Skip to main content
Log in

Prostate Cancer-Targeted Imaging Using Magnetofluorescent Polymeric Nanoparticles Functionalized with Bombesin

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose

In this work, the aim was to prepare and characterize a magnetofluorescent polymeric nanoparticle for prostate cancer imaging in vivo.

Methods

Glycol chitosan (GC) was chemically modified with N-acetyl histidine (NAHis) as a hydrophobic moiety, and bombesin (BBN) was conjugated to the hydrophobically modified GC for use in targeting gastric-releasing peptide receptors (GRPR) overexpressed in prostate cancer cells. NAHis-GC conjugates were labeled with the near-infrared (NIR) fluorophore Cy5.5 (C-NAHis-GC conjugate).

Results

BBN-conjugated C-NAHis-GC nanoparticles (BC-NAHis-GC nanoparticles) showed significantly higher binding to the PC3 cell surface than nanoparticles without BBN, and the cellular binding was clearly inhibited by BBN. The tumor-to-muscle ratios of C- and BC-NAHis-GC nanoparticles were 2.26 ± 0.66 and 5.37 ± 0.43, respectively. The tumor accumulation of BC-NAHis-GC nanoparticles was clearly reduced by co-injection of BBN. Further, iron oxide nanoparticles (IO) were loaded into BC-NAHis-GC nanoparticles to investigate the possibility of use as a probe for MRI. IO-BC-NAHis-GC nanoparticles were well observed in the PC3 cells, and the blocking with BBN significantly reduced the cellular binding of the nanoparticles.

Conclusion

These results demonstrate that the BBN conjugation to NAHis-GC nanoparticles improves their tumor accumulation in PC3-bearing mice in comparison to nanoparticles without BBN, suggesting that BC-NAHis-GC nanoparticles may be useful for prostate cancer imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

REFERENCES

  1. Franiel T, Lüdemann L, Rudolph B, Rehbein H, Stephan C, Taupitz M, et al. Prostate MR imaging: tissue characterization with pharmacokinetic volume and blood flow parameters and correlation with histologic parameters. Radiology. 2009;252:101–8.

    Article  PubMed  Google Scholar 

  2. Zaheer A, Cho SY, Pomper MG. New agents and techniques for imaging prostate cancer. J Nucl Med. 2009;50:1387–90.

    Article  CAS  PubMed  Google Scholar 

  3. Kelly KA, Setlur SR, Ross R, Anbazhagan R, Waterman P, Rubin MA, et al. Detection of early prostate cancer using a hepsin-targeted imaging agent. Cancer Res. 2008;68:2286–91.

    Article  CAS  PubMed  Google Scholar 

  4. LeBeau AM, Banerjee SR, Pomper MG, Mease RC, Denmeade SR. Optimization of peptide-based inhibitors of prostate-specific antigen (PSA) as target imaging agents for prostate cancer. Bioorg Med Chem. 2009;17:4888–93.

    Article  CAS  PubMed  Google Scholar 

  5. Schroeder RPJ, van Weerden WM, Bangma C, Krenning EP, de Jong M. Peptide receptor imaging of prostate cancer with radiolabelled bombesin analogues. Methods. 2009;48:200–4.

    Article  CAS  PubMed  Google Scholar 

  6. Lee SJ, Park K, Oh YK, Kwon SH, Her S, Kim IS, et al. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials. 2009;30:2929–39.

    Article  CAS  PubMed  Google Scholar 

  7. Lee CM, Jeong HJ, Kim SL, Kim EM, Kim DW, Lim ST, et al. SPION-loaded chitosan-linoleic acid nanoparticles to target hepatocytes. Int J Pharm. 2009;371:163–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cheong SJ, Lee CM, Kim SL, Jeong HJ, Kim EM, Park EH, et al. Superparamagnetic iron oxide nanoparticles-loaded chitosan-linoleic acid nanoparticles as an effective hepatocyte-targeted gene delivery system. Int J Pharm. 2009;372:169–76.

    Article  CAS  PubMed  Google Scholar 

  9. Lee CM, Jeong HJ, Park JW, Kim J, Lee KY. Temperature-induced release of all-trans-retinoic acid loaded in solid lipid nanoparticles for topical delivery. Macromol Res. 2008;16:682–5.

    CAS  Google Scholar 

  10. Kim JH, Kim YS, Park K, Lee S, Nam HY, Min KH, et al. Antitumor efficacy of cisplatin-loaded glycol chitosan nanoparticles in tumor-bearing mice. J Control Release. 2008;127:41–9.

    Article  CAS  PubMed  Google Scholar 

  11. Liu L, Xu K, Wang H, Tan PK, Fan W, Venkatraman SS, et al. Self-assembled cationic peptide nanoparticles as an efficient antimicrobial agent. Nat Nanotechnol. 2009;4:457–63.

    Article  CAS  PubMed  Google Scholar 

  12. Papadimitriou S, Bikiaris D. Novel self-assembled core-shell nanoparticles based on crystalline amorphous moieties of aliphatic copolyesters for efficient controlled drug release. J Control Release. 2009;138:177–84.

    Article  CAS  PubMed  Google Scholar 

  13. Park JH, Kwon S, Nam JO, Park RW, Chung H, Seo SB, et al. Self-assembled nanoparticles based on glycol chitosan bearing 5beta-cholanic acid for RGD peptide delivery. J Control Release. 2004;95:579–88.

    Article  CAS  PubMed  Google Scholar 

  14. Yu JM, Li YJ, Qiu LY, Jin Y. Polymeric nanoparticles of cholesterol-modified glycol chitosan for doxorubicin delivery: preparation and in-vitro and in-vivo characterization. J Pharm Pharmacol. 2009;61:713–9.

    Article  CAS  PubMed  Google Scholar 

  15. Min KH, Park K, Kim YS, Bae SM, Lee S, Jo HG, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release. 2008;127:208–18.

    Article  CAS  PubMed  Google Scholar 

  16. Park JH, Kwon S, Lee M, Chung H, Kim JH, Kim YS, et al. Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity. Biomaterials. 2006;27:119–26.

    Article  CAS  PubMed  Google Scholar 

  17. Youn H, Kang KW, Chung JK, Lee DS. Nanomedicine: drug delivery systems and nanoparticle targeting. Nucl Med Mol Imaging. 2008;42:337–46.

    Google Scholar 

  18. Hwang HY, Kim IS, Kwon IC, Kim YH. Tumor targetability and antitumor effect of docetaxel-loaded hydrophobically modified glycol chitosan nanoparticles. J Control Release. 2008;128:23–31.

    Article  CAS  PubMed  Google Scholar 

  19. Kim JH, Kim YS, Park K, Kang E, Lee S, Nam HY, et al. Self-assembled glycol chitosan nanoparticles for the sustained and prolonged delivery of antiangiogenic small peptide drugs in cancer therapy. J Control Release. 2008;29:1920–30.

    CAS  Google Scholar 

  20. Park K, Hong HY, Moon HJ, Lee BH, Kim IS, Kwon IC, et al. A new atherosclerotic lesion probe based on hydrophobically modified chitosan nanoparticles functionalized by the atherosclerotic plaque targeted peptides. J Control Release. 2008;128:217–23.

    Article  CAS  PubMed  Google Scholar 

  21. Riehemann K, Schneider SW, Luger TA, Godin B, Ferrari M, Fuchs H. Nanomedicine—challenge and perspectives. Angew Chem Int Ed. 2009;48:872–97.

    Article  CAS  Google Scholar 

  22. Sun C, Veiseh O, Gunn J, Fang C, Hansen S, Lee D, et al. In vivo MRI detection of gliomas by chlorotoxin-conjugated superparamagnetic nanoprobes. Small. 2008;4:372–9.

    Article  CAS  PubMed  Google Scholar 

  23. Varvarqou A, Bouziotis P, Zikos C, Scopinaro F, de Vincentis C. Gastrin-releasing peptide (GRP) analogues for cancer imaging. Cancer Biother Radiopharm. 2004;19:219–29.

    Article  CAS  Google Scholar 

  24. Ananias HJ, de Jong IJ, Dierckx RA, van de Wiele C, Helfrich W, Elsinqa PH. Nuclear imaging of prostate cancer with gastrin-releasing-peptide-receptor targeted radiopharmaceuticals. Curr Pharm Des. 2008;14:3033–47.

    Article  CAS  PubMed  Google Scholar 

  25. Rogers BE, Zinn KR, Buchsbaum DJ. Gene transfer strategies for improving radiolabeled peptide imaging and therapy. Q J Nucl Med. 2000;44:208–23.

    CAS  PubMed  Google Scholar 

  26. Safavy A, Khazaeli MB, Qin H, Buchsbaum DJ. Synthesis of bombesin analogues for radiolabeling with rhenium-188. Cancer. 1997;80:2354–9.

    Article  CAS  PubMed  Google Scholar 

  27. Park JS, Han TH, Lee KY, Han SS, Hwang JJ, Moon DH, et al. N-acetyl histidine-conjugated glycol chitosan self-assembled nanoparticles for intracytoplasmic delivery of drugs: endocytosis, exocytosis and drug release. J Control Release. 2006;115:37–45.

    Article  CAS  PubMed  Google Scholar 

  28. Saravanakumar G, Min KH, Min DS, Kim AY, Lee CM, Cho YW, et al. Hydrotropic oligomer-conjugated glycol chitosan as a carrier of paclitaxel: synthesis, characterization, and in vivo biodistribution. J Control Release. 2009;140:210–7.

    Article  CAS  PubMed  Google Scholar 

  29. Van de Wiele C, Dumont F, Van Belle S, Slegers G, Peers SH, Dierckx RA. Is there a role for agonist gastrin-releasing peptide receptor radioligands in tumor imaging? Nucl Med Commun. 2001;22:5–15.

    Article  PubMed  Google Scholar 

  30. Lee SJ, Park K, Oh YK, Kwon SH, Her S, Kim IS, et al. Tumor specificity and therapeutic efficacy of photosensitizer-encapsulated glycol chitosan-based nanoparticles in tumor-bearing mice. Biomaterials. 2009;30:2929–39.

    Article  CAS  PubMed  Google Scholar 

  31. Jo HG, Min KH, Nam TH, Na SJ, Park JH, Jeong SY. Prolonged antidiabetic effect of zinc-crystallized insulin loaded glycol chitosan nanoparticles in type 1 diabetic rats. Arch Pharm Res. 2008;31:918–23.

    Article  CAS  PubMed  Google Scholar 

  32. Cho YW, Park SA, Han TH, Son DH, Park JS, Oh SJ, et al. In vivo tumor targeting and radionuclide imaging with self-assembled nanoparticles: mechanisms, key factors, and their implications. Biomaterials. 2007;28:1236–47.

    Article  CAS  PubMed  Google Scholar 

  33. Park K, Kim JH, Nam YS, Lee S, Nam HY, Kim K, et al. Effect of polymer molecular weight on the tumor targeting characteristics of self-assembled glycol chitosan nanoparticles. J Control Release. 2007;122:305–14.

    Article  CAS  PubMed  Google Scholar 

  34. Kim JH, Kin YS, Kim S, Park JH, Kim K, Choi K, et al. Hydrophobically modified glycol chitosan nanoparticles as carriers for paclitaxel. J Control Release. 2006;111:228–34.

    Article  CAS  PubMed  Google Scholar 

  35. Jiang HL, Kwon JT, Kim EM, Kim YK, Arote R, Jere D, et al. Galactosylated poly(ethylene glycol)-chitosan-graft-polyethylenimine as a gene carrier for hepatocyte-targeting. J Control Release. 2008;131:150–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nasongkla N, Bey E, Ren J, Ai H, Khemtong C, Guthi JS, et al. Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett. 2006;6:2427–30.

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This study was supported by a grant from the National R&D Program for Cancer Control, Ministry of Health, Welfare and Family Affairs, Republic of Korea (0620220 and 0720420). This work was also supported by the Nuclear R&D Program through the Korea Science and Engineering Foundation funded by the Ministry of Science & Technology (contract grant numbers: 20090062447).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hwan-Jeong Jeong.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, CM., Jeong, HJ., Cheong, SJ. et al. Prostate Cancer-Targeted Imaging Using Magnetofluorescent Polymeric Nanoparticles Functionalized with Bombesin. Pharm Res 27, 712–721 (2010). https://doi.org/10.1007/s11095-010-0072-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-010-0072-3

KEY WORDS

Navigation