Skip to main content

Advertisement

Log in

Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

ABSTRACT

Purpose

Magnetic resonance imaging (MRI) is widely used for diagnostic imaging in preclinical studies and in clinical settings. Considering the intrinsic low sensitivity and poor specificity of standard MRI contrast agents, the enhanced delivery of MRI tracers into tumors is an important challenge to be addressed. This study was intended to investigate whether delivery of superparamagnetic iron oxide nanoparticles (SPIONs) can be enhanced by liposomal SPION formulations for either “passive” delivery into tumor via the enhanced permeability and retention (EPR) effect or “active” targeted delivery to tumor endothelium via the receptors for vascular endothelial growth factor (VEGFRs).

Methods

In vivo MRI of orthotopic MDA-MB-231 tumors was performed on a preclinical 9.4 T MRI scanner following intravenous administration of either free/non-targeted or targeted liposomal SPIONs.

Results

In vivo MRI study revealed that only the non-targeted liposomal formulation provided a statistically significant accumulation of SPIONs in the tumor at four hours post-injection. The EPR effect contributes to improved accumulation of liposomal SPIONs in tumors compared to the presumably more transient retention during the targeting of the tumor vasculature via VEGFRs.

Conclusions

A non-targeted liposomal formulation of SPIONs could be the optimal option for MRI detection of breast tumors and for the development of therapeutic liposomes for MRI-guided therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DAPI:

4′,6-Diamidino-2-phenylindole

DOPC:

1,2-Dioleoyl-sn-glycero-3-phosphocholine

DOPE:

1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine

DSPC:

1,2-Distearoyl-sn-glycero-3-phosphocholine

DSPE-PEG2000 :

1,2-Distearoyl-sn-glycero-3-phosphoethanolamine-N-[amino(polyethylene glycol)-2000

EPR:

Enhanced permeability and retention

GdDTPA-BMA:

Gadolinium-diethylenetriamine pentaacetic acid-bismethylamide

ICG:

Indocynine green

ICP-MS:

Inductively coupled plasma mass spectrometry

IDL:

Interactive data language

Lip(Gd/Fe):

Liposomes encapsulated with GdDTPA-BMA and SPIONs

Lip(ICG):

Liposomes encapsulated with indocynine green

MRI:

Magnetic resonance imaging

PDI:

Polydispersity index

PECAM:

Platelet endothelial cell adhesion molecule

PET:

Positron emission tomography

RARE:

Rapid acquisition with refocusing echoes

ROI:

Region-of-interest

scVEGF:

Single chain vascular endothelial growth factor

scVEGF-Lip(Gd/Fe):

scVEGF-decorated Lip(Gd/Fe)

scVEGF-Lip(ICG):

scVEGF-decorated Lip(ICG)

SDS-PAGE:

Sodium dodecyl sulfate polyacrylamide gel electrophoresis

SPECT:

Single photon emission computed tomography

SPIONs:

Superparamagnetic iron oxide nanoparticles

T 1 :

Spin–lattice relaxation time

T 2 :

Transverse relaxation time

TE:

Echo time

TR:

Repetition time

TSA:

Tyramide signal amplification

VEGFRs:

Vascular endothelial growth factor receptors

References

  1. Kato Y, Artemov D. Monitoring of release of cargo from nanocarriers by MRI/MRSI: significance of T 2 /T 2 * effect of iron particles. Magn Reson Med. 2009;61(5):1059–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Onuki Y, Jacobs I, Artemov D, Kato Y. Noninvasive visualization of in vivo release and intratumoral distribution of surrogate MR contrast agent using the dual MR contrast technique. Biomaterials. 2010;31(27):7132–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kato Y, Pathak AP. Combined contrast and therapeutic nanocarriers for oncologic MRI. In: Phillips WT, Goins BA, editors. Nanoimaging. Singapore: Pan Stanford Publishing Pte. Ltd.; 2011. p. 1–17.

    Google Scholar 

  4. Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46(12 Pt 1):6387–92.

    CAS  PubMed  Google Scholar 

  5. Jain RK. Vascular and interstitial barriers to delivery of therapeutic agents in tumors. Cancer Metastasis Rev. 1990;9(3):253–66.

    Article  CAS  PubMed  Google Scholar 

  6. Jain RK. Barriers to drug delivery in solid tumors. Sci Am. 1994;271(1):58–65.

    Article  CAS  PubMed  Google Scholar 

  7. Chauhan VP, Stylianopoulos T, Martin JD, Popovic Z, Chen O, Kamoun WS, et al. Normalization of tumour blood vessels improves the delivery of nanomedicines in a size-dependent manner. Nat Nanotechnol. 2012;7:383–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Backer MV, Levashova Z, Patel V, Jehning BT, Claffey K, Blankenberg FG, et al. Molecular imaging of VEGF receptors in angiogenic vasculature with single-chain VEGF-based probes. Nat Med. 2007;13(4):504–9.

    Article  CAS  PubMed  Google Scholar 

  9. Anderson CR, Rychak JJ, Backer M, Backer J, Ley K, Klibanov AL. scVEGF microbubble ultrasound contrast agents: a novel probe for ultrasound molecular imaging of tumor angiogenesis. Investig Radiol. 2010;45(10):579–85.

    Article  CAS  Google Scholar 

  10. Zanganeh S, Xu Y, Hamby CV, Backer MV, Backer JM, Zhu Q. Enhanced fluorescence diffuse optical tomography with indocyanine green-encapsulating liposomes targeted to receptors for vascular endothelial growth factor in tumor vasculature. J Biomed Opt. 2013;18(12):126014.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Sipkins DA, Cheresh DA, Kazemi MR, Nevin LM, Bednarski MD, Li KC. Detection of tumor angiogenesis in vivo by α ν β 3-targeted magnetic resonance imaging. Nat Med. 1998;4(5):623–6.

    Article  CAS  PubMed  Google Scholar 

  12. Winter PM, Caruthers SD, Kassner A, Harris TD, Chinen LK, Allen JS, et al. Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel α ν β 3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res. 2003;63(18):5838–43.

    CAS  PubMed  Google Scholar 

  13. Moreira JN, Ishida T, Gaspar R, Allen TM. Use of the post-insertion technique to insert peptide ligands into pre-formed stealth liposomes with retention of binding activity and cytotoxicity. Pharm Res. 2002;19(3):265–9.

    Article  CAS  PubMed  Google Scholar 

  14. Thirumamagal BT, Zhao XB, Bandyopadhyaya AK, Naranyanasamy S, Johnsamuel J, Tiwari R, et al. Receptor-targeted liposomal delivery of boron-containing cholesterol mimics for boron neutron capture therapy (BNCT). Bioconjug Chem. 2006;17(5):1141–50.

    Article  CAS  PubMed  Google Scholar 

  15. Bao L, Matsumura Y, Baban D, Sun Y, Tarin D. Effects of inoculation site and Matrigel on growth and metastasis of human breast cancer cells. Br J Cancer. 1994;70(2):228–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Zitvogel L, Apetoh L, Ghiringhelli F, Kroemer G. Immunological aspects of cancer chemotherapy. Nat Rev Immunol. 2008;8(1):59–73.

    Article  CAS  PubMed  Google Scholar 

  17. Chambon C, Clement O, Le Blanche A, Schouman-Claeys E, Frija G. Superparamagnetic iron oxides as positive MR contrast agents: in vitro and in vivo evidence. Magn Reson Imaging. 1993;11(4):509–19.

    Article  CAS  PubMed  Google Scholar 

  18. Imoukhuede PI, Popel AS. Quantitative fluorescent profiling of VEGFRs reveals tumor cell and endothelial cell heterogeneity in breast cancer xenografts. Cancer Med. 2014;3(2):225–44.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Duncan R, Seymour LW, O’Hare KB, Flanagan PA, Wedge S, Hume IC, et al. Preclinical evaluation of polymer-bound doxorubicin. J Control Release. 1992;19:331–46.

    Article  CAS  Google Scholar 

  20. Kato Y, Onishi H, Machida Y. Efficacy of lactosaminated and intact N-succinylchitosan-mitomycin C conjugates against M5076 liver metastatic cancer. J Pharm Pharmacol. 2002;54(4):529–37.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENT AND DISCLOSURES

This study was supported by the National Institutes of Health, CA154738 (DA, JMB, and SKS). We are grateful to Ms. Mary McAllister for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri Artemov.

Additional information

Yoshinori Kato and Wenlian Zhu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, Y., Zhu, W., Backer, M.V. et al. Noninvasive Imaging of Liposomal Delivery of Superparamagnetic Iron Oxide Nanoparticles to Orthotopic Human Breast Tumor in Mice. Pharm Res 32, 3746–3755 (2015). https://doi.org/10.1007/s11095-015-1736-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-015-1736-9

KEY WORDS

Navigation