Skip to main content

Advertisement

Log in

Promise and Progress for Functional and Molecular Imaging of Response to Targeted Therapies

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Biomarkers to predict or monitor therapy response are becoming essential components of drug developer’s armamentaria. Molecular and functional imaging has particular promise as a biomarker for anticancer therapies because it is non-invasive, can be used longitudinally and provides information on the whole patient or tumor. Despite this promise, molecular or functional imaging endpoints are not routinely incorporated into clinical trial design. As the costs of clinical trials and drug development become prohibitively more expensive, the need for improved biomarkers has become imperative and thus, the relatively high cost of imaging is justified. Imaging endpoints, such as Diffusion-Weighted MRI, DCE-MRI and FDG-PET have the potential to make drug development more efficient at all phases, from discovery screening with in vivo pharmacodynamics in animal models through the phase III enrichment of the patient population for potential responders. This review focuses on the progress of imaging responses to new classes of anti-cancer therapies targeted against PI3 kinase/AKT, HIF-1α and VEGF. The ultimate promise of molecular and functional imaging is to theragnostically predict response prior to commencement of targeted therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. W. R. Parulekar, and E. A. Eisenhauer. Phase I trial design for solid tumor studies of targeted, non-cytotoxic agents: theory and practice. J. Natl. Cancer Inst. 96:990–997 (2004).

    Article  PubMed  CAS  Google Scholar 

  2. R. G. Blasberg. Molecular imaging and cancer. Mol. Cancer Ther. 2:335–343 (2003).

    PubMed  CAS  Google Scholar 

  3. J. L. Evelhoch, R. J. Gillies, G. S. Karczmar, J. A. Koutcher, R. J. Maxwell, O. Nalcioglu, N. Raghunand, S. M. Ronen, B. D. Ross, and H. M. Swartz. Applications of magnetic resonance in model systems: cancer therapeutics. Neoplasia 2:152–165 (2000).

    Article  PubMed  CAS  Google Scholar 

  4. B. F. Jordan, K. Black, I. F. Robey, M. Runquist, G. Powis, and R. J. Gillies. Metabolite changes in HT-29 xenograft tumors following HIF-1alpha inhibition with PX-478 as studied by MR spectroscopy in vivo and ex vivo. NMR Biomed. 18(7):430–439 (2005).

    Article  PubMed  CAS  Google Scholar 

  5. B. F. Jordan, M. Runquist, N. Raghunand, A. Baker, R. Williams, L. Kirkpatrick, G. Powis, and R. J. Gillies. Dynamic contrast-enhanced and diffusion MRI show rapid and dramatic changes in tumor microenvironment in response to inhibition of HIF-1alpha using PX-478. Neoplasia 7:475–485 (2005).

    Article  PubMed  CAS  Google Scholar 

  6. G. J. Kelloff, K. A. Krohn, S. M. Larson, R. Weissleder, D. A. Mankoff, J. M. Hoffman, J. M. Link, K. Z. Guyton, W. C. Eckelman, H. I. Scher, J. O’Shaughnessy, B. D. Cheson, C. C. Sigman, J. L. Tatum, G. Q. Mills, D. C. Sullivan, and J. Woodcock. The progress and promise of molecular imaging probes in oncologic drug development. Clin. Cancer Res. 11:7967–7985 (2005).

    Article  PubMed  CAS  Google Scholar 

  7. R. J. Gillies, Z. M. Bhujwalla, J. Evelhoch, M. Garwood, M. Neeman, S. P. Robinson, C. H. Sotak, and B. Van Der Sanden. Applications of magnetic resonance in model systems: tumor biology and physiology. Neoplasia 2:139–151 (2000).

    Article  PubMed  CAS  Google Scholar 

  8. J. P. Galons, D. L. Morse, D. R. Jennings, and R. J. Gillies. Diffusion-weighted MRI and response to anti-cancer therapies. Isr. J. Chem. 43:91–101 (2003).

    Article  CAS  Google Scholar 

  9. T. L. Chenevert, P. E. McKeever, and B. D. Ross. Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin. Cancer Res. 3:1457–1466 (1997).

    PubMed  CAS  Google Scholar 

  10. Y. Mardor, Y. Roth, Z. Lidar, T. Jonas, R. Pfeffer, S. E. Maier, M. Faibel, D. Nass, M. Hadani, A. Orenstein, J. S. Cohen, and Z. Ram. Monitoring response to convection-enhanced taxol delivery in brain tumor patients using diffusion-weighted magnetic resonance imaging. Cancer Res. 61:4971–4973 (2001).

    PubMed  CAS  Google Scholar 

  11. Y. Mardor, R. Pfeffer, R. Spiegelmann, Y. Roth, S. E. Maier, O. Nissim, R. Berger, A. Glicksman, J. Baram, A. Orenstein, J. S. Cohen, and T. Tichler. Early detection of response to radiation therapy in patients with brain malignancies using conventional and high b-value diffusion-weighted magnetic resonance imaging. J. Clin. Oncol. 21:1094–1100 (2003).

    Article  PubMed  Google Scholar 

  12. D. E. Hall, B. A. Moffat, J. Stojanovska, T. D. Johnson, Z. Li, D. A. Hamstra, A. Rehemtulla, T. L. Chenevert, J. Carter, D. Pietronigro, and B. D. Ross. Therapeutic efficacy of DTI-015 using diffusion magnetic resonance imaging as an early surrogate marker. Clin. Cancer Res. 10:7852–7859 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. K. C. Lee, D. E. Hall, B. A. Hoff, B. A. Moffat, S. Sharma, T. L. Chenevert, C. R. Meyer, W. R. Leopold, T. D. Johnson, R. V. Mazurchuk, A. Rehemtulla, and B. D. Ross. Dynamic imaging of emerging resistance during cancer therapy. Cancer Res. 66:4687–4692 (2006).

    Article  PubMed  CAS  Google Scholar 

  14. B. A. Moffat, T. L. Chenevert, T. S. Lawrence, C. R. Meyer, T. D. Johnson, Q. Dong, C. Tsien, S. Mukherji, D. J. Quint, S. S. Gebarski, P. L. Robertson, L. R. Junck, A. Rehemtulla, and B. D. Ross. Functional diffusion map: a noninvasive MRI biomarker for early stratification of clinical brain tumor response. Proc. Natl. Acad. Sci. U. S. A. 102:5524–5529 (2005).

    Article  PubMed  CAS  Google Scholar 

  15. P. A. Hein, C. Kremser, W. Judmaier, J. Griebel, K. P. Pfeiffer, A. Kreczy, E. B. Hug, P. Lukas, and A. F. DeVries. Diffusion-weighted magnetic resonance imaging for monitoring diffusion changes in rectal carcinoma during combined, preoperative chemoradiation: preliminary results of a prospective study. Eur. J. Radiol. 45:214–222 (2003).

    Article  PubMed  Google Scholar 

  16. M. Uhl, U. Saueressig, M. van Buiren, U. Kontny, C. Niemeyer, G. Kohler, K. Ilyasov, and M. Langer. Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest. Radiol. 41:618–623 (2006).

    Article  PubMed  CAS  Google Scholar 

  17. R. J. Theilmann, R. Borders, T. P. Trouard, G. Xia, E. Outwater, J. Ranger-Moore, R. J. Gillies, and A. Stopeck. Changes in water mobility measured by diffusion MRI predict response of metastatic breast cancer to chemotherapy. Neoplasia 6:831–837 (2004).

    Article  PubMed  Google Scholar 

  18. A. Dzik-Jurasz, C. Domenig, M. George, J. Wolber, A. Padhani, G. Brown, and S. Doran. Diffusion MRI for prediction of response of rectal cancer to chemoradiation. Lancet 360:307–308 (2002).

    Article  PubMed  Google Scholar 

  19. L. Lemaire, F. A. Howe, L. M. Rodrigues, and J. R. Griffiths. Assessment of induced rat mammary tumour response to chemotherapy using the apparent diffusion coefficient of tissue water as determined by diffusion-weighted 1H-NMR spectroscopy in vivo. Magma 8:20–26 (1999).

    PubMed  CAS  Google Scholar 

  20. M. Zhao, J. G. Pipe, J. Bonnett, and J. L. Evelhoch. Early detection of treatment response by diffusion-weighted 1H-NMR spectroscopy in a murine tumour in vivo. Br. J. Cancer 73:61–64 (1996).

    PubMed  CAS  Google Scholar 

  21. D. A. Beauregard, P. E. Thelwall, D. J. Chaplin, S. A. Hill, G. E. Adams, and K. M. Brindle. Magnetic resonance imaging and spectroscopy of combretastatin A4 prodrug-induced disruption of tumour perfusion and energetic status. Br. J. Cancer 77:1761–1767 (1998).

    PubMed  CAS  Google Scholar 

  22. J. P. Galons, M. I. Altbach, G. D. Paine-Murrieta, C. W. Taylor, and R. J. Gillies. Early increases in breast tumor xenograft water mobility in response to paclitaxel therapy detected by non-invasive diffusion magnetic resonance imaging. Neoplasia 1:113–117 (1999).

    Article  PubMed  CAS  Google Scholar 

  23. D. Jennings, B. N. Hatton, J. Guo, J. P. Galons, T. P. Trouard, N. Raghunand, J. Marshall, and R. J. Gillies. Early response of prostate carcinoma xenografts to docetaxel chemotherapy monitored with diffusion MRI. Neoplasia 4:255–262 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. H. C. Thoeny, F. De Keyzer, F. Chen, V. Vandecaveye, E. K. Verbeken, B. Ahmed, X. Sun, Y. Ni, H. Bosmans, R. Hermans, A. van Oosterom, G. Marchal, and W. Landuyt. Diffusion-weighted magnetic resonance imaging allows noninvasive in vivo monitoring of the effects of combretastatin a-4 phosphate after repeated administration. Neoplasia 7:779–787 (2005).

    Article  PubMed  CAS  Google Scholar 

  25. A. M. Chinnaiyan, U. Prasad, S. Shankar, D. A. Hamstra, M. Shanaiah, T. L. Chenevert, B. D. Ross, and A. Rehemtulla. Combined effect of tumor necrosis factor-related apoptosis-inducing ligand and ionizing radiation in breast cancer therapy. Proc. Natl. Acad. Sci. U. S. A. 97:1754–1759 (2000).

    Article  PubMed  CAS  Google Scholar 

  26. E. Rustamzadeh, W. A. Hall, D. A. Todhunter, W. C. Low, H. Liu, A. Panoskaltsis-Mortari, and D. A. Vallera. Intracranial therapy of glioblastoma with the fusion protein DTIL13 in immunodeficient mice. Int. J. Cancer 118:2594–2601 (2006).

    Article  PubMed  CAS  Google Scholar 

  27. K. Turetschek, E. Floyd, D. M. Shames, T. P. Roberts, A. Preda, V. Novikov, C. Corot, W. O. Carter, and R. C. Brasch. Assessment of a rapid clearance blood pool MR contrast medium (P792) for assays of microvascular characteristics in experimental breast tumors with correlations to histopathology. Magn. Reson. Med. 45:880–886 (2001).

    Article  PubMed  CAS  Google Scholar 

  28. B. A. Birnbaum, J. C. Weinreb, M. P. Fernandez, J. J. Brown, N. M. Rofsky, and S. W. Young. Comparison of contrast enhanced CT and Mn-DPDP enhanced MRI for detection of focal hepatic lesions. Initial findings. Clin. Imaging 18:21–27 (1994).

    Article  PubMed  CAS  Google Scholar 

  29. A. M. Lutz, J. K. Willmann, K. Goepfert, B. Marincek, and D. Weishaupt. Hepatocellular carcinoma in cirrhosis: enhancement patterns at dynamic gadolinium- and superparamagnetic iron oxide-enhanced T1-weighted MR imaging. Radiology 237:520–528 (2005).

    Article  PubMed  Google Scholar 

  30. P. L. Choyke, A. J. Dwyer, and M. V. Knopp. Functional tumor imaging with dynamic contrast-enhanced magnetic resonance imaging. J. Magn. Reson. Imaging 17:509–520 (2003).

    Article  PubMed  Google Scholar 

  31. M. V. Knopp, F. L. Giesel, H. Marcos, H. von Tengg-Kobligk, and P. Choyke. Dynamic contrast-enhanced magnetic resonance imaging in oncology. Top Magn. Reson. Imaging 12:301–308 (2001).

    Article  PubMed  CAS  Google Scholar 

  32. W.R. Hendee and E.R. Ritenour. Medical Imaging Physics, Mobsy, St. Louis, 1992.

  33. A. Quon, and S. S. Gambhir. FDG-PET and beyond: molecular breast cancer imaging. J. Clin. Oncol. 23:1664–1673 (2005).

    Article  PubMed  CAS  Google Scholar 

  34. R. Bos, J. J. van Der Hoeven, E. van Der Wall, P. van Der Groep, P. J. van Diest, E. F. Comans, U. Joshi, G. L. Semenza, O. S. Hoekstra, A. A. Lammertsma, and C. F. Molthoff. Biologic correlates of (18)fluorodeoxyglucose uptake in human breast cancer measured by positron emission tomography. J. Clin. Oncol. 20:379–387 (2002).

    Article  PubMed  CAS  Google Scholar 

  35. B. M. Burt, J. L. Humm, D. A. Kooby, O. D. Squire, S. Mastorides, S. M. Larson, and Y. Fong. Using positron emission tomography with [(18)F]FDG to predict tumor behavior in experimental colorectal cancer. Neoplasia 3:189–195 (2001).

    Article  PubMed  CAS  Google Scholar 

  36. R. A. Gatenby, and R. J. Gillies. Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4:891–899 (2004).

    Article  PubMed  CAS  Google Scholar 

  37. M. Kunkel, T. E. Reichert, P. Benz, H. A. Lehr, J. H. Jeong, S. Wieand, P. Bartenstein, W. Wagner, and T. L. Whiteside. Overexpression of Glut-1 and increased glucose metabolism in tumors are associated with a poor prognosis in patients with oral squamous cell carcinoma. Cancer 97:1015–1024 (2003).

    Article  PubMed  CAS  Google Scholar 

  38. E. Mochiki, H. Kuwano, H. Katoh, T. Asao, N. Oriuchi, and K. Endo. Evaluation of 18F-2-deoxy-2-fluoro-D-glucose positron emission tomography for gastric cancer. World J. Surg. 28:247–253 (2004).

    Article  PubMed  Google Scholar 

  39. A. Gennari, S. Donati, B. Salvadori, A. Giorgetti, P. A. Salvadori, O. Sorace, G. Puccini, P. Pisani, M. Poli, D. Dani, E. Landucci, G. Mariani, and P. F. Conte. Role of 2-[18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) in the early assessment of response to chemotherapy in metastatic breast cancer patients. Clin. Breast Cancer 1:156–161 (2000); (discussion 162–163).

    Article  PubMed  CAS  Google Scholar 

  40. R. Kumar and A. Alavi. Fluorodeoxyglucose-PET in the management of breast cancer. Radiol. Clin. North Am. 42:1113–1122 (2004), ix.

    Article  PubMed  Google Scholar 

  41. J. S. Ryu, N. C. Choi, A. J. Fischman, T. J. Lynch, and D. J. Mathisen. FDG-PET in staging and restaging non-small cell lung cancer after neoadjuvant chemoradiotherapy: correlation with histopathology. Lung Cancer 35:179–187 (2002).

    Article  PubMed  Google Scholar 

  42. A. Dimitrakopoulou-Strauss, L. G. Strauss, and J. Rudi. PET-FDG as predictor of therapy response in patients with colorectal carcinoma. Q. J. Nucl. Med. 47:8–13 (2003).

    PubMed  CAS  Google Scholar 

  43. R. J. Gillies, P. A. Schornack, T. W. Secomb, and N. Raghunand. Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1:197–207 (1999).

    Article  PubMed  CAS  Google Scholar 

  44. H. E. Daldrup-Link, D. M. Shames, M. Wendland, A. Muhler, A. Gossmann, W. Rosenau, and R. C. Brasch. Comparison of Gadomer-17 and gadopentetate dimeglumine for differentiation of benign from malignant breast tumors with MR imaging. Acad. Radiol. 7:934–944 (2000).

    Article  PubMed  CAS  Google Scholar 

  45. M. Y. Su, Z. Wang, P. M. Carpenter, X. Lao, A. Muhler, and O. Nalcioglu. Characterization of N-ethyl-N-nitrosourea-induced malignant and benign breast tumors in rats by using three MR contrast agents. J. Magn. Reson. Imaging 9:177–186 (1999).

    Article  PubMed  CAS  Google Scholar 

  46. R. J. Maxwell, J. Wilson, V. E. Prise, B. Vojnovic, G. J. Rustin, M. A. Lodge, and G. M. Tozer. Evaluation of the anti-vascular effects of combretastatin in rodent tumours by dynamic contrast enhanced MRI. NMR Biomed. 15:89–98 (2002).

    Article  PubMed  CAS  Google Scholar 

  47. C. Hayes, A. R. Padhani, and M. O. Leach. Assessing changes in tumour vascular function using dynamic contrast-enhanced magnetic resonance imaging. NMR Biomed. 15:154–163 (2002).

    Article  PubMed  Google Scholar 

  48. M. Y. Su, Y. C. Cheung, J. P. Fruehauf, H. Yu, O. Nalcioglu, E. Mechetner, A. Kyshtoobayeva, S. C. Chen, S. Hsueh, C. E. McLaren, and Y. L. Wan. Correlation of dynamic contrast enhancement MRI parameters with microvessel density and VEGF for assessment of angiogenesis in breast cancer. J. Magn. Reson. Imaging 18:467–477 (2003).

    Article  PubMed  Google Scholar 

  49. K. Turetschek, A. Preda, V. Novikov, R. C. Brasch, H. J. Weinmann, P. Wunderbaldinger, and T. P. Roberts. Tumor microvascular changes in antiangiogenic treatment: assessment by magnetic resonance contrast media of different molecular weights. J. Magn. Reson. Imaging 20:138–144 (2004).

    Article  PubMed  Google Scholar 

  50. M. Port, C. Corot, I. Raynal, J. M. Idee, A. Dencausse, E. Lancelot, D. Meyer, B. Bonnemain, and J. Lautrou. Physicochemical and biological evaluation of P792, a rapid-clearance blood-pool agent for magnetic resonance imaging. Invest. Radiol. 36:445–454 (2001).

    Article  PubMed  CAS  Google Scholar 

  51. A. Mavi, M. Urhan, J. Q. Yu, H. Zhuang, M. Houseni, T. F. Cermik, D. Thiruvenkatasamy, B. Czerniecki, M. Schnall, and A. Alavi. Dual time point 18F-FDG PET imaging detects breast cancer with high sensitivity and correlates well with histologic subtypes. J. Nucl. Med. 47:1440–1446 (2006).

    PubMed  Google Scholar 

  52. J. Tseng, L. K. Dunnwald, E. K. Schubert, J. M. Link, S. Minoshima, M. Muzi, and D. A. Mankoff. 18F-FDG kinetics in locally advanced breast cancer: correlation with tumor blood flow and changes in response to neoadjuvant chemotherapy. J. Nucl. Med. 45:1829–1837 (2004).

    PubMed  CAS  Google Scholar 

  53. K. A. Phillips, S. Van Bebber, and A. M. Issa. Diagnostics and biomarker development: priming the pipeline. Nat. Rev. Drug Discov. 5:463–469 (2006).

    Article  PubMed  CAS  Google Scholar 

  54. J. A. DiMasi, R. W. Hansen, and H. G. Grabowski. The price of innovation: new estimates of drug development costs. J. Health Econ. 22:151–185 (2003).

    Article  PubMed  Google Scholar 

  55. E. Nadler, B. Eckert, and P. J. Neumann. Do oncologists believe new cancer drugs offer good value? Oncologist 11:90–95 (2006).

    Article  PubMed  Google Scholar 

  56. R. Weissleder. Molecular imaging in cancer. Science 312:1168–1171 (2006).

    Article  PubMed  CAS  Google Scholar 

  57. T. Sjoblom, S. Jones, L. D. Wood, D. W. Parsons, J. Lin, T. Barber, D. Mandelker, R. J. Leary, J. Ptak, N. Silliman, S. Szabo, P. Buckhaults, C. Farrell, P. Meeh, S. D. Markowitz, J. Willis, D. Dawson, J. K. Willson, A. F. Gazdar, J. Hartigan, L. Wu, C. Liu, G. Parmigiani, B. H. Park, K. E. Bachman, N. Papadopoulos, B. Vogelstein, K. W. Kinzler, and V. E. Velculescu. The consensus coding sequences of human breast and colorectal cancers. Science 7:7 (2006).

    Google Scholar 

  58. R. Simon, and A. Maitournam. Evaluating the efficiency of targeted designs for randomized clinical trials. Clin. Cancer Res. 10:6759–6763 (2004).

    Article  PubMed  CAS  Google Scholar 

  59. R. J. Gillies and D. L. Morse. In vivo magnetic resonance spectroscopy in cancer. Annu. Rev. Biomed. Eng. 7:287–326 (2005).

    Article  PubMed  CAS  Google Scholar 

  60. J. A. DiMasi. The value of improving the productivity of the drug development process: faster times and better decisions. Pharmacoeconomics 20:1–10 (2002).

    Article  PubMed  Google Scholar 

  61. J. Y. Blay, A. Le Cesne, L. Alberti, and I. Ray-Coquart. Targeted cancer therapies. Bul.l Cancer 92:E13–E18 (2005).

    Article  PubMed  CAS  Google Scholar 

  62. S. Faivre, S. Djelloul, and E. Raymond. New paradigms in anticancer therapy: targeting multiple signaling pathways with kinase inhibitors. Semin. Oncol. 33:407–420 (2006).

    Article  PubMed  CAS  Google Scholar 

  63. S. R. Datta, A. Brunet, and M. E. Greenberg. Cellular survival: a play in three Akts. Genes Dev. 13:2905–2929 (1999).

    Article  PubMed  CAS  Google Scholar 

  64. I. Vivanco, and C. L. Sawyers. The phosphatidylinositol 3-Kinase AKT pathway in human cancer. Nat. Rev. Cancer 2:489–501 (2002).

    Article  PubMed  CAS  Google Scholar 

  65. P. Blume-Jensenand, and T. Hunter. Oncogenic kinase signalling. Nature 411:355–365 (2001).

    Article  Google Scholar 

  66. N. Gao, Z. Zhang, B. H. Jiang, and X. Shi. Role of PI3K/AKT/mTOR signaling in the cell cycle progression of human prostate cancer. Biochem. Biophys. Res. Commun. 310:1124–1132 (2003).

    Article  PubMed  CAS  Google Scholar 

  67. M. Osaki, M. Oshimura, and H. Ito. PI3K-Akt pathway: its functions and alterations in human cancer. Apoptosis 9:667–676 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. A. Di Cristofano, P. Kotsi, Y. F. Peng, C. Cordon-Cardo, K. B. Elkon, and P. P. Pandolfi. Impaired Fas response and autoimmunity in Pten+/− mice. Science 285:2122–2125 (1999).

    Article  Google Scholar 

  69. K. M. Nicholson, and N. G. Anderson. The protein kinase B/Akt signalling pathway in human malignancy. Cell. Signal. 14:381–395 (2002).

    Article  PubMed  CAS  Google Scholar 

  70. B. T. Hennessy, D. L. Smith, P. T. Ram, Y. Lu, and G. B. Mills. Exploiting the PI3K/AKT pathway for cancer drug discovery. Nat. Rev. Drug Discov. 4:988–1004 (2005).

    Article  PubMed  CAS  Google Scholar 

  71. D. R. Alessi and P. Cohen. Mechanism of activation and function of protein kinase B. Curr. Opin. Genet. Dev. 8:5562 (1998).

    Article  PubMed  CAS  Google Scholar 

  72. P. J. Coffer, J. Jin, and J. R. Woodgett. Protein kinase B (c-Akt): a multifunctional mediator of phosphatidylinositol 3-kinase activation. Biochem. J. 335:1–13 (1998).

    PubMed  CAS  Google Scholar 

  73. N. T. Ihle, R. Williams, S. Chow, W. Chew, M. I. Berggren, G. Paine-Murrieta, D. J. Minion, R. J. Halter, P. Wipf, R. Abraham, L. Kirkpatrick, and G. Powis. Molecular pharmacology and antitumor activity of PX-866, a novel inhibitor of phosphoinositide-3-kinase signaling. Mol. Cancer Ther. 3:763–772 (2004).

    PubMed  CAS  Google Scholar 

  74. A. R. Gottschalk, A. Doan, J. L. Nakamura, D. Stokoe, and D. A. Haas-Kogan. Inhibition of phosphatidylinositol-3-kinase causes increased sensitivity to radiation through a PKB-dependent mechanism. Int. J. Radiat. Oncol. Biol. Phys. 63:1221–1227 (2005).

    Article  PubMed  CAS  Google Scholar 

  75. L. Hu, C. Zaloudek, G. B. Mills, J. Gray, and R. B. Jaffe. In vivo and in vitro ovarian carcinoma growth inhibition by a phosphatidylinositol 3-kinase inhibitor (LY294002). Clin. Cancer Res. 6:880–886 (2000).

    PubMed  CAS  Google Scholar 

  76. S. S. Ng, M. S. Tsao, T. Nicklee, and D. W. Hedley. Wortmannin inhibits pkb/akt phosphorylation and promotes gemcitabine antitumor activity in orthotopic human pancreatic cancer xenografts in immunodeficient mice. Clin. Cancer Res. 7:3269–3275 (2001).

    PubMed  CAS  Google Scholar 

  77. K. E. Rosenzweig, M. B. Youmell, S. T. Palayoor, and B. D. Price. Radiosensitization of human tumor cells by the phosphatidylinositol3-kinase inhibitors wortmannin and LY294002 correlates with inhibition of DNA-dependent protein kinase and prolonged G2-M delay. Clin. Cancer Res. 3:1149–1156 (1997).

    PubMed  CAS  Google Scholar 

  78. M. B. Atkins, M. Hidalgo, W. M. Stadler, T. F. Logan, J. P. Dutcher, G. R. Hudes, Y. Park, S. H. Liou, B. Marshall, J. P. Boni, G. Dukart, and M. L. Sherman. Randomized phase II study of multiple dose levels of CCI-779, a novel mammalian target of rapamycin kinase inhibitor, in patients with advanced refractory renal cell carcinoma. J. Clin. Oncol. 22:909–18 (2004).

    Article  PubMed  CAS  Google Scholar 

  79. E. Galanis, J. C. Buckner, M. J. Maurer, J. I. Kreisberg, K. Ballman, J. Boni, J. M. Peralba, R. B. Jenkins, S. R. Dakhil, R. F. Morton, K. A. Jaeckle, B. W. Scheithauer, J. Dancey, M. Hidalgo, and D. J. Walsh. Phase II trial of temsirolimus (CCI-779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J. Clin. Oncol. 23:5294–5304 (2005).

    Article  PubMed  CAS  Google Scholar 

  80. L. A. DeGraffenried, L. Fulcher, W. E. Friedrichs, V. Grunwald, R. B. Ray, and M. Hidalgo. Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann. Oncol. 15:1510–1516 (2004).

    Article  PubMed  CAS  Google Scholar 

  81. M. S. Neshat, I. K. Mellinghoff, C. Tran, B. Stiles, G. Thomas, R. Petersen, P. Frost, J. J. Gibbons, H. Wu, and C. L. Sawyers. Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc. Natl. Acad. Sci. U. S. A. 98:10314–10319 (2001).

    Article  PubMed  CAS  Google Scholar 

  82. K. Podsypanina, R. T. Lee, C. Politis, I. Hennessy, A. Crane, J. Puc, M. Neshat, H. Wang, L. Yang, J. Gibbons, P. Frost, V. Dreisbach, J. Blenis, Z. Gaciong, P. Fisher, C. Sawyers, L. Hedrick-Ellenson, and R. Parsons. An inhibitor of mTOR reduces neoplasia and normalizes p70/S6 kinase activity in Pten+/− mice. Proc. Natl. Acad. Sci. U. S. A. 98:10320–10325 (2001).

    Article  PubMed  CAS  Google Scholar 

  83. Q. B. She, D. B. Solit, Q. Ye, K. E. O’Reilly, J. Lobo, and N. Rosen. The BAD protein integrates survival signaling by EGFR/MAPK and PI3K/Akt kinase pathways in PTEN-deficient tumor cells. Cancer Cell 8:287–297 (2005).

    Article  PubMed  CAS  Google Scholar 

  84. G. L. Semenza. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med. 7:345–350 (2001).

    Article  PubMed  CAS  Google Scholar 

  85. G. L. Semenza. HIF-1 and tumor progression: pathophysiology and therapeutics. Trends Mol. Med. 8:S62–S67 (2002).

    Article  PubMed  CAS  Google Scholar 

  86. G. L. Wang, B. H. Jiang, E. A. Rue, and G. L. Semenza. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. U. S. A. 92:5510–5514 (1995).

    Article  PubMed  CAS  Google Scholar 

  87. A. C. Epstein, J. M. Gleadle, L. A. McNeill, K. S. Hewitson, J. O’Rourke, D. R. Mole, M. Mukherji, E. Metzen, M. I. Wilson, A. Dhanda, Y. M. Tian, N. Masson, D. L. Hamilton, P. Jaakkola, R. Barstead, J. Hodgkin, P. H. Maxwell, C. W. Pugh, C. J. Schofield, and P. J. Ratcliffe. C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107:43–54 (2001).

    Article  PubMed  CAS  Google Scholar 

  88. M. Ivan, K. Kondo, H. Yang, W. Kim, J. Valiando, M. Ohh, A. Salic, J. M. Asara, W. S. Lane, and W. G. Kaelin, Jr. HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 292:464–468 (2001).

    PubMed  CAS  Google Scholar 

  89. Y. S. Chun, M. S. Kim, and J. W. Park. Oxygen-dependent and -independent regulation of HIF-1alpha. J. Korean Med. Sci. 17:581–588 (2002).

    PubMed  CAS  Google Scholar 

  90. L. E. Huang, J. Gu, M. Schau, and H. F. Bunn. Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc. Natl. Acad. Sci. U. S. A. 95:7987–7992 (1998).

    Article  PubMed  CAS  Google Scholar 

  91. P. H. Maxwell, M. S. Wiesener, G. W. Chang, S. C. Clifford, E. C. Vaux, M. E. Cockman, C. C. Wykoff, C. W. Pugh, E. R. Maher, and P. J. Ratcliffe. The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 399:271–275 (1999).

    Article  PubMed  CAS  Google Scholar 

  92. A. Zagorska, and J. Dulak. HIF-1: the knowns and unknowns of hypoxia sensing. Acta Biochim. Pol. 51:563–585 (2004).

    PubMed  CAS  Google Scholar 

  93. K. L. Talks, H. Turley, K. C. Gatter, P. H. Maxwell, C. W. Pugh, P. J. Ratcliffe, and A. L. Harris. The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am. J. Pathol. 157:411–421 (2000).

    PubMed  CAS  Google Scholar 

  94. H. Zhong, A. M. De Marzo, E. Laughner, M. Lim, D. A. Hilton, D. Zagzag, P. Buechler, W. B. Isaacs, G. L. Semenza, and J. W. Simons. Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59:5830–5835 (1999).

    PubMed  CAS  Google Scholar 

  95. I. F. Robey, A. D. Lien, S. J. Welsh, B. K. Baggett, and R. J. Gillies. Hypoxia-inducible factor-1alpha and the glycolytic phenotype in tumors. Neoplasia 7:324–330 (2005).

    Article  PubMed  CAS  Google Scholar 

  96. K. Kasuno, S. Takabuchi, K. Fukuda, S. Kizaka-Kondoh, J. Yodoi, T. Adachi, G. L. Semenza, and K. Hirota. Nitric oxide induces hypoxia-inducible factor 1 activation that is dependent on MAPK and phosphatidylinositol 3-kinase signaling. J. Biol. Chem. 279:2550–2558 (2004). Epub 2003 Nov 4.

    Article  PubMed  CAS  Google Scholar 

  97. R. Fukuda, K. Hirota, F. Fan, Y. D. Jung, L. M. Ellis, and G. L. Semenza. Insulin-like growth factor 1 induces hypoxia-inducible factor 1-mediated vascular endothelial growth factor expression, which is dependent on MAP kinase and phosphatidylinositol 3-kinase signaling in colon cancer cells. J. Biol. Chem. 277:38205–38211 (2002).

    Article  PubMed  CAS  Google Scholar 

  98. C. Treins, S. Giorgetti-Peraldi, J. Murdaca, G. L. Semenza, and E. Van Obberghen. Insulin stimulates hypoxia-inducible factor 1 through a phosphatidylinositol 3-kinase/target of rapamycin-dependent signaling pathway. J. Biol. Chem. 277:27975–27981 (2002).

    Article  PubMed  CAS  Google Scholar 

  99. E. Laughner, P. Taghavi, K. Chiles, P. C. Mahon, and G. L. Semenza. HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol. Cell Biol. 21:3995–4004 (2001).

    Article  PubMed  CAS  Google Scholar 

  100. R. Fukuda, B. Kelly, and G. L. Semenza. Vascular endothelial growth factor gene expression in colon cancer cells exposed to prostaglandin E2 is mediated by hypoxia-inducible factor 1. Cancer Res. 63:2330–2334 (2003).

    PubMed  CAS  Google Scholar 

  101. R. Bos, H. Zhong, C. F. Hanrahan, E. C. Mommers, G. L. Semenza, H. M. Pinedo, M. D. Abeloff, J. W. Simons, P. J. van Diest, and E. van der Wall. Levels of hypoxia-inducible factor-1 alpha during breast carcinogenesis. J. Natl. Cancer Inst. 93:309–314 (2001).

    Article  PubMed  CAS  Google Scholar 

  102. D. Zagzag, H. Zhong, J. M. Scalzitti, E. Laughner, J. W. Simons, and G. L. Semenza. Expression of hypoxia-inducible factor 1alpha in brain tumors: association with angiogenesis, invasion, and progression. Cancer 88:2606–2618 (2000).

    Article  PubMed  CAS  Google Scholar 

  103. G. L. Semenza. Targeting HIF-1 for cancer therapy. Nat. Rev. Cancer 3:721–732 (2003).

    Article  PubMed  CAS  Google Scholar 

  104. K. Lee, R. A. Roth, and J. J. Lapres. Hypoxia, drug therapy and toxicity. Pharmacol. Ther. 11:11 (2006).

    Google Scholar 

  105. S. Welsh, R. Williams, L. Kirkpatrick, G. Paine-Murrieta, and G. Powis. Antitumor activity and pharmacodynamic properties of PX-478, an inhibitor of hypoxia-inducible factor-1alpha. Mol. Cancer Ther. 3:233–244 (2004).

    PubMed  CAS  Google Scholar 

  106. C. Tan, R. G. de Noronha, A. J. Roecker, B. Pyrzynska, F. Khwaja, Z. Zhang, H. Zhang, Q. Teng, A. C. Nicholson, P. Giannakakou, W. Zhou, J. J. Olson, M. M. Pereira, K. C. Nicolaou, and E. G. Van Meir. Identification of a novel small-molecule inhibitor of the hypoxia-inducible factor 1 pathway. Cancer Res. 65:605–612 (2005).

    PubMed  CAS  Google Scholar 

  107. C. A. Cuenod, L. Fournier, D. Balvay, and J. M. Guinebretiere. Tumor angiogenesis: pathophysiology and implications for contrast-enhanced MRI and CT assessment. Abdom. Imaging 31:188–193 (2006).

    Article  PubMed  CAS  Google Scholar 

  108. D. Hanahan, and J. Folkman. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86:353–364 (1996).

    Article  PubMed  CAS  Google Scholar 

  109. R. P. Hill, K. De Jaeger, A. Jang, and R. Cairns. pH, hypoxia and metastasis. Novartis Found. Symp. 240:154–165 (2001); (discussion 165–168).

    PubMed  CAS  Google Scholar 

  110. P. Carmeliet and R. K. Jain. Angiogenesis in cancer and other diseases. Nature 407:249–257 (2000).

    Article  PubMed  CAS  Google Scholar 

  111. P. Carmeliet, V. Ferreira, G. Breier, S. Pollefeyt, L. Kieckens, M. Gertsenstein, M. Fahrig, A. Vandenhoeck, K. Harpal, C. Eberhardt, C. Declercq, J. Pawling, L. Moons, D. Collen, W. Risau, and A. Nagy. Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380:435–439 (1996).

    Article  PubMed  CAS  Google Scholar 

  112. N. Ferrara, K. Carver-Moore, H. Chen, M. Dowd, L. Lu, K. S. O’Shea, L. Powell-Braxton, K. J. Hillan, and M. W. Moore. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442 (1996).

    Article  PubMed  CAS  Google Scholar 

  113. W. Risau and V. Lemmon. Changes in the vascular extracellular matrix during embryonic vasculogenesis and angiogenesis. Dev. Biol. 125:441–450 (1988).

    Article  PubMed  CAS  Google Scholar 

  114. V. Goede, T. Schmidt, S. Kimmina, D. Kozian, and H. G. Augustin. Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab. Invest. 78:1385–1394 (1998).

    PubMed  CAS  Google Scholar 

  115. Z. Zhou, J. Wang, R. Cao, H. Morita, R. Soininen, K. M. Chan, B. Liu, Y. Cao, and K. Tryggvason. Impaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice. Cancer Res. 64:4699–4702 (2004).

    Article  PubMed  CAS  Google Scholar 

  116. K. A. Thomas. Vascular endothelial growth factor, a potent and selective angiogenic agent. J. Biol. Chem. 271:603–606 (1996).

    PubMed  CAS  Google Scholar 

  117. T. L. Haas, and J. A. Madri. Extracellular matrix-driven matrix metalloproteinase production in endothelial cells: implications for angiogenesis. Trends Cardiovasc. Med. 9:70–77 (1999).

    Article  PubMed  CAS  Google Scholar 

  118. J. E. Nor, J. Christensen, D. J. Mooney, and P. J. Polverini. Vascular endothelial growth factor (VEGF)-mediated angiogenesis is associated with enhanced endothelial cell survival and induction of Bcl-2 expression. Am. J. Pathol. 154:375–384 (1999).

    PubMed  CAS  Google Scholar 

  119. J. Tran, J. Rak, C. Sheehan, S. D. Saibil, E. LaCasse, R. G. Korneluk, and R. S. Kerbel. Marked induction of the IAP family antiapoptotic proteins survivin and XIAP by VEGF in vascular endothelial cells. Biochem. Biophys. Res. Commun. 264:781–788 (1999).

    Article  PubMed  CAS  Google Scholar 

  120. A. R. Pries, B. Reglin, and T. W. Secomb. Structural response of microcirculatory networks to changes in demand: information transfer by shear stress. Am. J. Physiol. Heart Circ. Physiol. 284:H2204–H2212 (2003).

    PubMed  CAS  Google Scholar 

  121. S. Rockwell, J. Yuan, S. Peretz, and P. M. Glazer. Genomic instability in cancer. Novartis Found. Symp. 240:133–142; (2001) (discussion 142–151).

    Article  PubMed  CAS  Google Scholar 

  122. R. J. Gillies, N. Raghunand, G. S. Karczmar, and Z. M. Bhujwalla. MRI of the tumor microenvironment. J. Magn. Reson. Imaging 16:430–450 (2002).

    Article  PubMed  Google Scholar 

  123. N. Raghunand, R. A. Gatenby, and R. J. Gillies. Microenvironmental and cellular consequences of altered blood flow in tumours. Br. J. Radiol. 76:S11–S22 (2003).

    Article  PubMed  Google Scholar 

  124. J. C. Lee, N. H. Chow, S. T. Wang, and S. M. Huang. Prognostic value of vascular endothelial growth factor expression in colorectal cancer patients. Eur. J. Cancer 36:748–753 (2000).

    Article  PubMed  CAS  Google Scholar 

  125. Y. Liang, R. A. Brekken, and S. M. Hyder. Vascular endothelial growth factor induces proliferation of breast cancer cells and inhibits the anti-proliferative activity of anti-hormones. Endocr. Relat. Cancer 13:905–919 (2006).

    Article  PubMed  CAS  Google Scholar 

  126. H. Takizawa, K. Kondo, H. Fujino, K. Kenzaki, T. Miyoshi, S. Sakiyama, and A. Tangoku. The balance of VEGF-C and VEGFR-3 mRNA is a predictor of lymph node metastasis in non-small cell lung cancer. Br. J. Cancer 95:75–79 (2006).

    Article  PubMed  CAS  Google Scholar 

  127. G. Soufla, S. Sifakis, S. Baritaki, A. Zafiropoulos, E. Koumantakis, and D. A. Spandidos. VEGF, FGF2, TGFB1 and TGFBR1 mRNA expression levels correlate with the malignant transformation of the uterine cervix. Cancer Lett. 221:105–118 (2005).

    Article  PubMed  CAS  Google Scholar 

  128. N. Ferrara. VEGF as a therapeutic target in cancer. Oncology 69:11–16 (2005).

    Article  PubMed  CAS  Google Scholar 

  129. FDA. New targeted therapy for rare stomach, kidney cancers. FDA Consum. 40:5 (2006).

    Google Scholar 

  130. S. B. Wedam, J. A. Low, S. X. Yang, C. K. Chow, P. Choyke, D. Danforth, S. M. Hewitt, A. Berman, S. M. Steinberg, D. J. Liewehr, J. Plehn, A. Doshi, D. Thomasson, N. McCarthy, H. Koeppen, M. Sherman, J. Zujewski, K. Camphausen, H. Chen, and S. M. Swain. Antiangiogenic and antitumor effects of bevacizumab in patients with inflammatory and locally advanced breast cancer. J. Clin. Oncol. 24:769–777 (2006).

    Article  PubMed  CAS  Google Scholar 

  131. B. Morgan, A. L. Thomas, J. Drevs, J. Hennig, M. Buchert, A. Jivan, M. A. Horsfield, K. Mross, H. A. Ball, L. Lee, W. Mietlowski, S. Fuxuis, C. Unger, K. O’Byrne, A. Henry, G. R. Cherryman, D. Laurent, M. Dugan, D. Marme, and W. P. Steward. Dynamic contrast-enhanced magnetic resonance imaging as a biomarker for the pharmacological response of PTK787/ZK 222584, an inhibitor of the vascular endothelial growth factor receptor tyrosine kinases, in patients with advanced colorectal cancer and liver metastases: results from two phase I studies. J. Clin. Oncol. 21:3955–3964 (2003).

    Article  PubMed  CAS  Google Scholar 

  132. M. Rudin, P. M. McSheehy, P. R. Allegrini, M. Rausch, D. Baumann, M. Becquet, K. Brecht, J. Brueggen, S. Ferretti, F. Schaeffer, C. Schnell, and J. Wood. PTK787/ZK222584, a tyrosine kinase inhibitor of vascular endothelial growth factor receptor, reduces uptake of the contrast agent GdDOTA by murine orthotopic B16/BL6 melanoma tumours and inhibits their growth in vivo. NMR Biomed. 18:308–321 (2005).

    Article  PubMed  CAS  Google Scholar 

  133. G. Liu, H. S. Rugo, G. Wilding, T. M. McShane, J. L. Evelhoch, C. Ng, E. Jackson, F. Kelcz, B. M. Yeh, F. T. Lee, Jr., C. Charnsangavej, J. W. Park, E. A. Ashton, H. M. Steinfeldt, Y. K. Pithavala, S. D. Reich, and R. S. Herbst. Dynamic contrast-enhanced magnetic resonance imaging as a pharmacodynamic measure of response after acute dosing of AG-013736, an oral angiogenesis inhibitor, in patients with advanced solid tumors: results from a phase I study. J. Clin. Oncol. 23:5464–5473 (2005).

    Article  PubMed  CAS  Google Scholar 

  134. K. L. Li, L. J. Wilmes, R. G. Henry, M. G. Pallavicini, J. W. Park, D. D. Hu-Lowe, T. M. McShane, D. R. Shalinsky, Y. J. Fu, R. C. Brasch, and N. M. Hylton. Heterogeneity in the angiogenic response of a BT474 human breast cancer to a novel vascular endothelial growth factor-receptor tyrosine kinase inhibitor: assessment by voxel analysis of dynamic contrast-enhanced MRI. J. Magn. Reson. Imaging 22:511–519 (2005).

    Article  PubMed  CAS  Google Scholar 

  135. P. Marzola, A. Degrassi, L. Calderan, P. Farace, E. Nicolato, C. Crescimanno, M. Sandri, A. Giusti, E. Pesenti, A. Terron, A. Sbarbati, and F. Osculati. Early antiangiogenic activity of SU11248 evaluated in vivo by dynamic contrast-enhanced magnetic resonance imaging in an experimental model of colon carcinoma. Clin. Cancer Res. 11:5827–5832 (2005).

    Article  PubMed  CAS  Google Scholar 

  136. B. Giantonio, D. Levy, P. O’Dwyer, N. Meropol, P. Catalano, and A. Benson, 3rd. A phase II study of high-dose bevacizumab in combination with irinotecan, 5-fluorouracil, leucovorin, as initial therapy for advanced colorectal cancer: results from the eastern cooperative oncology group study E2200. Ann. Oncol. 17:1399–1403 (2006).

    Article  PubMed  CAS  Google Scholar 

  137. H. I. Hurwitz, L. Fehrenbacher, J. D. Hainsworth, W. Heim, J. Berlin, E. Holmgren, J. Hambleton, W. F. Novotny, and F. Kabbinavar. Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J. Clin. Oncol. 23:3502–3508 (2005).

    Article  PubMed  CAS  Google Scholar 

  138. A. Preda, V. Novikov, M. Moglich, K. Turetschek, D. M. Shames, R. C. Brasch, F. M. Cavagna, and T. P. Roberts. MRI monitoring of Avastin antiangiogenesis therapy using B22956/1, a new blood pool contrast agent, in an experimental model of human cancer. J. Magn. Reson. Imaging 20:865–873 (2004).

    Article  PubMed  Google Scholar 

  139. W. B. Pope, A. Lai, P. Nghiemphu, P. Mischel, and T. F. Cloughesy. MRI in patients with high-grade gliomas treated with bevacizumab and chemotherapy. Neurology 66:1258–1260 (2006).

    Article  PubMed  CAS  Google Scholar 

  140. R. R. Jennens, M. A. Rosenthal, G. J. Lindeman, and M. Michael. Complete radiological and metabolic response of metastatic renal cell carcinoma to SU5416 (semaxanib) in a patient with probable von Hippel-Lindau syndrome. Urol. Oncol. 22:193–196 (2004).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renu M. Stephen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stephen, R.M., Gillies, R.J. Promise and Progress for Functional and Molecular Imaging of Response to Targeted Therapies. Pharm Res 24, 1172–1185 (2007). https://doi.org/10.1007/s11095-007-9250-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-007-9250-3

Key words

Navigation