malignant tumor cells.

Procedures

MCF-7 breast cancer epithelial cells were grown and plated on coverslips for analysis of 2-NBDG uptake via fluorescence imaging microscopy.

Results

Steady‐state fluorescence analysis of 2-NBDG uptake displayed rapid uptake for the first one to five minutes, then slowed, reaching an apparent maximum uptake near 20–30 minutes. Addition of 5 mM d-glucose to the media markedly reduced 2-NBDG uptake. Uptake of 2-NBDG in nonmalignant epithelial cells (M-1 epithelial cells) was slow, averaging less than 20% of that observed for tumorigenic cells, the MCF-7 breast cancer cells and the HepG2 liver cancer cell line.

Conclusions

The preliminary data clearly demonstrate a rapid uptake of 2-NBDG into tumor cells that can be monitored by fluorescence imaging analysis. The uptake displays saturation and competition with d-glucose, all properties expected for 2-NBDG uptake and retention in cancer cells. Additional studies, including comparisons among other malignant cell lines and control cells, will be needed to fully characterize the kinetic properties of 2-NBDG uptake and the potential use of this 2-DG analog as a probe for glucose uptake in malignant cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

2-DG:

2-deoxyglucose

2-NBDG:

2-[N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxyglucose

FDG:

2-deoxy-2-[F-18]fluoro-D-glucose

References

  1. Yoshioka K, Takahashi H, Homma T, Sato M, Ki Bong O, Nemoto Y, Matsuoka H (1996) A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim Biophys Acta 1289:5–9

    PubMed  Google Scholar 

  2. Jerusalem G, Hustinx R, Beguin Y, Fillet G (2003) PET scan imaging in oncology. Eur J Cancer 39:1525–1534

    Article  PubMed  CAS  Google Scholar 

  3. Pauwels EKJ, Sturm EJC, Bombardieri E, Cleton FJ, Stokkel MPM (2000) Positron-emission tomography with [18F]fluorodeoxyflucose. Part I. Biochemical uptake mechanism and its implication for clinical studies. J Cancer Res Clin Oncol 126:549–559

    Article  PubMed  CAS  Google Scholar 

  4. Warburg O (1956) On the origin of cancer cells. Science 125:309–314

    Article  Google Scholar 

  5. Weber G (1977) Enzymology of cancer cells. N Engl J Med 296:541–555

    Article  PubMed  CAS  Google Scholar 

  6. Czernin J, Phelps ME (2002) Positron emission tomography scanning: Current and future applications. Annu Rev Med 53:89–112

    Article  PubMed  CAS  Google Scholar 

  7. Wienhard K (2002) Measurement of glucose consumption using [18F]fluorodeoxyglucose. Methods 27:218–225

    Article  PubMed  CAS  Google Scholar 

  8. Merrall NW, Plevin R, Gould GW (1993) Growth factors, mitogens, oncogenes and the regulation of glucose transport. Cell Signal 5:667–675

    Article  PubMed  CAS  Google Scholar 

  9. Yoshioka K, Saito M, Oh KB, Nemoto Y, Matsuoka H, Natsume M, Abe H (1996) Intracellular fate of 2-NBDG, a fluorescent probe for glucose uptake activity in Escherichia coli cells. Biosci Biotechnol Biochem 60:1899–1901

    Article  PubMed  CAS  Google Scholar 

  10. Aloj L, Caraco C, Jagoda E, Eckelman WC, Neumann RD (1999) Glut-1 and hexokinase expression: Relationship with 2-fluoro-2-deoxy-d-glucose uptake in A431 and T47D cells in culture. Cancer Res 59:4709–4714

    PubMed  CAS  Google Scholar 

  11. Flier J, Mueckler M, Usher P, Lodish H (1987) Elevated levels of glucose transport and transporter messenger RNA are induced by ras and sarc oncogenes. Science 235:1492–1495

    Article  PubMed  CAS  Google Scholar 

  12. Yoshioka K, Oh KB, Saito M, Nemoto Y, Matsuoka H (1996) Evaluation of 2-[N-(7-nirobenz-2-oxa-1,3-diazol-4-yl)amino]-2-deoxy-d-glucose, a new fluorescent derivative of glucose, for viability assessment of yeast Candida albicans. Appl Microbiol Biotechnol 46:400–404

    PubMed  CAS  Google Scholar 

  13. Natarajan A, Srienc F (1999) Dynamics of glucose uptake by single Escherichia coli cells. Metab Eng 1:320–333

    Article  PubMed  CAS  Google Scholar 

  14. Oh KB, Matsuoka H (2002) Rapid viability assessment of yeast cells using vital staining with 2-NBDG, a fluorescent derivative of glucose. Int J Food Microbiol 76:47–53

    Article  PubMed  CAS  Google Scholar 

  15. Lloyd PG, Hardin CD, Sturek M (1999) Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Physiol Res 48:401–410

    PubMed  CAS  Google Scholar 

  16. Loaiza A, Porras OH, Barros LF (2003) Glutamate triggers rapid glucose transport stimulation in astrocytes as evidenced by real-time confocal microscopy. J Neurosci 23:7337–7342

    PubMed  CAS  Google Scholar 

  17. Roman Y, Alfonso A, Louzao MC, Vieytes MR, Botana LM (2001) Confocal microscopy study of the different patterns of 2-NBDG uptake in rabbit enterocytes in the apical and basal zone. Pflugers Arch 443:234–239

    Article  PubMed  CAS  Google Scholar 

  18. Yamada K, Nakata M, Horimoto N, Saito M, Matsuoka H, Inagaki N (2000) Measurement of glucose uptake and intracellular calcium concentration in single, living pancreatic β-cells. J Biol Chem 275:22278–22283

    Article  PubMed  CAS  Google Scholar 

  19. Ball SW, Bailey JR, Stewart JM, Vogels CM, Westcott SA (2002) A fluorescent compound for glucose uptake measurements in isolated rat cardiomyocytes. Can J Physiol Pharm 80:205–209

    Article  CAS  Google Scholar 

  20. Yang NS, Soule HD, McGrath CM (1977) Expression of murine mammary tumor virus-related antigens in human breast carcinoma (MCF-7) cells. J Natl Cancer Inst 59:1357–1367

    PubMed  CAS  Google Scholar 

  21. Bouma ME, Rogier E, Verthier N, Labarre C, Feldmann G (1989) Further cellular investigation of the human hepatoblastoma-derived cell line HepG2: Morphology and immunocytochemical studies of hepatic-secreted proteins. In Vitro Cell Dev Biol 25:267–275

    Article  PubMed  CAS  Google Scholar 

  22. Wang M, Vogel I, Kalthoff H (2003) Correlation between metastatic potential and variants from colorectal tumor cell line HT-29. World J Gastroenterol 9:2627–2631

    PubMed  Google Scholar 

  23. Stoos BA, Naray-Fejes-Toth A, Carretero OA, Ito S, Fejes-Toth G (1991) Characterization of a mouse cortical collecting duct cell line. Kidney Int 39:1168–1175

    Article  PubMed  CAS  Google Scholar 

  24. Gao X, Wu L, O’Neil RG (2003) Temperature-modulated diversity of TRPV4 channel gating: Activation by physical stresses and phorbol ester derivatives through protein kinase C-dependent and -independent pathways. J Biol Chem 278:27129–27137

    Article  PubMed  CAS  Google Scholar 

  25. Nutt LK, O’Neil RG (2000) Effect of elevated glucose on endothelin-induced, store-operated and non-store-operated calcium influx in renal mesangial cells. J Am Soc Nephrol 11:1225–1235

    PubMed  CAS  Google Scholar 

  26. Zhang MIN, O’Neil RG (2001) Kinetics of activation of a PKC-regulated epithelial calcium channel. Cell Calcium 29:263–275

    Article  PubMed  CAS  Google Scholar 

  27. Younes M, Lechago LV, Somoano JR, Mosharaf M, Lechago J (1996) Wide expression of the human erythrocyte glucose transporter Glut1 in human cancers. Cancer Res 56:1164–1167

    PubMed  CAS  Google Scholar 

  28. Chen CP, Li XX, Zhang LR, Min JM, Chan JY, Fung KP, Wang SQ, Zhang LH (2002) Synthesis of antisense oligonucleotide–peptide conjugate targeting to GLUT-1 in HepG-2 and MCF-7 Cells. Bioconjug Chem 13:525–529

    Article  PubMed  CAS  Google Scholar 

  29. Itoh Y, Abe T, Takaoka R, Tanahashi N (2004) Fluormetric determination of glucose utilization in neurons in vitro and in vivo. J Cereb Blood Flow Metab 24:993–1003

    Article  PubMed  CAS  Google Scholar 

  30. Leira F, Louzao MC, Vietes JM, Botana LM, Vieytes MR (2002) Fluorescent microplate cell assay to measure uptake and metabolism of glucose in normal human lung fibroblasts. Toxicology 16:267–273

    CAS  Google Scholar 

  31. Zhang Z, Li H, Liu Q, Zhou L, Zhang M, Luo Q, Glickson J, Chance B, Zheng G (2004) Metabolic imaging of tumors using intrinsic and extrinsic fluorescent markers. Biosens Bioelectron 20:643–650

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This work was partially support by 3Gen LLC, Sugar Land, TX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roger G. O’Neil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neil, R.G., Wu, L. & Mullani, N. Uptake of a Fluorescent Deoxyglucose Analog (2-NBDG) in Tumor Cells. Mol Imaging Biol 7, 388–392 (2005). https://doi.org/10.1007/s11307-005-0011-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11307-005-0011-6

Key words

Navigation