Skip to main content

Advertisement

Log in

Involvement of a Novel Organic Cation Transporter in Verapamil Transport Across the Inner Blood-Retinal Barrier

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

To clarify the transport and inhibition characteristics involved in verapamil transport across the inner blood-retinal barrier (inner BRB).

Methods

The transport of [3H]verapamil across the inner BRB was investigated using retinal uptake index and integration plot analyses in rats. The detailed transport characteristics were studied using TR-iBRB2 cells, a conditionally immortalized rat retinal capillary endothelial cell line that is an in vitro model of the inner BRB.

Results

The apparent influx permeability clearance of [3H]verapamil was 614 μL/(min·g retina), which is 4.7-fold greater than that of brain. The retinal uptake of [3H]verapamil was slightly increased by 3 mM verapamil and 10 mM qunidine and inhibited by 40 mM pyrilamine, supporting the carrier-mediated efflux and influx transport of verapamil across the inner BRB. TR-iBRB2 cells exhibited a concentration-dependent uptake of [3H]verapamil with a K m of 61.9 μM, and the uptake was inhibited by several cations, such as pyrilamine, exhibiting a different profile from the identified transporters. These transport properties suggest that verapamil transport at the inner BRB takes place via a novel organic cation transporter.

Conclusions

Our findings suggest that a novel organic cation transporter is involved in verapamil transport from the blood to the retina across the inner BRB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

REFERENCES

  1. Cunha-Vaz JG. The blood-retinal barriers system. Basic concepts and clinical evaluation. Exp Eye Res. 2004;78:715–21.

    Article  PubMed  CAS  Google Scholar 

  2. Stewart PA, Tuor UI. Blood-eye barriers in the rat: correlation of ultrastructure with function. J Comp Neurol. 1994;340:566–76.

    Article  PubMed  CAS  Google Scholar 

  3. Hosoya K, Tomi M, Tachikawa M. Strategies for therapy of retinal diseases using systemic drug delivery: relevance of transporters at the blood-retinal barrier. Expert Opin Drug Deliv. 2011;8:1571–87.

    Article  PubMed  CAS  Google Scholar 

  4. Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Ultracytochemical localization of the erythrocyte/HepG2-type glucose transporter (GLUT1) in cells of the blood-retinal barrier in the rat. Invest Ophthalmol Vis Sci. 1992;33:377–83.

    PubMed  CAS  Google Scholar 

  5. Hosoya K, Kondo T, Tomi M, Takanaga H, Ohtsuki S, Terasaki T. MCT1-mediated transport of L-lactic acid at the inner blood-retinal barrier: a possible route for delivery of monocarboxylic acid drugs to the retina. Pharm Res. 2001;18:1669–76.

    Article  PubMed  CAS  Google Scholar 

  6. Tomi M, Mori M, Tachikawa M, Katayama K, Terasaki T, Hosoya K. L-type amino acid transporter 1-mediated L-leucine transport at the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2005;46:2522–30.

    Article  PubMed  Google Scholar 

  7. Tachikawa M, Takeda Y, Tomi M, Hosoya K. Involvement of OCTN2 in the transport of acetyl-L-carnitine across the inner blood-retinal barrier. Invest Ophthalmol Vis Sci. 2010;51:430–6.

    Article  PubMed  Google Scholar 

  8. Ohkura Y, Akanuma S, Tachikawa M, Hosoya K. Blood-to-retina transport of biotin via Na + -dependent multivitamin transporter (SMVT) at the inner blood-retinal barrier. Exp Eye Res. 2010;91:387–92.

    Article  PubMed  CAS  Google Scholar 

  9. Hosoya K, Makihara A, Tsujikawa Y, Yoneyama D, Mori S, Terasaki T, et al. Roles of inner blood-retinal barrier organic anion transporter 3 in the vitreous/retina-to-blood efflux transport of p-aminohippuric acid, benzylpenicillin, and 6-mercaptopurine. J Pharmacol Exp Ther. 2009;329:87–93.

    Article  PubMed  CAS  Google Scholar 

  10. Tomi M, Hosoya K. Application of magnetically isolated rat retinal vascular endothelial cells for the determination of transporter gene expression levels at the inner blood-retinal barrier. J Neurochem. 2004;91:1244–8.

    Article  PubMed  CAS  Google Scholar 

  11. Tagami M, Kusuhara S, Honda S, Tsukahara Y, Negi A. Expression of ATP-binding cassette transporters at the inner blood-retinal barrier in a neonatal mouse model of oxygen-induced retinopathy. Brain Res. 2009;1283:186–93.

    Article  PubMed  CAS  Google Scholar 

  12. Shen J, Cross ST, Tang-Liu DD, Welty DF. Evaluation of an immortalized retinal endothelial cell line as an in vitro model for drug transport studies across the blood-retinal barrier. Pharm Res. 2003;20:1357–63.

    Article  PubMed  CAS  Google Scholar 

  13. Kennedy BG, Mangini NJ. P-glycoprotein expression in human retinal pigment epithelium. Mol Vis. 2002;8:422–30.

    PubMed  CAS  Google Scholar 

  14. Kadam RS, Kompella UB. Influence of lipophilicity on drug partitioning into sclera, choroid-retinal pigment epithelium, retina, trabecular meshwork, and optic nerve. J Pharmacol Exp Ther. 2010;332:1107–20.

    Article  PubMed  CAS  Google Scholar 

  15. Toda R, Kawazu K, Oyabu M, Miyazaki T, Kiuchi Y. Comparison of drug permeabilities across the blood-retinal barrier, blood-aqueous humor barrier, and blood-brain barrier. J Pharm Sci. 2011;100:3904–11.

    Article  PubMed  CAS  Google Scholar 

  16. Hosoya K, Yamamoto A, Akanuma S, Tachikawa M. Lipophilicity and transporter influence on blood-retinal barrier permeability: a comparison with blood-brain barrier permeability. Pharm Res. 2010;27:2715–24.

    Article  PubMed  CAS  Google Scholar 

  17. Bankstahl JP, Kuntner C, Abrahim A, Karch R, Stanek J, Wanek T, et al. Tariquidar-induced P-glycoprotein inhibition at the rat blood-brain barrier studied with (R)-11C-verapamil and PET. J Nucl Med. 2008;49:1328–35.

    Article  PubMed  CAS  Google Scholar 

  18. Tsuji A, Terasaki T, Takabatake Y, Tenda Y, Tamai I, Yamashima T, et al. P-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells. Life Sci. 1992;51:1427–37.

    Article  PubMed  CAS  Google Scholar 

  19. Schinkel AH, Wagenaar E, van Deemter L, Mol CA, Borst P. Absence of the mdr1a P-Glycoprotein in mice affects tissue distribution and pharmacokinetics of dexamethasone, digoxin, and cyclosporin A. J Clin Invest. 1995;96:1698–705.

    Article  PubMed  CAS  Google Scholar 

  20. Han YH, Sweet DH, Hu DN, Pritchard JB. Characterization of a novel cationic drug transporter in human retinal pigment epithelial cells. J Pharmacol Exp Ther. 2001;296:450–7.

    PubMed  CAS  Google Scholar 

  21. Elliott WJ, Ram CV. Calcium channel blockers. J Clin Hypertens. 2011;13:687–9.

    Article  CAS  Google Scholar 

  22. Araie M, Mayama C. Use of calcium channel blockers for glaucoma. Prog Retin Eye Res. 2011;30:54–71.

    Article  PubMed  CAS  Google Scholar 

  23. Kubo Y, Fukui E, Akanuma S, Tachikawa M, Hosoya K. Application of membrane permeability evaluated in in vitro analyses to estimate blood-retinal barrier permeability. J Pharm Sci. 2012;101:2596–605.

    Article  PubMed  CAS  Google Scholar 

  24. Hosoya K, Tomi M, Ohtsuki S, Takanaga H, Ueda M, Yanai N, et al. Conditionally immortalized retinal capillary endothelial cell lines (TR-iBRB) expressing differentiated endothelial cell functions derived from a transgenic rat. Exp Eye Res. 2001;72:163–72.

    Article  PubMed  CAS  Google Scholar 

  25. Hosoya K, Tomi M. Advances in the cell biology of transport via the inner blood-retinal barrier: establishment of cell lines and transport functions. Biol Pharm Bull. 2005;28:1–8.

    Article  PubMed  CAS  Google Scholar 

  26. Hosoya K, Minamizono A, Katayama K, Terasaki T, Tomi M. Vitamin C transport in oxidized form across the rat blood-retinal barrier. Invest Ophthalmol Vis Sci. 2004;45:1232–39.

    Article  PubMed  Google Scholar 

  27. Ohtsuki S, Tachikawa M, Takanaga H, Shimizu H, Watanabe M, Hosoya K, et al. The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab. 2002;22:1327–35.

    Article  PubMed  CAS  Google Scholar 

  28. Alm A, Törnquist P. The uptake index method applied to studies on the blood-retinal barrier. I. A methodological study. Acta Physiol Scand. 1981;113:73–9.

    Article  PubMed  CAS  Google Scholar 

  29. Pardridge WM, Fierer G. Blood-brain barrier transport of butanol and water relative to N-isopropyl-p-iodoamphetamine as the internal reference. J Cereb Blood Flow Metab. 1985;5:275–81.

    Article  PubMed  CAS  Google Scholar 

  30. Yamaoka K, Tanigawara Y, Nakagawa T, Uno T. A pharmacokinetic analysis program (MULTI) for microcomputer. J Pharmacobiodyn. 1981;4:879–85.

    Article  PubMed  CAS  Google Scholar 

  31. Suzuki T, Ohmuro A, Miyata M, Furuishi T, Hidaka S, Kugawa F, et al. Involvement of an influx transporter in the blood-brain barrier transport of naloxone. Biopharm Drug Dispos. 2010;31:243–52.

    PubMed  CAS  Google Scholar 

  32. Yamazaki M, Terasaki T, Yoshioka K, Nagata O, Kato H, Ito Y, et al. Carrier-mediated transport of H1-antagonist at the blood-brain barrier: a common transport system of H1-antagonists and lipophilic basic drugs. Pharm Res. 1994;11:1516–8.

    Article  PubMed  CAS  Google Scholar 

  33. Okura T, Hattori A, Takano Y, Sato T, Hammarlund-Udenaes M, Terasaki T, et al. Involvement of the pyrilamine transporter, a putative organic cation transporter, in blood-brain barrier transport of oxycodone. Drug Metab Dispos. 2008;36:2005–13.

    Article  PubMed  CAS  Google Scholar 

  34. Murakami H, Sawada N, Koyabu N, Ohtani H, Sawada Y. Characteristics of choline transport across the blood-brain barrier in mice: correlation with in vitro data. Pharm Res. 2000;17:1526–30.

    Article  PubMed  CAS  Google Scholar 

  35. Karlsson C, Mäepea O, Alm A. Choline transport through the blood-retinal and the blood-brain barrier in vivo. Acta Ophthalmol (Copenh). 1984;62:763–6.

    Article  CAS  Google Scholar 

  36. Tomi M, Arai K, Tachikawa M, Hosoya K. Na+-independent choline transport in rat retinal capillary endothelial cells. Neurochem Res. 2007;32:1833–42.

    Article  PubMed  CAS  Google Scholar 

  37. Zhang N, Kannan R, Okamoto CT, Ryan SJ, Lee VH, Hinton DR. Characterization of brimonidine transport in retinal pigment epithelium. Invest Ophthalmol Vis Sci. 2006;47:287–94.

    Article  PubMed  Google Scholar 

  38. Mizuno K, Koide T, Yoshimura M, Araie M. Neuroprotective effect and intraocular penetration of nipradilol, a beta-blocker with nitric oxide donative action. Invest Ophthalmol Vis Sci. 2001;42:688–94.

    PubMed  CAS  Google Scholar 

  39. Arthur S, Cantor LB. Update on the role of alpha-agonists in glaucoma management. Exp Eye Res. 2011;93:271–83.

    Article  PubMed  CAS  Google Scholar 

  40. Lauterbach EC, Victoroff J, Coburn KL, Shillcutt SD, Doonan SM, Mendez MF. Psychopharmacological neuroprotection in neurodegenerative disease: assessing the preclinical data. J Neuropsychiatry Clin Neurosci. 2010;22(1):8–18.

    Article  PubMed  CAS  Google Scholar 

  41. Ristori C, Filippi L, Dal Monte M, Martini D, Cammalleri M, Fortunato P, et al. Role of the adrenergic system in a mouse model of oxygen-induced retinopathy: antiangiogenic effects of beta-adrenoreceptor blockade. Invest Ophthalmol Vis Sci. 2011;52:155–70.

    Article  PubMed  CAS  Google Scholar 

  42. Gründemann D, Gorboulev V, Gambaryan S, Veyhl M, Koepsell H. Drug excretion mediated by a new prototype of polyspecific transporter. Nature. 1994;372:549–52.

    Article  PubMed  Google Scholar 

  43. Urakami Y, Okuda M, Masuda S, Saito H, Inui K. Functional characteristics and membrane localization of rat multispecific organic cation transporters, OCT1 and OCT2, mediating tubular secretion of cationic drugs. J Pharmacol Exp Ther. 1998;287:800–5.

    PubMed  CAS  Google Scholar 

  44. Gründemann D, Babin-Ebell J, Martel F, Ording N, Schmidt A, Schömig E. Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J Biol Chem. 1997;272:10408–13.

    Article  PubMed  Google Scholar 

  45. Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, et al. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem. 1998;273:15971–9.

    Article  PubMed  CAS  Google Scholar 

  46. Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, et al. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta. 2000;1466:315–27.

    Article  PubMed  CAS  Google Scholar 

  47. Yabuuchi H, Tamai I, Nezu J, Sakamoto K, Oku A, Shimane M, et al. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J Pharmacol Exp Ther. 1999;289:768–73.

    PubMed  CAS  Google Scholar 

  48. Wu X, Huang W, Prasad PD, Seth P, Rajan DP, Leibach FH, et al. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J Pharmacol Exp Ther. 1999;290:1482–92.

    PubMed  CAS  Google Scholar 

  49. Ohashi R, Tamai I, Yabuuchi H, Nezu JI, Oku A, Sai Y, et al. Na+-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J Pharmacol Exp Ther. 1999;291:778–84.

    PubMed  CAS  Google Scholar 

  50. Otsuka M, Matsumoto T, Morimoto R, Arioka S, Omote H, Moriyama Y. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc Natl Acad Sci U S A. 2005;102:17923–8.

    Article  PubMed  CAS  Google Scholar 

  51. Ohta KY, Inoue K, Hayashi Y, Yuasa H. Molecular identification and functional characterization of rat multidrug and toxin extrusion type transporter 1 as an organic cation/H+ antiporter in the kidney. Drug Metab Dispos. 2006;34:1868–74.

    Article  PubMed  CAS  Google Scholar 

  52. Engel K, Wang J. Interaction of organic cations with a newly identified plasma membrane monoamine transporter. Mol Pharmacol. 2005;68:1397–407.

    Article  PubMed  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS AND DISCLOSURES

We would like to thank Kowa Co., Ltd. for providing nipradilol. The present study was supported, in part, by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (JSPS), Health and Welfare Department of Toyama Prefectural Government (Toyama, Japan), and Mochida Memorial Foundation (Tokyo, Japan).

Y. Kubo and Y. Kusagawa contributed equally to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ken-ichi Hosoya.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 1124 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kubo, Y., Kusagawa, Y., Tachikawa, M. et al. Involvement of a Novel Organic Cation Transporter in Verapamil Transport Across the Inner Blood-Retinal Barrier. Pharm Res 30, 847–856 (2013). https://doi.org/10.1007/s11095-012-0926-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-012-0926-y

KEY WORDS

Navigation