Skip to main content

Advertisement

Log in

Polyspecific Organic Cation Transporters: Structure, Function, Physiological Roles, and Biopharmaceutical Implications

  • Expert Review
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

The body is equipped with broad-specificity transporters for the excretion and distribution of endogeneous organic cations and for the uptake, elimination and distribution of cationic drugs, toxins and environmental waste products. This group of transporters consists of the electrogenic cation transporters OCT1-3 (SLC22A1-3), the cation and carnitine transporters OCTN1 (SLC22A4), OCTN2 (SLC22A5) and OCT6 (SLC22A16), and the proton/cation antiporters MATE1, MATE2-K and MATE2-B. The transporters show broadly overlapping sites of expression in many tissues such as small intestine, liver, kidney, heart, skeletal muscle, placenta, lung, brain, cells of the immune system, and tumors. In epithelial cells they may be located in the basolateral or luminal membranes. Transcellular cation movement in small intestine, kidney and liver is mediated by the combined action of electrogenic OCT-type uptake systems and MATE-type efflux transporters that operate as cation/proton antiporters. Recent data showed that OCT-type transporters participate in the regulation of extracellular concentrations of neurotransmitters in brain, mediate the release of acetylcholine in non-neuronal cholinergic reactions, and are critically involved in the regulation of histamine release from basophils. The recent identification of polymorphisms in human OCTs and OCTNs allows the identification of patients with an increased risk for adverse drug reactions. Transport studies with expressed OCTs will help to optimize pharmacokinetics during development of new drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. A. H. Schinkel and J. W. Jonker. Mammalian drug efflux transporters of the ATP binding cassette (ABC) family: an overview. Adv. Drug Deliv. Rev. 55:3–29 (2003).

    Article  PubMed  CAS  Google Scholar 

  2. H. Daniel and G. Kottra. The proton oligopeptide cotransporter family SLC15 in physiology and pharmacology. Pflugers Arch. 447:610–618 (2004).

    Article  PubMed  CAS  Google Scholar 

  3. B. Hagenbuch and P. J. Meier. Organic anion transporting polypeptides of the OATP/ SLC21 family: phylogenetic classification as OATP/ SLCO superfamily, new nomenclature and molecular/functional properties. Pflugers Arch. 447:653–665 (2004).

    Article  PubMed  CAS  Google Scholar 

  4. J. E. van Montfoort, B. Hagenbuch, G. M. M. Groothuis, H. Koepsell, P. J. Meier, and D. K. F. Meijer. Drug uptake systems in liver and kidney. Curr. Drug Metab. 4:185–211 (2003).

    Article  PubMed  Google Scholar 

  5. H. Koepsell and H. Endou. The SLC22 drug transporter family. Pflugers Arch. 447:666–676 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. H. Koepsell, B. M. Schmitt, and V. Gorboulev. Organic cation transporters. Rev. Physiol. Biochem. Pharmacol. 150:36–90 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. M. Otsuka, T. Matsumoto, R. Morimoto, S. Arioka, H. Omote, and Y. Moriyama. A human transporter protein that mediates the final excretion step for toxic organic cations. Proc. Natl. Acad. Sci. U.S.A. 102:17923–17928 (2005).

    Article  PubMed  CAS  Google Scholar 

  8. H. Koepsell. Organic cation transporters in intestine, kidney, liver, and brain. Annu. Rev. Physiol. 60:243–266 (1998).

    Article  PubMed  CAS  Google Scholar 

  9. H. Koepsell. Polyspecific organic cation transporters: their functions and interactions with drugs. TIPS 25:375–381 (2004).

    PubMed  CAS  Google Scholar 

  10. S. H. Wright and W. H. Dantzler. Molecular and cellular physiology of renal organic cation and anion transport. Physiol. Rev. 84:987–1049 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. M. J. Dresser, M. K. Leabman, and K. M. Giacomini. Transporters involved in the elimination of drugs in the kidney: organic anion transporters and organic cation transporters. J. Pharm. Sci. 90:397–421 (2001).

    Article  PubMed  CAS  Google Scholar 

  12. S. S. Pao, I. T. Paulsen, and M. H. Saier, Jr. Major facilitator superfamily. Microbiol. Mol. Biol. Rev. 62:1–34 (1998).

    PubMed  CAS  Google Scholar 

  13. D. Gründemann, V. Gorboulev, S. Gambaryan, M. Veyhl, and H. Koepsell. Drug excretion mediated by a new prototype of polyspecific transporter. Nature 372:549–552 (1994).

    Article  PubMed  Google Scholar 

  14. L. Zhang, M. J. Dresser, A. T. Gray, S. C. Yost, S. Terashita, and K. M. Giacomini. Cloning and functional expression of a human liver organic cation transporter. Mol. Pharmacol. 51:913–921 (1997).

    PubMed  CAS  Google Scholar 

  15. V. Gorboulev, J. C. Ulzheimer, A. Akhoundova, I. Ulzheimer-Teuber, U. Karbach, S. Quester, C. Baumann, F. Lang, A. E. Busch, and H. Koepsell. Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol. 16:871–881 (1997).

    PubMed  CAS  Google Scholar 

  16. S. Terashita, M. J. Dresser, L. Zhang, A. T. Gray, S. C. Yost, and K. M. Giacomini. Molecular cloning and functional expression of a rabbit renal organic cation transporter. Biochim. Biophys. Acta 1369:1–6 (1998).

    Article  PubMed  CAS  Google Scholar 

  17. R. M. Green, K. Lo, C. Sterritt, and D. R. Beier. Cloning and functional expression of a mouse liver organic cation transporter. Hepatology 29:1556–1562 (1999).

    Article  PubMed  CAS  Google Scholar 

  18. M. Okuda, H. Saito, Y. Urakami, M. Takano, and K. Inui. cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem. Biophys. Res. Commun. 224:500–507 (1996).

    Article  PubMed  CAS  Google Scholar 

  19. K. A. Mooslehner and N. D. Allen. Cloning of the mouse organic cation transporter 2 gene, Slc22a2, from an enhancer-trap transgene integration locus. Mamm. Genome 10:218–224 (1999).

    Article  PubMed  CAS  Google Scholar 

  20. D. Gründemann, J. Babin-Ebell, F. Martel, N. Örding, A. Schmidt, and E. Schömig. Primary structure and functional expression of the apical organic cation transporter from kidney epithelial LLC-PK1 cells. J. Biol. Chem. 272:10408–10413 (1997).

    Article  PubMed  Google Scholar 

  21. D. Gründemann, B. Schechinger, G. A. Rappold, and E. Schömig. Molecular identification of the corticosterone-sensitive extraneuronal catecholamine transporter. Nat. Neurosci. 1:349–351 (1998).

    Article  PubMed  Google Scholar 

  22. R. Kekuda, P. D. Prasad, X. Wu, H. Wang, Y.-J. Fei, F. H. Leibach, and V. Ganapathy. Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J. Biol. Chem. 273:15971–15979 (1998).

    Article  PubMed  CAS  Google Scholar 

  23. X. Wu, W. Huang, M. E. Ganapathy, H. Wang, R. Kekuda, S. J. Conway, F. H. Leibach, and V. Ganapathy. Structure, function, and regional distribution of the organic cation transporter OCT3 in the kidney. Am. J. Physiol. Renal Physiol. 279:F449–F458 (2000).

    PubMed  CAS  Google Scholar 

  24. L. Zhang, M. J. Dresser, J. K. Chun, P. C. Babbitt, and K. M. Giacomini. Cloning and functional characterization of a rat renal organic cation transporter isoform (rOCT1A). J. Biol. Chem. 272:16548–16554 (1997).

    Article  PubMed  CAS  Google Scholar 

  25. Y. Urakami, M. Akazawa, H. Saito, M. Okuda, and K.-I. Inui. cDNA cloning, functional characterization, and tissue distribution of an alternatively spliced variant of organic cation transporter hOCT2 predominantly expressed in the human kidney. J. Am. Soc. Nephrol. 13:1703–1710 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. M. R. Koehler, B. Wissinger, V. Gorboulev, H. Koepsell, and M. Schmid. The two human organic cation transporter genes SLC22A1 and SLC22A2 are located on chromosome 6q26. Cytogenet. Cell Genet. 79:198–200 (1997).

    PubMed  CAS  Google Scholar 

  27. D. Gründemann and E. Schömig. Gene structures of the human non-neuronal monoamine transporters EMT and OCT2. Hum. Genet. 106:627–635 (2000).

    Article  PubMed  Google Scholar 

  28. M. Hayer, H. Bönisch, and M. Bruss. Molecular cloning, functional characterization and genomic organization of four alternatively spliced isoforms of the human organic cation transporter 1 (hOCT1/SLC22A1). Ann. Hum. Genet. 63:473–482 (1999).

    Article  PubMed  CAS  Google Scholar 

  29. S. Verhaagh, N. Schweifer, D. P. Barlow, and R. Zwart. Cloning of the mouse and human solute carrier 22a3 (Slc22a3/SLC22A3) identifies a conserved cluster of three organic cation transporters on mouse chromosome 17 and human 6q26–q27. Genomics 55:209–218 (1999).

    Article  PubMed  CAS  Google Scholar 

  30. X. Wu, R. L. George, W. Huang, H. Wang, S. J. Conway, F. H. Leibach, and V. Ganapathy. Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim. Biophys. Acta 1466:315–327 (2000).

    Article  PubMed  CAS  Google Scholar 

  31. I. Tamai, H. Yabuuchi, J. Nezu, Y. Sai, A. Oku, M. Shimane, and A. Tsuji. Cloning and characterization of a novel human pH-dependent organic cation transporter, OCTN1. FEBS Lett. 419:107–111 (1997).

    Article  PubMed  CAS  Google Scholar 

  32. I. Tamai, R. Ohashi, J. Nezu, Y. Sai, D. Kobayashi, A. Oku, M. Shimane, and A. Tsuji. Molecular and functional characterization of organic cation/carnitine transporter family in mice. J. Biol. Chem. 275:40064–40072 (2000).

    Article  PubMed  CAS  Google Scholar 

  33. X. Wu, P. D. Prasad, F. H. Leibach, and V. Ganapathy. cDNA sequence, transport function, and genomic organization of human OCTN2, a new member of the organic cation transporter family. Biochem. Biophys. Res. Commun. 246:589–595 (1998).

    Article  PubMed  CAS  Google Scholar 

  34. T. Sekine, H. Kusuhara, N. Utsunomiya-Tate, M. Tsuda, Y. Sugiyama, Y. Kanai, and H. Endou. Molecular cloning and characterization of high-affinity carnitine transporter from rat intestine. Biochem. Biophys. Res. Commun. 251:586–591 (1998).

    Article  PubMed  CAS  Google Scholar 

  35. E. Schömig, F. Spitzenberger, M. Engelhardt, F. Martel, N. Örding, and D. Gründemann. Molecular cloning and characterization of two novel transport proteins from rat kidney. FEBS Lett. 425:79–86 (1998).

    Article  PubMed  Google Scholar 

  36. V. D. Peltekova, R. F. Wintle, L. A. Rubin, C. I. Amos, Q. Huang, X. Gu, B. Newman, M. Van Oene, D. Cescon, G. Greenberg, A. M. Griffiths, P. H. St. George-Hyslop, and K. A. Siminovitch. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet. 36:471–475 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. A. Enomoto, M. F. Wempe, H. Tsuchida, H. J. Shin, S. H. Cha, N. Anzai, A. Goto, A. Sakamoto, T. Niwa, Y. Kanai, M. W. Anders, and H. Endou. Molecular identification of a novel carnitine transporter specific to human testis: Insights into the mechanism of carnitine recognition. J. Biol. Chem. 277:36262–36271 (2002).

    Article  PubMed  CAS  Google Scholar 

  38. S. Gong, X. Lu, Y. Xu, C. F. Swiderski, C. T. Jordan, and J. A. Moscow. Identification of OCT6 as a novel organic cation transporter preferentially expressed in hematopoietic cells and leukemias. Exp. Hematol. 30:1162–1169 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. M. Hiasa, T. Matsumoto, T. Komatsu, and Y. Moriyama. Wide variety of locations for rodent MATE1, a transporter protein that mediates the final excretion step for toxic organic cations. Am. J. Physiol. Cell Physiol. 291:478–486 (2006).

    Article  CAS  Google Scholar 

  40. T. Terada, S. Masuda, J.-i. Asaka, M. Tsuda, T. Katsura, and K.-i. Inui. Molecular cloning, functional characterization and tissue distribution of rat H+/organic cation antiporter MATE1. Pharm. Res. 23:1696–1701 (2006).

    Article  PubMed  CAS  Google Scholar 

  41. K. Y. Ohta, K. Inoue, Y. Hayashi, and H. Yuasa. Molecular identification and functional characterization of rat MATE1 as an organic cation/H+ antiporter in the kidney. Drug Metab. Dispos. 34:1868–1874 (2006).

    Article  PubMed  CAS  Google Scholar 

  42. S. Masuda, T. Terada, A. Yonezawa, Y. Tanihara, K. Kishimoto, T. Katsura, O. Ogawa, and K.-i. Inui. Identification and functional characterization of a new human kidney-specific H+/organic cation antiporter, kidney-specific multidrug and toxin extrusion 2. J. Am. Soc. Nephrol. 17:2127–2135 (2006).

    Article  PubMed  CAS  Google Scholar 

  43. J. J. Chen, Z. Li, H. Pan, D. L. Murphy, H. Tamir, H. Koepsell, and M. D. Gershon. Maintenance of serotonin in the intestinal mucosa and ganglia of mice that lack the high-affinity serotonin transporter: abnormal intestinal motility and the expression of cation transporters. J. Neurosci. 21:6348–6361 (2001).

    PubMed  CAS  Google Scholar 

  44. A. Schmitt, R. Mössner, A. Gossmann, I. G. Fischer, V. Gorboulev, D. L. Murphy, H. Koepsell, and K. P. Lesch. Organic cation transporter capable of transporting serotonin is up-regulated in serotonin transporter-deficient mice. J. Neurosci. Res. 71:701–709 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. U. Karbach, J. Kricke, F. Meyer-Wentrup, V. Gorboulev, C. Volk, D. Loffing-Cueni, B. Kaissling, S. Bachmann, and H. Koepsell. Localization of organic cation transporters OCT1 and OCT2 in rat kidney. Am. J. Physiol. Renal Physiol. 279:F679–F687 (2000).

    PubMed  CAS  Google Scholar 

  46. S. Choudhuri, N. J. Cherrington, N. Li, and C. D. Klaassen. Constitutive expression of various xenobiotic and endobiotic transporter mRNAs in the choroid plexus of rats. Drug Metab. Dispos. 31:1337–1345 (2003).

    Article  PubMed  CAS  Google Scholar 

  47. K. S. Lips, C. Volk, B. M. Schmitt, U. Pfeil, P. Arndt, D. Miska, L. Ermert, W. Kummer, and H. Koepsell. Polyspecific cation transporters mediate luminal release of acetylcholine from bronchial epithelium. Am. J. Respir. Cell Mol. Biol. 33:79–88 (2005).

    Article  PubMed  CAS  Google Scholar 

  48. A. L. Slitt, N. J. Cherrington, D. P. Hartley, T. M. Leazer, and C. D. Klaassen. Tissue distribution and renal developmental changes in rat organic cation transporter mRNA levels. Drug Metab. Dispos. 30:212–219 (2002).

    Article  PubMed  CAS  Google Scholar 

  49. Y. Alnouti, J. S. Petrick, and C. D. Klaassen. Tissue distribution and ontogeny of organic cation transporters in mice. Drug Metab. Dispos. 34:477–482 (2006).

    PubMed  CAS  Google Scholar 

  50. J. Müller, K. S. Lips, L. Metzner, R. H. H. Neubert, H. Koepsell, and M. Brandsch. Drug specificity and intestinal membrane localization of human organic cation transporters (OCT). Biochem. Pharmacol. 70:1851–1860 (2005).

    Article  PubMed  CAS  Google Scholar 

  51. J. Alcorn, X. Lu, J. A. Moscow, and P. J. McNamara. Transporter gene expression in lactating and nonlactating human mammary epithelial cells using real-time reverse transcription-polymerase chain reaction. J. Pharmacol. Exp. Ther. 303:487–496 (2002).

    Article  PubMed  CAS  Google Scholar 

  52. M. Hayer-Zillgen, M. Brüss, and H. Bönisch. Expression and pharmacological profile of the human organic cation transporters hOCT1, hOCT2 and hOCT3. Br. J. Pharmacol. 136:829–836 (2002).

    Article  PubMed  CAS  Google Scholar 

  53. K. S. Lips, J. Wunsch, S. Zarghooni, T. Bschleipfer, K. Schukowski, W. Weidner, I. Wessler, U. Schwantes, H. Koepsell, and W. Kummer. Acetylcholine and molecular components of its synthesis and release machinery in the urothelium. Eur. Urol. PMID: 17084519 (2006).

  54. M. R. Ballestero, M. J. Monte, O. Briz, F. Jimenez, F. Gonzalez-San Martin, and J. J. G. Marin. Expression of transporters potentially involved in the targeting of cytostatic bile acid derivatives to colon cancer and polyps. Biochem. Pharmacol. 72:729–738 (2006).

    Article  PubMed  CAS  Google Scholar 

  55. S. Zhang, K. S. Lovejoy, J. E. Shima, L. L. Lagpacan, Y. Shu, A. Lapuk, Y. Chen, T. Komori, J. W. Gray, X. Chen, S. J. Lippard, and K. M. Giacomini. Organic cation transporters are determinants of oxaliplatin cytotoxicity. Cancer Res. 66:8847–8857 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. E. Beéry, P. Middel, A. Bahn, H. S. Willenberg, Y. Hagos, H. Koepsell, S. R. Bornstein, G. A. Müller, G. Burckhardt, and J. Steffgen. Molecular evidence of organic ion transporters in the rat adrenal cortex with adrenocorticotropin-regulated zonal expression. Endocrinology 144:4519–4526 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. P. M. Gerk, C. Y. Oo, E. W. Paxton, J. A. Moscow, and P. J. McNamara. Interactions between cimetidine, nitrofurantoin, and probenecid active transport into rat milk. J. Pharmacol. Exp. Ther. 296:175–180 (2001).

    PubMed  CAS  Google Scholar 

  58. E. Schneider, F. Machavoine, J.-M. Pléau, A.-F. Bertron, R. L. Thurmond, H. Ohtsu, T. Watanabe, A. H. Schinkel, and M. Dy. Organic cation transporter 3 modulates murine basophil functions by controlling intracellular histamine levels. J. Exp. Med. 202:387–393 (2005).

    Article  PubMed  CAS  Google Scholar 

  59. L. M. Augustine, R. J. Markelewicz, Jr., K. Boekelheide, and N. J. Cherrington. Xenobiotic and endobiotic transporter mRNA expression in the blood-testis barrier. Drug Metab. Dispos. 33:182–189 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. F. Meyer-Wentrup, U. Karbach, V. Gorboulev, P. Arndt, and H. Koepsell. Membrane localization of the electrogenic cation transporter rOCT1 in rat liver. Biochem. Biophys. Res. Commun. 248:673–678 (1998).

    Article  PubMed  CAS  Google Scholar 

  61. M. Sugawara-Yokoo, Y. Urakami, H. Koyama, K. Fujikura, S. Masuda, H. Saito, T. Naruse, K.-i. Inui, and K. Takata. Differential localization of organic cation transporters rOCT1 and rOCT2 in the basolateral membrane of rat kidney proximal tubules. Histochem. Cell Biol. 114:175–180 (2000).

    PubMed  CAS  Google Scholar 

  62. W. Kummer, S. Wiegand, S. Akinci, I. Wessler, A. H. Schinkel, J. Wess, H. Koepsell, R. V. Haberberger, and K. S. Lips. Role of acetylcholine and polyspecific cation transporters in serotonin-induced bronchoconstriction in the mouse. Respir. Res. 7:65 (2006).

    Article  PubMed  CAS  Google Scholar 

  63. A. E. Busch, U. Karbach, D. Miska, V. Gorboulev, A. Akhoundova, C. Volk, P. Arndt, J. C. Ulzheimer, M. S. Sonders, C. Baumann, S. Waldegger, F. Lang, and H. Koepsell. Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol. Pharmacol. 54:342–352 (1998).

    PubMed  CAS  Google Scholar 

  64. D. H. Sweet, D. S. Miller, and J. B. Pritchard. Ventricular choline transport: a role for organic cation transporter 2 expressed in choroid plexus. J. Biol. Chem. 276:41611–41619 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. H. Motohashi, Y. Sakurai, H. Saito, S. Masuda, Y. Urakami, M. Goto, A. Fukatsu, O. Ogawa, and K.- I. Inui. Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J. Am. Soc. Nephrol. 13:866–874 (2002).

    PubMed  CAS  Google Scholar 

  66. A. Seithel, J. Karlsson, C. Hilgendorf, A. Björquist, and A. L. Ungell. Variability in mRNA expression of ABC- and SLC-transporters in human intestinal cells: comparison between human segments and Caco-2 cells. Eur. J. Pharm. Sci. 28:291–299 (2006).

    Article  PubMed  CAS  Google Scholar 

  67. D. Kristufek, W. Rudorfer, C. Pifl, and S. Huck. Organic cation transporter mRNA and function in the rat superior cervical ganglion. J. Physiol. 543:117–134 (2002).

    Article  PubMed  CAS  Google Scholar 

  68. T. Shang, A. V. Uihlein, J. Van Asten, B. Kalyanaraman, and C. J. Hillard. 1-Methyl-4-phenylpyridinium accumulates in cerebellar granule neurons via organic cation transporter 3. J. Neurochem. 85:358–367 (2003).

    PubMed  CAS  Google Scholar 

  69. M. Inazu, H. Takeda, and T. Matsumiya. Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes. J. Neurochem. 84:43–52 (2003).

    Article  PubMed  CAS  Google Scholar 

  70. C. Haag, R. Berkels, D. Gründemann, A. Lazar, D. Taubert, and E. Schömig. The localisation of the extraneuronal monoamine transporter (EMT) in rat brain. J. Neurochem. 88:291–297 (2004).

    Article  PubMed  CAS  Google Scholar 

  71. R. Sata, H. Ohtani, M. Tsujimoto, H. Murakami, N. Koyabu, T. Nakamura, T. Uchiumi, M. Kuwano, H. Nagata, K. Tsukimori, H. Nakano, and Y. Sawada. Functional analysis of organic cation transporter 3 expressed in human placenta. J. Pharmacol. Exp. Ther. 315:888–895 (2005).

    Article  PubMed  CAS  Google Scholar 

  72. X. Wu, R. Kekuda, W. Huang, Y.-J. Fei, F. H. Leibach, J. Chen, S. J. Conway, and V. Ganapathy. Identity of the organic cation transporter OCT3 as the extraneuronal monoamine transporter (uptake2) and evidence for the expression of the transporter in the brain. J. Biol. Chem. 273:32776–32786 (1998).

    Article  PubMed  CAS  Google Scholar 

  73. P. J. Gasser, C. A. Lowry, and M. Orchinik. Corticosterone-sensitive monoamine transport in the rat dorsomedial hypothalamus: potential role for organic cation transporter 3 in stress-induced modulation of monoaminergic neurotransmission. J. Neurosci. 26:8758–8766 (2006).

    Article  PubMed  CAS  Google Scholar 

  74. V. Vialou, A. Amphoux, R. Zwart, B. Giros, and S. Gautron. Organic cation transporter 3 (Slc22a3) is implicated in salt-intake regulation. J. Neurosci. 24:2846–2851 (2004).

    Article  PubMed  CAS  Google Scholar 

  75. S. Tokuhiro, R. Yamada, X. Chang, A. Suzuki, Y. Kochi, T. Sawada, M. Suzuki, M. Nagasaki, M. Ohtsuki, M. Ono, H. Furukawa, M. Nagashima, S. Yoshino, A. Mabuchi, A. Sekine, S. Saito, A. Takahashi, T. Tsunoda, Y. Nakamura, and K. Yamamoto. An intronic SNP in a RUNX1 binding site of SLC22A4, encoding an organic cation transporter, is associated with rheumatoid arthritis. Nat. Genet. 35:341–348 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. W. Xuan, A.-M. Lamhonwah, C. Librach, K. Jarvi, and I. Tein. Characterization of organic cation/carnitine transporter family in human sperm. Biochem. Biophys. Res. Commun. 306:121–128 (2003).

    Article  PubMed  CAS  Google Scholar 

  77. A.-M. Lamhonwah and I. Tein. Novel localization of OCTN1, an organic cation/carnitine transporter, to mammalian mitochondria. Biochem. Biophys. Res. Commun. 345:1315–1325 (2006).

    Article  PubMed  CAS  Google Scholar 

  78. A.-M. Lamhonwah, C. Ackerley, R. Onizuka, A. Tilups, D. Lamhonwah, C. Chung, K. S. Tao, R. Tellier, and I. Tein. Epitope shared by functional variant of organic cation/carnitine transporter, OCTN1, Campylobacter jejuni and Mycobacterium paratuberculosis may underlie susceptibility to Crohn’s disease at 5q31. Biochem. Biophys. Res. Commun. 337:1165–1175 (2005).

    PubMed  CAS  Google Scholar 

  79. I. Tamai, T. Nakanishi, D. Kobayashi, K. China, Y. Kosugi, J.-i. Nezu, Y. Sai, and A. Tsuji. Involvement of OCTN1 (SLC22A4) in pH-dependent transport of organic cations. Mol. Pharm. 1:57–66 (2004).

    Article  PubMed  CAS  Google Scholar 

  80. I. Tamai, R. Ohashi, J. Nezu, H. Yabuuchi, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Molecular and functional identification of sodium ion-dependent, high affinity human carnitine transporter OCTN2. J. Biol. Chem. 273:20378–20382 (1998).

    Article  PubMed  CAS  Google Scholar 

  81. T. Terada, Y. Shimada, X. Pan, K. Kishimoto, T. Sakurai, R. Doi, H. Onodera, T. Katsura, M. Imamura, and K.-i. Inui. Expression profiles of various transporters for oligopeptides, amino acids and organic ions along the human digestive tract. Biochem. Pharmacol. 70:1756–1763 (2005).

    Article  PubMed  CAS  Google Scholar 

  82. M. Inazu, H. Takeda, K. Maehara, K. Miyashita, A. Tomoda, and T. Matsumiya. Functional expression of the organic cation/carnitine transporter 2 in rat astrocytes. J. Neurochem. 97:424–434 (2006).

    Article  PubMed  CAS  Google Scholar 

  83. I. Tamai, K. China, Y. Sai, D. Kobayashi, J.-i. Nezu, E. Kawahara, and A. Tsuji. Na+-coupled transport of L-carnitine via high-affinity carnitine transporter OCTN2 and its subcellular localization in kidney. Biochim. Biophys. Acta 1512:273–284 (2001).

    Article  PubMed  CAS  Google Scholar 

  84. K. Yakushiji, S. Kai, M. Yamauchi, M. Kuwajima, Y. Osada, and K. Toshimori. Expression and distribution of OCTN2 in mouse epididymis and its association with obstructive azoospermia in juvenile visceral steatosis mice. Int. J. Urol. 13:420–426 (2006).

    Article  PubMed  Google Scholar 

  85. J. M. Durán, M. J. Peral, M. L. Calonge, and A. A. Ilundáin. OCTN3: A Na+-independent L-carnitine transporter in enterocytes basolateral membrane. J. Cell. Physiol. 202:929–935 (2005).

    Article  PubMed  CAS  Google Scholar 

  86. A.-M. Lamhonwah, J. Skaug, S. W. Scherer, and I. Tein. A third human carnitine/organic cation transporter (OCTN3) as a candidate for the 5q31 Crohn’s disease locus (IBD5). Biochem. Biophys. Res. Commun. 301:98–101 (2003).

    Article  PubMed  CAS  Google Scholar 

  87. M. Okabe, M. Unno, H. Harigae, M. Kaku, Y. Okitsu, T. Sasaki, T. Mizoi, K. Shiiba, H. Takanaga, T. Terasaki, S. Matsuno, I. Sasaki, S. Ito, and T. Abe. Characterization of the organic cation transporter SLC22A16: a doxorubicin importer. Biochem. Biophys. Res. Commun. 333:754–762 (2005).

    Article  PubMed  CAS  Google Scholar 

  88. B. M. Schmitt and H. Koepsell. Alkali cation binding and permeation in the rat organic cation transporter rOCT2. J. Biol. Chem. 280:24481–24490 (2005).

    Article  PubMed  CAS  Google Scholar 

  89. M. Okuda, Y. Urakami, H. Saito, and K.-i. Inui. Molecular mechanisms of organic cation transport in OCT2-expressing Xenopus oocytes. Biochim. Biophys. Acta 1417:224–231 (1999).

    Article  PubMed  CAS  Google Scholar 

  90. P. Arndt, C. Volk, V. Gorboulev, T. Budiman, C. Popp, I. Ulzheimer-Teuber, A. Akhoundova, S. Koppatz, E. Bamberg, G. Nagel, and H. Koepsell. Interaction of cations, anions, and weak base quinine with rat renal cation transporter rOCT2 compared with rOCT1. Am. J. Physiol. Renal Physiol. 281:F454–F468 (2001).

    PubMed  CAS  Google Scholar 

  91. G. Nagel, C. Volk, T. Friedrich, J. C. Ulzheimer, E. Bamberg, and H. Koepsell. A reevaluation of substrate specificity of the rat cation transporter rOCT1. J. Biol. Chem. 272:31953–31956 (1997).

    Article  PubMed  CAS  Google Scholar 

  92. A. E. Busch, S. Quester, J. C. Ulzheimer, S. Waldegger, V. Gorboulev, P. Arndt, F. Lang, and H. Koepsell. Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J. Biol. Chem. 271:32599–32604 (1996).

    Article  PubMed  CAS  Google Scholar 

  93. M. J. Dresser, A. T. Gray, and K. M. Giacomini. Kinetic and selectivity differences between rodent, rabbit, and human organic cation transporters (OCT1). J. Pharmacol. Exp. Ther. 292:1146–1152 (2000).

    PubMed  CAS  Google Scholar 

  94. T. Keller, M. Elfeber, V. Gorboulev, H. Reiländer, and H. Koepsell. Purification and functional reconstitution of the rat organic cation transporter OCT1. Biochemistry 44:12253–12263 (2005).

    Article  PubMed  CAS  Google Scholar 

  95. H. Kimura, M. Takeda, S. Narikawa, A. Enomoto, K. Ichida, and H. Endou. Human organic anion transporters and human organic cation transporters mediate renal transport of prostaglandins. J. Pharmacol. Exp. Ther. 301:293–298 (2002).

    Article  PubMed  CAS  Google Scholar 

  96. S. Harlfinger, C. Fork, A. Lazar, E. Schömig, and D. Gründemann. Are organic cation transporters capable of transporting prostaglandins? Naunyn-Schmiedeberg’s Arch. Pharmacol. 372:125–130 (2005).

    Article  CAS  Google Scholar 

  97. C. Volk, V. Gorboulev, T. Budiman, G. Nagel, and H. Koepsell. Different affinities of inhibitors to the outwardly and inwardly directed substrate binding site of organic cation transporter 2. Mol. Pharmacol. 64:1037–1047 (2003).

    Article  PubMed  CAS  Google Scholar 

  98. T. Budiman, E. Bamberg, H. Koepsell, and G. Nagel. Mechanism of electrogenic cation transport by the cloned organic cation transporter 2 from rat. J. Biol. Chem. 275:29413–29420 (2000).

    Article  PubMed  CAS  Google Scholar 

  99. R. Ohashi, I. Tamai, H. Yabuuchi, J. -i Nezu, A. Oku, Y. Sai, M. Shimane, and A. Tsuji. Na(+)-dependent carnitine transport by organic cation transporter (OCTN2): its pharmacological and toxicological relevance. J. Pharmacol. Exp. Ther. 291:778–784 (1999).

    PubMed  CAS  Google Scholar 

  100. X. Wu, W. Huang, P. D. Prasad, P. Seth, D. P. Rajan, F. H. Leibach, J. Chen, S. J. Conway, and V. Ganapathy. Functional characteristics and tissue distribution pattern of organic cation transporter 2 (OCTN2), an organic cation/carnitine transporter. J. Pharmacol. Exp. Ther. 290:1482–1492 (1999).

    PubMed  CAS  Google Scholar 

  101. C. A. Wagner, U. Lükewille, S. Kaltenbach, I. Moschen, A. Bröer, T. Risler, S. Bröer, and F. Lang. Functional and pharmacological characterization of the human Na+/carnitine cotransporter hOCTN2. Am. J. Physiol. Renal Physiol. 279:F584–F591 (2000).

    PubMed  CAS  Google Scholar 

  102. H. Yabuuchi, I. Tamai, J. Nezu, K. Sakamoto, A. Oku, M. Shimane, Y. Sai, and A. Tsuji. Novel membrane transporter OCTN1 mediates multispecific, bidirectional, and pH-dependent transport of organic cations. J. Pharmacol. Exp. Ther. 289:768–773 (1999).

    PubMed  CAS  Google Scholar 

  103. W. M. Suhre, S. Ekins, C. Chang, P. W. Swaan, and S. H. Wright. Molecular determinants of substrate/inhibitor binding to the human and rabbit renal organic cation transporters hOCT2 and rbOCT2. Mol. Pharmacol. 67:1067–1077 (2005).

    Article  PubMed  CAS  Google Scholar 

  104. D. Gründemann, G. Liebich, N. Kiefer, S. Köster, and E. Schömig. Selective substrates for non-neuronal monoamine transporters. Mol. Pharmacol. 56:1–10 (1999).

    PubMed  Google Scholar 

  105. A. Amphoux, V. Vialou, E. Drescher, M. Brüss, C. M. La Cour, C. Rochat, M. J. Millan, B. Giros, H. Bönisch, and S. Gautron. Differential pharmacological in vitro properties of organic cation transporters and regional distribution in rat brain. Neuropharmacology 50:941–952 (2006).

    Article  PubMed  CAS  Google Scholar 

  106. D. Gründemann, S. Köster, N. Kiefer, T. Breidert, M. Engelhardt, F. Spitzenberger, N. Obermüller, and E. Schömig. Transport of monoamine transmitters by the organic cation transporter type 2, OCT2. J. Biol. Chem. 273:30915–30920 (1998).

    Article  PubMed  Google Scholar 

  107. L. Zhang, M. E. Schaner, and K. M. Giacomini. Functional characterization of an organic cation transporter (hOCT1) in a transiently transfected human cell line (HeLa). J. Pharmacol. Exp. Ther. 286:354–361 (1998).

    PubMed  CAS  Google Scholar 

  108. D. Gründemann, S. Harlfinger, S. Golz, A. Geerts, A. Lazar, R. Berkels, N. Jung, A. Rubbert, and E. Schömig. Discovery of the ergothioneine transporter. Proc. Natl. Acad. Sci. U. S. A. 102:5256–5261 (2005).

    Article  PubMed  CAS  Google Scholar 

  109. H. Tahara, H. Kusuhara, H. Endou, H. Koepsell, T. Imaoka, E. Fuse, and Y. Sugiyama. A species difference in the transport activities of H2 receptor antagonists by rat and human renal organic anion and cation transporters. J. Pharmacol. Exp. Ther. 315:337–345 (2005).

    Article  PubMed  CAS  Google Scholar 

  110. M. E. Ganapathy, W. Huang, D. P. Rajan, A. L. Carter, M. Sugawara, K. Iseki, F. H. Leibach, and V. Ganapathy. b-lactam antibiotics as substrates for OCTN2, an organic cation/carnitine transporter. J. Biol. Chem. 275:1699–1707 (2000).

    Article  PubMed  CAS  Google Scholar 

  111. M. Takeda, S. Khamdang, S. Narikawa, H. Kimura, Y. Kobayashi, T. Yamamoto, S. H. Cha, T. Sekine, and H. Endou. Human organic anion transporters and human organic cation transporters mediate renal antiviral transport. J. Pharmacol. Exp. Ther. 300:918–924 (2002).

    Article  PubMed  CAS  Google Scholar 

  112. N. Kimura, S. Masuda, Y. Tanihara, H. Ueo, M. Okuda, T. Katsura, and K.-I. Inui. Metformin is a superior substrate for renal organic cation transporter OCT2 rather than hepatic OCT1. Drug Metab. Pharmacokinet. 20:379–386 (2005).

    Article  PubMed  CAS  Google Scholar 

  113. L. Zhang, W. Gorset, C. B. Washington, T. F. Blaschke, D. L. Kroetz, and K. M. Giacomini. Interactions of HIV protease inhibitors with a human organic cation transporter in a mammalian expression system. Drug Metab. Dispos. 28:329–334 (2000).

    PubMed  CAS  Google Scholar 

  114. G. Ciarimboli, T. Ludwig, D. Lang, H. Pavenstädt, H. Koepsell, H.-J. Piechota, J. Haier, U. Jaehde, J. Zisowsky, and E. Schlatter. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am. J. Pathol. 167:1477–1484 (2005).

    PubMed  CAS  Google Scholar 

  115. Q. Li, Y. Sai, Y. Kato, H. Muraoka, I. Tamai, and A. Tsuji. Transporter-mediated renal handling of nafamostat mesilate. J. Pharm. Sci. 93:262–272 (2004).

    Article  PubMed  CAS  Google Scholar 

  116. D. Gründemann, C. Hahne, R. Berkels, and E. Schömig. Agmatine is efficiently transported by non-neuronal monoamine transporters extraneuronal monoamine transporter (EMT) and organic cation transporter 2 (OCT2). J. Pharmacol. Exp. Ther. 304:810–817 (2003).

    Article  PubMed  CAS  Google Scholar 

  117. R. Ohashi, I. Tamai, A. Inano, M. Katsura, Y. Sai, J.-I. Nezu, and A. Tsuji. Studies on functional sites of organic cation/carnitine transporter OCTN2 (SLC22A5) using a Ser467Cys mutant protein. J. Pharmacol. Exp. Ther. 302:1286–1294 (2002).

    Article  PubMed  CAS  Google Scholar 

  118. M. J. Dresser, G. Xiao, M. K. Leabman, A. T. Gray, and K. M. Giacomini. Interactions of n-tetraalkylammonium compounds and biguanides with a human renal organic cation transporter (hOCT2). Pharm. Res. 19:1244–1247 (2002).

    Article  PubMed  CAS  Google Scholar 

  119. A. E. Busch, S. Quester, J. C. Ulzheimer, V. Gorboulev, A. Akhoundova, S. Waldegger, F. Lang, and H. Koepsell. Monoamine neurotransmitter transport mediated by the polyspecific cation transporter rOCT1. FEBS Lett. 395:153–156 (1996).

    Article  PubMed  CAS  Google Scholar 

  120. M. Kakehi, N. Koyabu, T. Nakamura, T. Uchiumi, M. Kuwano, H. Ohtani, and Y. Sawada. Functional characterization of mouse cation transporter mOCT2 compared with mOCT1. Biochem. Biophys. Res. Commun. 296:644–650 (2002).

    Article  PubMed  CAS  Google Scholar 

  121. R. Ohashi, I. Tamai, J.-I. Nezu, H. Nikaido, N. Hashimoto, A. Oku, Y. Sai, M. Shimane, and A. Tsuji. Molecular and physiological evidence for multifunctionality of carnitine/organic cation transporter OCTN2. Mol. Pharmacol. 59:358–366 (2001).

    PubMed  CAS  Google Scholar 

  122. A. Inano, Y. Sai, Y. Kato, I. Tamai, M. Ishiguro, and A. Tsuji. Functional regions of organic cation/carnitine transporter OCTN2 (SLC22A5): roles in carnitine recognition. Drug Metab. Pharmacokinet. 19:180–189 (2004).

    Article  PubMed  CAS  Google Scholar 

  123. P. Seth, X. Wu, W. Huang, F. H. Leibach, and V. Ganapathy. Mutations in novel organic cation transporter (OCTN2), an organic cation/carnitine transporter, with differential effects on the organic cation transport function and the carnitine transport function. J. Biol. Chem. 274:33388–33392 (1999).

    Article  PubMed  CAS  Google Scholar 

  124. S. Berardi, B. Stieger, B. Hagenbuch, E. Carafoli, and S. Krähenbühl. Characterization of L-carnitine transport into rat skeletal muscle plasma membrane vesicles. Eur. J. Biochem. 267:1985–1994 (2000).

    Article  PubMed  CAS  Google Scholar 

  125. B. Stieger, B. O’Neill, and S. Krähenbühl. Characterization of L-carnitine transport by rat kidney brush-border-membrane vesicles. Biochem. J. 309:643–647 (1995).

    PubMed  CAS  Google Scholar 

  126. C. J. Rebouche and D. L. Mack. Sodium gradient-stimulated transport of L-carnitine into renal brush border membrane vesicles: kinetics, specificity, and regulation by dietary carnitine. Arch. Biochem. Biophys. 235:393–402 (1984).

    Article  PubMed  CAS  Google Scholar 

  127. G. Ciarimboli, K. Struwe, P. Arndt, V. Gorboulev, H. Koepsell, E. Schlatter, and J. R. Hirsch. Regulation of the human organic cation transporter hOCT1. J. Cell. Physiol. 201:420–428 (2004).

    Article  PubMed  CAS  Google Scholar 

  128. T. Mehrens, S. Lelleck, I. Çetinkaya, M. Knollmann, H. Hohage, V. Gorboulev, P. Bokník, H. Koepsell, and E. Schlatter. The affinity of the organic cation transporter rOCT1 is increased by protein kinase C-dependent phosphorylation. J. Am. Soc. Nephrol. 11:1216–1224 (2000).

    PubMed  CAS  Google Scholar 

  129. G. Ciarimboli, H. Koepsell, M. Iordanova, V. Gorboulev, B. Dürner, D. Lang, B. Edemir, R. Schröter, T. Van Le, and E. Schlatter. Individual PKC-phosphorylation sites in organic cation transporter 1 determine substrate selectivity and transport regulation. J. Am. Soc. Nephrol. 16:1562–1570 (2005).

    Article  PubMed  CAS  Google Scholar 

  130. I. Çetinkaya, G. Ciarimboli, G. Yalcinkaya, T. Mehrens, A. Velic, J. R. Hirsch, V. Gorboulev, H. Koepsell, and E. Schlatter. Regulation of human organic cation transporter hOCT2 by PKA, PI3K, and calmodulin-dependent kinases. Am. J. Physiol. Renal Physiol. 284:F293–F302 (2003).

    PubMed  Google Scholar 

  131. F. Martel, E. Keating, C. Calhau, D. Gründemann, E. Schömig, and I. Azevedo. Regulation of human extraneuronal monoamine transporter (hEMT) expressed in HEK293 cells by intracellular second messenger systems. Naunyn Schmiedeberg’s Arch. Pharmacol. 364:487–495 (2001).

    Article  CAS  Google Scholar 

  132. G. Pietig, T. Mehrens, J. R. Hirsch, I. Çetinkaya, H. Piechota, and E. Schlatter. Properties and regulation of organic cation transport in freshly isolated human proximal tubules. J. Biol. Chem. 276:33741–33746 (2001).

    Article  PubMed  CAS  Google Scholar 

  133. Y. Kato, K. Yoshida, C. Watanabe, Y. Sai, and A. Tsuji. Screening of the interaction between xenobiotic transporters and PDZ proteins. Pharm. Res. 21:1886–1894 (2004).

    Article  PubMed  CAS  Google Scholar 

  134. Y. Kato, Y. Sai, K. Yoshida, C. Watanabe, T. Hirata, and A. Tsuji. PDZK1 directly regulates the function of organic cation/carnitine transporter OCTN2. Mol. Pharmacol. 67:734–743 (2005).

    Article  PubMed  CAS  Google Scholar 

  135. E. Schlatter, V. Mönnich, I. Çetinkaya, T. Mehrens, G. Ciarimboli, J. R. Hirsch, C. Popp, and H. Koepsell. The organic cation transporters rOCT1 and hOCT2 are inhibited by cGMP. J. Membr. Biol. 189:237–244 (2002).

    Article  PubMed  CAS  Google Scholar 

  136. H. M. Bowman and J. B. Hook. Sex differences in organic ion transport by rat kidney. Proc. Soc. Exp. Biol. Med. 141:258–262 (1972).

    PubMed  CAS  Google Scholar 

  137. Y. Urakami, N. Nakamura, K. Takahashi, M. Okuda, H. Saito, Y. Hashimoto, and K.-i. Inui. Gender differences in expression of organic cation transporter OCT2 in rat kidney. FEBS Lett. 461:339–342 (1999).

    Article  PubMed  CAS  Google Scholar 

  138. Y. Urakami, M. Okuda, H. Saito, and K.-i. Inui. Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett. 473:173–176 (2000).

    Article  PubMed  CAS  Google Scholar 

  139. Y. Shu, C. L. Bello, L. M. Mangravite, B. Feng, and K. M. Giacomini. Functional characteristics and steroid hormone-mediated regulation of an organic cation transporter in madin-darby canine kidney cells. J. Pharmacol. Exp. Ther. 299:392–398 (2001).

    PubMed  CAS  Google Scholar 

  140. J.-i. Asaka, T. Terada, M. Okuda, T. Katsura, and K.-i. Inui. Androgen receptor is responsible for rat organic cation transporter 2 gene regulation but not for rOCT1 and rOCT3. Pharm. Res. 1–8 (2006).

  141. C. E. Groves, W. B. Suhre, N. J. Cherrington, and S. H. Wright. Sex differences in the mRNA, protein, and functional expression of organic anion transporter (Oat) 1, Oat3, and organic cation transporter (Oct) 2 in rabbit renal proximal tubules. J. Pharmacol. Exp. Ther. 316:743–752 (2006).

    Article  PubMed  CAS  Google Scholar 

  142. M. Saborowski, G. A. Kullak-Ublick, and J. J. Eloranta. The human organic cation transporter-1 gene is transactivated by hepatocyte nuclear factor-4a. J. Pharmacol. Exp. Ther. 317:778–785 (2006).

    Article  PubMed  CAS  Google Scholar 

  143. W. Nie, S. Sweetser, M. Rinella, and R. M. Green. Transcriptional regulation of murine Slc22a1 (Oct1) by peroxisome proliferator agonist receptor-a and -g. Am. J. Physiol. Gastrointest. Liver Physiol. 288:G207–G212 (2005).

    Article  PubMed  CAS  Google Scholar 

  144. L. Ji, S. Masuda, H. Saito, and K.-I. Inui. Down-regulation of rat organic cation transporter rOCT2 by 5/6 nephrectomy. Kidney Int. 62:514–524 (2002).

    Article  PubMed  CAS  Google Scholar 

  145. M. C. Thomas, C. Tikellis, W. C. Burns, V. Thallas, J. M. Forbes, Z. Cao, T. M. Osicka, L. M. Russo, G. Jerums, H. Ghabrial, M. E. Cooper, and P. Kantharidis. Reduced tubular cation transport in diabetes: Prevented by ACE inhibition. Kidney Int. 63:2152–2161 (2003).

    Article  PubMed  CAS  Google Scholar 

  146. M. C. Thomas, C. Tikellis, P. Kantharidis, W. C. Burns, M. E. Cooper, and J. M. Forbes. The role of advanced glycation in reduced organic cation transport associated with experimental diabetes. J. Pharmacol. Exp. Ther. 311:456–466 (2004).

    Google Scholar 

  147. B. Grover, C. Auberger, R. Sarangarajan, and W. Cacini. Functional impairment of renal organic cation transport in experimental diabetes. Pharmacol. Toxicol. 90:181–186 (2002).

    Article  PubMed  CAS  Google Scholar 

  148. Y. Habu, I. Yano, A. Takeuchi, H. Saito, M. Okuda, A. Fukatsu, and K.-i. Inui. Decreased activity of basolateral organic ion transports in hyperuricemic rat kidney: roles of organic ion transporters, rOAT1, rOAT3 and rOCT2. Biochem. Pharmacol. 66:1107–1114 (2003).

    Article  PubMed  CAS  Google Scholar 

  149. G. U. Denk, C. J. Soroka, A. Mennone, H. Koepsell, U. Beuers, and J. L. Boyer. Down-regulation of the organic cation transporter 1 of rat liver in obstructive cholestasis. Hepatology 39:1382–1389 (2004).

    Article  PubMed  CAS  Google Scholar 

  150. N. J. Cherrington, A. L. Slitt, N. Li, and C. D. Klaassen. Lipopolysaccharide-mediated regulation of hepatic transporter mRNA levels in rats. Drug Metab. Dispos. 32:734–741 (2004).

    Article  PubMed  CAS  Google Scholar 

  151. K. Kitaichi, Y. Morishita, Y. Doi, J. Ueyama, M. Matsushima, Y.-L. Zhao, K. Takagi, and T. Hasegawa. Increased plasma concentration and brain penetration of methamphetamine in behaviorally sensitized rats. Eur. J. Pharmacol. 464:39–48 (2003).

    Article  PubMed  CAS  Google Scholar 

  152. T. Maeda, M. Hirayama, D. Kobayashi, and I. Tamai. Regulation of testis-specific carnitine transporter (octn3) gene by proximal cis-acting elements Sp1 in mice. Biochem. Pharmacol. 70:858–868 (2005).

    Article  PubMed  CAS  Google Scholar 

  153. O. Dransfeld, T. Gehrmann, K. Köhrer, G. Kircheis, C. Holneicher, D. Häussinger, and M. Wettstein. Oligonucleotide microarray analysis of differential transporter regulation in the regenerating rat liver. Liver Int. 25:1243–1258 (2005).

    Article  PubMed  CAS  Google Scholar 

  154. J. W. Jonker, E. Wagenaar, C. A. A. M. Mol, M. Buitelaar, H. Koepsell, J. W. Smit, and A. H. Schinkel. Reduced hepatic uptake and intestinal excretion of organic cations in mice with a targeted disruption of the organic cation transporter 1 (oct1[Slc22a1]) gene. Mol. Cell. Biol. 21:5471–5477 (2001).

    Article  PubMed  CAS  Google Scholar 

  155. R. Zwart, S. Verhaagh, M. Buitelaar, C. Popp-Snijders, and D. P. Barlow. Impaired activity of the extraneuronal monoamine transporter system known as uptake-2 in Orct3/Slc22a3-deficient mice. Mol. Cell Biol. 21:4188–4196 (2001).

    Article  PubMed  CAS  Google Scholar 

  156. J. W. Jonker, E. Wagenaar, S. van Eijl, and A. H. Schinkel. Deficiency in the organic cation transporters 1 and 2 (oct1/oct2 [slc22a1/slc22a2]) in mice abolishes renal secretion of organic cations. Mol. Cell Biol. 23:7902–7908 (2003).

    Article  PubMed  CAS  Google Scholar 

  157. D.-S. Wang, J. W. Jonker, Y. Kato, H. Kusuhara, A. H. Schinkel, and Y. Sugiyama. Involvement of organic cation transporter 1 in hepatic and intestinal distribution of metformin. J. Pharmacol. Exp. Ther. 302:510–515 (2002).

    Article  PubMed  CAS  Google Scholar 

  158. K. Yokogawa, M. Yonekawa, I. Tamai, R. Ohashi, Y. Tatsumi, Y. Higashi, M. Nomura, N. Hashimoto, H. Nikaido, J. Hayakawa, J. Nezu, A. Oku, M. Shimane, K. Miyamoto, and A. Tsuji. Loss of wild-type carrier-mediated L-carnitine transport activity in hepatocytes of juvenile visceral steatosis mice. Hepatology 30:997–1001 (1999).

    Article  PubMed  CAS  Google Scholar 

  159. K.-m. Lu, H. Nishimori, Y. Nakamura, K. Shima, and M. Kuwajima. A missense mutation of mouse OCTN2, a sodium-dependent carnitine cotransporter, in the juvenile visceral steatosis mouse. Biochem. Biophys. Res. Commun. 252:590–594 (1998).

    Article  PubMed  CAS  Google Scholar 

  160. N. Hashimoto, F. Suzuki, I. Tamai, H. Nikaido, M. Kuwajima, J.-I. Hayakawa, and A. Tsuji. Gene-dose effect on carnitine transport activity in embryonic fibroblasts of JVS mice as a model of human carnitine transporter deficiency. Biochem. Pharmac. 55:1729–1732 (1998).

    Article  CAS  Google Scholar 

  161. J. Hayakawa, T. Koizumi, and H. Nikaido. Inheritance of juvenile visceral steatosis found in C3H-H-2o mice. Mouse Genome 86:261 (1990).

    Google Scholar 

  162. T. Koizumi, H. Nikaido, J. Hayakawa, A. Nonomura, and T. Yoneda. Infantile disease with microvesicular fatty infiltration of viscera spontaneously occurring in the C3H-H-2° strain of mouse with similarities to Reye’s syndrome. Lab. Anim. 22:83–87 (1988).

    Article  PubMed  CAS  Google Scholar 

  163. M. Horiuchi, H. Yoshida, K. Kobayashi, K. Kuriwaki, K. Yoshimine, M. Tomomura, T. Koizumi, H. Nikaido, J. Hayakawa, M. Kuwajima, and T. Saheki. Cardiac hypertrophy in juvenile visceral steatosis (jvs) mice with systemic carnitine deficiency. FEBS Lett. 326:267–271 (1993).

    Article  PubMed  CAS  Google Scholar 

  164. M. Tomomura, Y. Imamura, M. Horiuchi, T. Koizumi, H. Nikaido, J. Hayakawa, and T. Saheki. Abnormal expression of urea cycle enzyme genes in juvenile visceral steatosis (jvs) mice. Biochim. Biophys. Acta 1138:167–171 (1992).

    PubMed  CAS  Google Scholar 

  165. K. Toshimori, M. Kuwajima, K. Yoshinaga, T. Wakayama, and K. Shima. Dysfunctions of the epididymis as a result of primary carnitine deficiency in juvenile visceral steatosis mice. FEBS Lett. 446:323–326 (1999).

    Article  PubMed  CAS  Google Scholar 

  166. R. Kerb, U. Brinkmann, N. Chatskaia, D. Gorbunov, V. Gorboulev, E. Mornhinweg, A. Keil, M. Eichelbaum, and H. Koepsell. Identification of genetic variations of the human organic cation transporter hOCT1 and their functional consequences. Pharmacogenetics 12:591–595 (2002).

    Article  PubMed  CAS  Google Scholar 

  167. Y. Shu, M. K. Leabman, B. Feng, L. M. Mangravite, C. C. Huang, D. Stryke, M. Kawamoto, S. J. Johns, J. DeYoung, E. Carlson, T. E. Ferrin, I. Herskowitz, and K. M. Giacomini, Pharmacogenetics of membrane transporters investigators. Evolutionary conservation predicts function of variants of the human organic cation transporter, OCT1. Proc. Natl. Acad. Sci.U.S.A. 100:5902–5907 (2003).

    Article  PubMed  CAS  Google Scholar 

  168. M. Itoda, Y. Saito, K. Maekawa, H. Hichiya, K. Komamura, S. Kamakura, M. Kitakaze, H. Tomoike, K. Ueno, S. Ozawa, and J.-i. Sawada. Seven novel single nucleotide polymorphisms in the human SLC22A1 gene encoding organic cation transporter 1 (OCT1). Drug Metab. Pharmacokinet. 19:308–312 (2004).

    Article  PubMed  Google Scholar 

  169. H. Fukushima-Uesaka, K. Maekawa, S. Ozawa, K. Komamura, K. Ueno, M. Shibakawa, S. Kamakura, M. Kitakaze, H. Tomoike, Y. Saito, and J. Sawada. Fourteen novel single nucleotide polymorphisms in the SLC22A2 gene encoding human organic cation transporter (OCT2). Drug Metab. Pharmacokin. 19:239–244 (2004).

    Article  CAS  Google Scholar 

  170. M. K. Leabman, C. C. Huang, M. Kawamoto, S. J. Johns, D. Stryke, T. E. Ferrin, J. DeYoung, T. Taylor, A. G. Clark, I. Herskowitz, and K. M. Giacomini. Polymorphisms in a human kidney xenobiotic transporter, OCT2, exhibit altered function. Pharmacogenetics 12:395–405 (2002).

    Article  PubMed  CAS  Google Scholar 

  171. T. Fujita, T. J. Urban, M. K. Leabman, K. Fujita, and K. M. Giacomini. Transport of drugs in the kidney by the human organic cation transporter, OCT2 and its genetic variants. J. Pharm. Sci. 95:25–36 (2006).

    Article  PubMed  CAS  Google Scholar 

  172. A. Takeuchi, H. Motohashi, M. Okuda, and K.-i. Inui. Decreased function of genetic variants, Pro283Leu and Arg287Gly, in human organic cation transporter hOCT1. Drug Metab. Pharmacokin. 18:409–412 (2003).

    Article  CAS  Google Scholar 

  173. T. Sakata, N. Anzai, H. J. Shin, R. Noshiro, T. Hirata, H. Yokoyama, Y. Kanai, and H. Endou. Novel single nucleotide polymorphisms of organic cation transporter 1 (SLC22A1) affecting transport functions. Biochem. Biophys. Res. Commun. 313:789–793 (2004).

    Article  PubMed  CAS  Google Scholar 

  174. A. Koizumi, J.-i. Nozaki, T. Ohura, T. Kayo, Y. Wada, J.-i. Nezu, R. Ohashi, I. Tamai, Y. Shoji, G. Takada, S. Kibira, T. Matsuishi, and A. Tsuji. Genetic epidemiology of the carnitine transporter OCTN2 gene in a Japanese population and phenotypic characterization in Japanese pedigrees with primary systemic carnitine deficiency. Hum. Mol. Genet. 8:2247–2254 (1999).

    Article  PubMed  CAS  Google Scholar 

  175. N. L. S. Tang, V. Ganapathy, X. Wu, J. Hui, P. Seth, P. M. P. Yuen, T. F. Fok, and N. M. Hjelm. Mutations of OCTN2, an organic cation/carnitine transporter, lead to deficient cellular carnitine uptake in primary carnitine deficiency. Hum. Mol. Genet. 8:655–660 (1999).

    Article  PubMed  CAS  Google Scholar 

  176. Y. Wang, J. Ye, V. Ganapathy, and N. Longo. Mutations in the organic cation/carnitine transporter OCTN2 in primary carnitine deficiency. Proc. Natl. Acad. Sci. U.S.A. 96:2356–2360 (1999).

    Article  PubMed  CAS  Google Scholar 

  177. O. Palmieri, A. Latiano, R. Valvano, R. D’Inca, M. Vecchi, G. C. Sturniolo, S. Saibeni, F. Peyvandi, F. Bossa, C. Zagaria, A. Andriulli, M. Devoto, and V. Annese. Variants of OCTN1-2 cation transporter genes are associated with both Crohn’s disease and ulcerative colitis. Aliment. Pharmacol. Ther. 23:497–506 (2006).

    Article  PubMed  CAS  Google Scholar 

  178. J. D. Rioux, M. J. Daly, M. S. Silverberg, K. Lindblad, H. Steinhart, Z. Cohen, T. Delmonte, K. Kocher, K. Miller, S. Guschwan, E. J. Kulbokas, S. O’Leary, E. Winchester, K. Dewar, T. Green, V. Stone, C. Chow, A. Cohen, D. Langelier, G. Lapointe, D. Gaudet, J. Faith, N. Branco, S. B. Bull, R. S. McLeod, A. M. Griffiths, A. Bitton, G. R. Greenberg, E. S. Lander, K. A. Siminovitch, and T. J. Hudson. Genetic variation in the 5q31 cytokine gene cluster confers susceptibility to Crohn disease. Nat. Genet. 29:223–228 (2001).

    Article  PubMed  CAS  Google Scholar 

  179. M. S. Silverberg. OCTNs: Will the real IBD5 gene please stand up? World J. Gastroenterol. 12:3678–3681 (2006).

    PubMed  CAS  Google Scholar 

  180. R. K. Russell, H. Drummond, E. Nimmo, N. Anderson, C. Noble, D. Wilson, P. Gillett, P. McGrogan, K. Hassan, L. Weaver, M. Bisset, G. Mahdi, and J. Satsangi. Analysis of the influence of OCTN1/2 variants within the IBD5 locus on disease susceptibility and growth parameters in early-onset inflammatory bowel disease. Gut (2006).

  181. A. Lazar, T. Zimmermann, W. Koch, D. Gründemann, A. Schömig, A. Kastrati, and E. Schömig. Lower prevalence of the OCT2 Ser270 allele in patients with essential hypertension. Clin. Exp. Hypertens. 28:645–653 (2006).

    Article  PubMed  CAS  Google Scholar 

  182. N. Aoyama, N. Takahashi, K. Kitaichi, R. Ishihara, S. Saito, N. Maeno, X. Ji, K. Takagi, Y. Sekine, M. Iyo, M. Harano, T. Komiyama, M. Yamada, I. Sora, H. Ujike, N. Iwata, T. Inada, and N. Ozaki. Association between gene polymorphisms of SLC22A3 and methamphetamine use disorder. Alcohol Clin. Exp. Res. 30:1644–1649 (2006).

    Article  PubMed  CAS  Google Scholar 

  183. D. Taubert, G. Grimberg, N. Jung, A. Rubbert, and E. Schömig. Functional role of the 503F variant of the organic cation transporter OCTN1 in Crohn’s disease. Gut 54:1505–1506 (2005).

    Article  PubMed  CAS  Google Scholar 

  184. D. Taubert, A. Lazar, G. Grimberg, N. Jung, A. Rubbert, K.-S. Delank, A. Perniok, E. Erdmann, and E. Schömig. Association of rheumatoid arthritis with ergothioneine levels in red blood cells: a case control study. J. Rheumatol. 33:2139–2145 (2006).

    PubMed  CAS  Google Scholar 

  185. S. Vermeire and P. Rutgeerts. Current status of genetics research in inflammatory bowel disease. Genes Immun. 6:637–645 (2005).

    PubMed  CAS  Google Scholar 

  186. J. L. Santiago, A. Martinez, H. de la Calle, M. Fernandez-Arquero, M. A. Figueredo, E. G. de la Concha, and E. Urcelay. Evidence for the association of the SLC22A4 and SLC22A5 genes with Type 1 Diabetes: a case control study, BMC. Med. Genet. 7:54 (2006).

    Google Scholar 

  187. C. A. Stanley, S. DeLeeuw, P. M. Coates, C. Vianey-Liaud, P. Divry, J. P. Bonnefont, J. M. Saudubray, M. Haymond, F. K. Trefz, and G. N. Breningstall. Chronic cardiomyopathy and weakness or acute coma in children with a defect in carnitine uptake. Ann. Neurol. 30:709–716 (1991).

    Article  PubMed  CAS  Google Scholar 

  188. T. J. Urban, R. C. Gallagher, C. Brown, R. A. Castro, L. L. Lagpacan, C. M. Brett, T. R. Taylor, E. J. Carlson, T. E. Ferrin, E. G. Burchard, S. Packman, and K. M. Giacomini. Functional genetic diversity in the high-affinity carnitine transporter OCTN2 (SLC22A5). Mol. Pharmacol. 70:1602–1611 (2006).

    Article  PubMed  CAS  Google Scholar 

  189. C. Popp, V. Gorboulev, T. D. Müller, D. Gorbunov, N. Shatskaya, and H. Koepsell. Amino acids critical for substrate affinity of rat organic cation transporter 1 line the substrate binding region in a model derived from the tertiary structure of lactose permease. Mol. Pharmacol. 67:1600–1611 (2005).

    Article  PubMed  CAS  Google Scholar 

  190. V. Gorboulev, N. Shatskaya, C. Volk, and H. Koepsell. Subtype-specific affinity for corticosterone of rat organic cation transporters rOCT1 and rOCT2 depends on three amino acids within the substrate binding region. Mol. Pharmacol. 67:1612–1619 (2005).

    Article  PubMed  CAS  Google Scholar 

  191. V. Gorboulev, C. Volk, P. Arndt, A. Akhoundova, and H. Koepsell. Selectivity of the polyspecific cation transporter rOCT1 is changed by mutation of aspartate 475 to glutamate. Mol. Pharmacol. 56:1254–1261 (1999).

    PubMed  CAS  Google Scholar 

  192. X. Zhang, N. V. Shirahatti, D. Mahadevan, and S. H. Wright. A conserved glutamate residue in transmembrane helix 10 influences substrate specificity of rabbit OCT2 (SLC22A2). J. Biol. Chem. 280:34813–34822 (2005).

    Article  PubMed  CAS  Google Scholar 

  193. J. Abramson, I. Smirnova, V. Kasho, G. Verner, H. R. Kaback, and S. Iwata. Structure and mechanism of the lactose permease of Escherichia coli. Science 301:610–615 (2003).

    Article  PubMed  CAS  Google Scholar 

  194. Y. Huang, M. J. Lemieux, J. Song, M. Auer, and D.-N. Wang. Structure and mechanism of the glycerol-3-phosphate transporter from Escherichia coli. Science 301:616–620 (2003).

    Article  PubMed  CAS  Google Scholar 

  195. R. M. Pelis, X. Zhang, Y. Danqprapai, and S. H. Wright. Cysteine accessibility in the hydrophilic cleft of the human organic cation transporter 2. J. Biol. Chem. 281:35272–35280 (2006).

    Google Scholar 

  196. Y. Wang, S. H. Korman, J. Ye, J. J. Gargus, A. Gutman, F. Taroni, B. Garavaglia, and N. Longo. Phenotype and genotype variation in primary carnitine deficiency. Genet. Med. 3:387–392 (2001).

    Google Scholar 

  197. Y. Wang, F. Taroni, B. Garavaglia, and N. Longo. Functional analysis of mutations in the OCTN2 transporter causing primary carnitine deficiency: lack of genotype-phenotype correlation. Hum. Mutat. 16:401–407 (2000).

    Article  PubMed  CAS  Google Scholar 

  198. A.-M. Lamhonwah, S. E. Olpin, R. J. Pollitt, C. Vianey-Saban, P. Divry, N. Guffon, G. T. N. Besley, R. Onizuka, L. J. De Meirleir, L. Cvitanovic-Sojat, I. Baric, C. Dionisi-Vici, K. Fumic, M. Maradin, and I. Tein. Novel OCTN2 mutations: no genotype-phenotype correlations: early carnitine therapy prevents cardiomyopathy. Am. J. Med. Genet. 111:271–284 (2002).

    Article  PubMed  Google Scholar 

  199. B. Burwinkel, J. Kreuder, S. Schweitzer, M. Vorgerd, K. Gempel, K.-D. Gerbitz, and M. W. Kilimann. Carnitine transporter OCTN2 mutations in systemic primary carnitine deficiency: a novel Arg169Gln mutation and a recurrent Arg282ter mutation associated with an unconventional splicing abnormality. Biochem. Biophys. Res. Commun. 261:484–487 (1999).

    Article  PubMed  CAS  Google Scholar 

  200. F. M. Vaz, H. R. Scholte, J. Ruiter, L. M. Hussaarts-Odijk, R. R. Pereira, S. Schweitzer, J. B. C. de Klerk, H. R. Waterham, and R. J. A. Wanders. Identification of two novel mutations in OCTN2 of three patients with systemic carnitine deficiency. Hum. Genet. 105:157–161 (1999).

    Article  PubMed  CAS  Google Scholar 

  201. E. Mayatepek, J. Nezu, I. Tamai, A. Oku, M. Katsura, M. Shimane, and A. Tsuji. Two novel missense mutations of the OCTN2 gene (W283R and V446F) in a patient with primary systemic carnitine deficiency. Hum. Mutat. 15:118 (2000).

    Article  PubMed  CAS  Google Scholar 

  202. Y. Wang, M. A. Kelly, T. M. Cowan, and N. Longo. A missense mutation in the OCTN2 gene associated with residual carnitine transport activity. Hum. Mutat. 15:238–245 (2000).

    Article  PubMed  CAS  Google Scholar 

  203. Y. Wang, T. A. Meadows, and N. Longo. Abnormal sodium stimulation of carnitine transport in primary carnitine deficiency. J. Biol. Chem. 275:20782–20786 (2000).

    Article  PubMed  CAS  Google Scholar 

  204. K. Turnheim and F. O. Lauterbach. Absorption and secretion of monoquaternary ammonium compounds by the isolated intestinal mucosa. Biochem. Pharmac. 26:99–108 (1977).

    Article  CAS  Google Scholar 

  205. K. Turnheim and F. Lauterbach. Interaction between intestinal absorption and secretion of monoquaternary ammonium compounds in guinea pigs—a concept for the absorption kinetics of organic cations. J. Pharmacol. Exp. Ther. 212:418–424 (1980).

    PubMed  CAS  Google Scholar 

  206. M. K. Kim and C.-K. Shim. The transport of organic cations in the small intestine: current knowledge and emerging concepts. Arch. Pharm. Res. 29:605–616 (2006).

    Article  PubMed  CAS  Google Scholar 

  207. S. Hsing, Z. Gatmaitan, and I. M. Arias. The function of Gp170, the multidrug-restistance gene product, in the brush border of rat intestinal mucosa. Gastroenterology 102:879–885 (1992).

    PubMed  CAS  Google Scholar 

  208. F. Thiebaut, T. Tsuruo, H. Hamada, M. M. Gottesman, I. Pastan, and M. C. Willingham. Cellular localization of the multidrug-resistance gene product P-glycoprotein in normal human tissues. Proc. Natl. Acad. Sci. U.S.A. 84:7735–7738 (1987).

    Article  PubMed  CAS  Google Scholar 

  209. J. E. Van Montfoort, M. Müller, G. M. M. Groothuis, D. K. F. Meijer, H. Koepsell, and P. J. Meier. Comparison of "type I" and "type II" organic cation transport by organic cation transporters and organic anion-transporting polypeptides. J. Pharmacol. Exp. Ther. 298:110–115 (2001).

    PubMed  Google Scholar 

  210. M. Acara and B. Rennick. Regulation of plasma choline by the renal tubule: bidirectional transport of choline. Am. J. Physiol. 225:1123–1128 (1973).

    PubMed  CAS  Google Scholar 

  211. K. Besseghir, L. B. Pearce, and B. Rennick. Renal tubular transport and metabolism of organic cations by the rabbit. Am. J. Physiol. 241:F308–F314 (1981).

    PubMed  CAS  Google Scholar 

  212. F. Roch-Ramel, K. Besseghir, and H. Murer. Renal excretion and tubular transport of organic anions and cations. In E. E. Windhager (ed.), Handbook of Physiology, Oxford University Press, New York Oxford, 1992, pp. 2189–2262.

    Google Scholar 

  213. K. J. Ullrich. Specificity of transporters for ‘organic anions’ and ‘organic cations’ in the kidney. Biochim. Biophys. Acta 1197:45–62 (1994).

    PubMed  CAS  Google Scholar 

  214. L. T. Y. Wong, M. R. Escobar, D. D. Smyth, and D. S. Sitar. Gender-associated differences in rat renal tubular amantadine transport and absence of stereoselective transport inhibition by quinine and quinidine in distal tubules. J. Pharmacol. Exp. Ther. 267:1440–1444 (1993).

    PubMed  CAS  Google Scholar 

  215. M. R. Escobar and D. S. Sitar. Site-selective effect of bicarbonate on amantadine renal transport: quinine-sensitive in proximal vs quinidine-sensitive sites in distal tubules. J. Pharmacol. Exp. Ther. 273:72–79 (1995).

    PubMed  CAS  Google Scholar 

  216. H. Koepsell, V. Gorboulev, and P. Arndt. Molecular pharmacology of organic cation transporters in kidney. J. Membr. Biol. 167:103–117 (1999).

    Article  PubMed  CAS  Google Scholar 

  217. W. M. Barendt and S. H. Wright. The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J. Biol. Chem. 277:22491–22496 (2002).

    Article  PubMed  CAS  Google Scholar 

  218. S. H. Cha, T. Sekine, J.-I. Fukushima, Y. Kanai, Y. Kobayashi, T. Goya, and H. Endou. Identification and characterization of human organic anion transporter 3 expressing predominantly in the kidney. Mol. Pharmacol. 59:1277–1286 (2001).

    PubMed  CAS  Google Scholar 

  219. S. Gluck and R. Nelson. The role of the V-ATPase in renal epithelial H+ transport. J. Exp. Biol. 172:205–218 (1992).

    PubMed  CAS  Google Scholar 

  220. A. Somogyi, A. McLean, and B. Heinzow. Cimetidine-procainamide pharmacokinetic interaction in man: evidence of competition for tubular secretion of basic drugs. Eur. J. Clin. Pharmacol. 25:339–345 (1983).

    Article  PubMed  CAS  Google Scholar 

  221. A. Somogyi and B. Heinzow. Cimetidine reduces procainamide elimination. N. Engl. J. Med. 307:1080 (1982).

    PubMed  CAS  Google Scholar 

  222. M. B. Davidson and A. L. Peters. An overview of metformin in the treatment of type 2 diabetes mellitus. Am. J. Med. 102:99–110 (1997).

    Article  PubMed  CAS  Google Scholar 

  223. J. E. Nestler. Metformin and the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 86:1430 (2001).

    Article  PubMed  CAS  Google Scholar 

  224. E. M. Velazquez, S. Mendoza, T. Hamer, F. Sosa, and C. J. Glueck. Metformin therapy in polycystic ovary syndrome reduces hyperinsulinemia, insulin resistance, hyperandrogenemia, and systolic blood pressure, while facilitating normal menses and pregnancy. Metabolism 43:647–654 (1994).

    Article  PubMed  CAS  Google Scholar 

  225. G. Horvath, N. Schmid, M. A. Fragoso, A. Schmid, G. E. Conner, M. Salathe, and A. Wanner. Epithelial organic cation transporters ensure pH dependent drug absorption in the airway. Am. J. Respir. Cell Mol. Biol. PMID: 16917073 (2006).

  226. K. S. Lips, A. Lührmann, T. Tschernig, T. Stoeger, F. Alessandrini, V. Grau, R. V. Haberberger, H. Koepsell, R. Pabst, and W. Kummer. Down-regulation of the non-neuronal cholinergic system in acute allergic airway inflammation of rat and mouse, Life Sci., DOI 10.1016/j.lfs.2007.01.026

  227. K. Kitaichi, M. Fukuda, H. Nakayama, N. Aoyama, Y. Ito, Y. Fujimoto, K. Takagi, K. Takagi, and T. Hasegawa. Behavioral changes following antisense oligonucleotide-induced reduction of organic cation transporter-3 in mice. Neurosci. Lett. 382:195–200 (2005).

    Article  PubMed  CAS  Google Scholar 

  228. N. Feng, B. Mo, P. L. Johnson, M. Orchinik, C. A. Lowry, and K. J. Renner. Local inhibition of organic cation transporters increases extracellular serotonin in the medial hypothalamus. Brain Res. 1063:69–76 (2005).

    Article  PubMed  CAS  Google Scholar 

  229. F. H. Falcone, H. Haas, and B. F. Gibbs. The human basophil: a new appreciation of its role in immune responses. Blood 96:4028–4038 (2000).

    PubMed  CAS  Google Scholar 

  230. S. Corbel, E. Schneider, F. M. Lemoine, and M. Dy. Murine hematopoietic progenitors are capable of both histamine synthesis and uptake. Blood 86:531–539 (1995).

    PubMed  CAS  Google Scholar 

  231. M. Ogasawara, K. Yamauchi, Y.-i. Satoh, R. Yamaji, K. Inui, J. W. Jonker, A. H. Schinkel, and K. Maeyama. Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J. Pharmacol. Sci. 101:24–30 (2006).

    Article  PubMed  CAS  Google Scholar 

  232. A. Yonezawa, S. Masuda, K. Nishihara, I. Yano, T. Katsura, and K.-i. Inui. Association between tubular toxicity of cisplatin and expression of organic cation transporter rOCT2 (Slc22a2) in the rat. Biochem. Pharmacol. 70:1823–1831 (2005).

    Article  PubMed  CAS  Google Scholar 

  233. A. Yonezawa, S. Masuda, S. Yokoo, T. Katsura, and K.-i. Inui. Cisplatin and oxaliplatin, but not nedaplatin, are substrates of human organic cation transporters (SLC22A1-3 and multidrug and toxin extrusion family. J. Pharmacol. Ex. Ther. 319:879–886 (2006).

    Article  CAS  Google Scholar 

  234. O. Briz, M. A. Serrano, N. Rebollo, B. Hagenbuch, P. J. Meier, H. Koepsell, and J. J. G. Marin. Carriers involved in targeting the cytostatic bile acid-cisplatin derivatives cis-diammine-chloro-cholylglycinate-platinum(II) and cis-diammine-bisursodeoxycholate-platinum(II) toward liver cells. Mol. Pharmacol. 61:853–860 (2002).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hermann Koepsell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koepsell, H., Lips, K. & Volk, C. Polyspecific Organic Cation Transporters: Structure, Function, Physiological Roles, and Biopharmaceutical Implications. Pharm Res 24, 1227–1251 (2007). https://doi.org/10.1007/s11095-007-9254-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9254-z

Key words

Navigation