Skip to main content

Advertisement

Log in

Pharmacokinetic Consequences of Active Drug Efflux at the Blood–Brain Barrier

  • Research Paper
  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Purpose

The objective of this simulation study was to investigate how the nature, location, and capacity of the efflux processes in relation to the permeability properties influence brain concentrations.

Methods

Reduced brain concentrations can be due to either influx hindrance, a gatekeeper function in the luminal membrane, which has been suggested for ABCB1 (P-glycoprotein), or efflux enhancement by transporters that pick up molecules on one side of the luminal or abluminal membrane and release them on the other side. Pharmacokinetic models including passive transport, influx hindrance, and efflux enhancement were built using the computer program MATLAB. The simulations were based on experimentally obtained parameters for morphine, morphine-3-glucuronide, morphine-6-glucuronide, and gabapentin.

Results

The influx hindrance process is the more effective for keeping brain concentrations low. Efflux enhancement decreases the half-life of the drug in the brain, whereas with influx hindrance the half-life is similar to that seen with passive transport. The relationship between the influx and efflux of the drug across the blood–brain barrier determines the steady-state ratio of brain to plasma concentrations of unbound drug, K p,uu .

Conclusions

Both poorly and highly permeable drugs can reach the same steady-state ratio, although the time to reach steady state will differ. The volume of distribution of unbound drug in the brain does not influence K p,uu , but does influence the total brain-to-blood ratio K p and the time to reach steady state in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABCB1:

P-glycoprotein

A tot,br :

total (unbound, bound, intracellular) amount of drug in the brain

BBB:

blood–brain barrier

CL :

systemic clearance

CL pass :

unbound passive clearance

CL 1 :

clearance by influx hindrance

CL 2 :

clearance by efflux enhancement at the luminal membrane

CL 3 :

clearance by efflux enhancement at the abluminal membrane

CNS:

central nervous system

CSF:

cerebrospinal fluid

C bl :

drug concentration in blood

CL in :

net influx clearance

CL out :

net efflux clearance

C u,bl :

unbound drug concentration in blood

C u,br :

unbound drug concentration in brain

C u,ec :

unbound drug concentration in endothelium

C u,ss,bl :

unbound drug concentration in blood at steady state

C u,ss,br :

unbound drug concentration in brain at steady state

ISF:

interstitial fluid

J max :

maximal active transport capacity elimination constant

k el :

elimination constant

K p :

ratio of total brain to total plasma concentration

K p,u :

ratio of total brain to unbound plasma concentration

K p,uu :

ratio of unbound brain to unbound plasma concentration

K t :

unbound concentration at 50% of Jmax

M3G:

morphine-3-glucuronide

M6G:

morphine-6-glucuronide

OAT3:

organic anion transporter

Pgp:

P-glycoprotein

PS:

permeability surface area

Q :

mass flux

R 0 :

infusion rate

t 1/2 :

half-life

V bl :

volume of blood in the brain tissue

V u,bl :

distribution volume of unbound drug in blood

V u,br :

distribution volume of unbound drug in brain

V u,ec :

distribution volume of unbound drug in endothelium

References

  1. A. Tsuji T. Terasaki Y. Takabatake Y. Tenda I. Tamai T. Yamashima S. Moritani T. Tsuruo J. Yamashita (1992) ArticleTitleP-glycoprotein as the drug efflux pump in primary cultured bovine brain capillary endothelial cells Life Sci. 51 1427–1437 Occurrence Handle10.1016/0024-3205(92)90537-Y Occurrence Handle1:CAS:528:DyaK38XmtVCmsL4%3D Occurrence Handle1357522

    Article  CAS  PubMed  Google Scholar 

  2. Y. Raviv H. B. Pollard E. P. Bruggemann I. Pastan M. M. Gottesman (1990) ArticleTitlePhotosensitized labeling of a functional multidrug transporter in living drug-resistant tumor cells J. Biol. Chem. 265 3975–3980 Occurrence Handle1:CAS:528:DyaK3cXhslWrtbc%3D Occurrence Handle1968065

    CAS  PubMed  Google Scholar 

  3. C. F. Higgins M. M. Gottesman (1992) ArticleTitleIs the multidrug transporter a flippase? Trends Biochem. Sci. 17 18–21 Occurrence Handle10.1016/0968-0004(92)90419-A Occurrence Handle1:CAS:528:DyaK38Xht1Srtr0%3D Occurrence Handle1374941

    Article  CAS  PubMed  Google Scholar 

  4. L. Homolya Z. Hollo U. A. Germann I. Pastan M. M. Gottesman B. Sarkadi (1993) ArticleTitleFluorescent cellular indicators are extruded by the multidrug resistance protein J. Biol. Chem. 268 21493–21496 Occurrence Handle1:CAS:528:DyaK3sXlsFGhtb0%3D Occurrence Handle8104940

    CAS  PubMed  Google Scholar 

  5. C. F. Higgins K. J. Linton (2004) ArticleTitleThe ATP switch model for ABC transporters Nat. Struct. Mol. Biol. 11 918–926 Occurrence Handle10.1038/nsmb836 Occurrence Handle1:CAS:528:DC%2BD2cXnvVOnsLs%3D Occurrence Handle15452563

    Article  CAS  PubMed  Google Scholar 

  6. W. D. Stein C. Cardarelli I. Pastan M. M. Gottesman (1994) ArticleTitleKinetic evidence suggesting that the multidrug transporter differentially handles influx and efflux of its substrates Mol. Pharmacol. 45 763–772 Occurrence Handle1:CAS:528:DyaK2cXjtFGgtbs%3D Occurrence Handle7910372

    CAS  PubMed  Google Scholar 

  7. F. J. Sharom (1997) ArticleTitleThe P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 160 161–175 Occurrence Handle10.1007/s002329900305 Occurrence Handle1:CAS:528:DyaK2sXotV2isb4%3D Occurrence Handle9425600

    Article  CAS  PubMed  Google Scholar 

  8. R. Kikuchi H. Kusuhara D. Sugiyama Y. Sugiyama (2003) ArticleTitleContribution of organic anion transporter 3 (Slc22a8) to the elimination of p-aminohippuric acid and benzylpenicillin across the blood–brain barrier J. Pharmacol. Exp. Ther. 306 51–58 Occurrence Handle10.1124/jpet.103.049197 Occurrence Handle1:CAS:528:DC%2BD3sXkvF2ltb0%3D Occurrence Handle12684544

    Article  CAS  PubMed  Google Scholar 

  9. S. Mori H. Takanaga S. Ohtsuki T. Deguchi Y. S. Kang K. Hosoya T. Terasaki (2003) ArticleTitleRat organic anion transporter 3 (rOAT3) is responsible for brain-to-blood efflux of homovanillic acid at the abluminal membrane of brain capillary endothelial cells J. Cereb. Blood Flow Metab. 23 432–440 Occurrence Handle10.1097/00004647-200304000-00007 Occurrence Handle1:CAS:528:DC%2BD3sXis1Citbo%3D Occurrence Handle12679720

    Article  CAS  PubMed  Google Scholar 

  10. W. D. Stein (1997) ArticleTitleKinetics of the multidrug transporter (P-glycoprotein) and its reversal Physiol. Rev. 77 545–590 Occurrence Handle1:CAS:528:DyaK2sXjtF2kt78%3D Occurrence Handle9114823

    CAS  PubMed  Google Scholar 

  11. P. L. Golden G. M. Pollack (1998) ArticleTitleRationale for influx enhancement versus efflux blockade to increase drug exposure to the brain Biopharm. Drug. Dispos. 19 263–272 Occurrence Handle10.1002/(SICI)1099-081X(199805)19:4<263::AID-BDD104>3.0.CO;2-4 Occurrence Handle1:CAS:528:DyaK1cXjt1arsb4%3D Occurrence Handle9604127

    Article  CAS  PubMed  Google Scholar 

  12. S. H. Jang M. G. Wientjes J. L. Au (2003) ArticleTitleInterdependent effect of P-glycoprotein-mediated drug efflux and intracellular drug binding on intracellular paclitaxel pharmacokinetics: application of computational modeling J. Pharmacol. Exp. Ther. 304 773–780 Occurrence Handle10.1124/jpet.102.044172 Occurrence Handle1:CAS:528:DC%2BD3sXpvVCmuw%3D%3D Occurrence Handle12538833

    Article  CAS  PubMed  Google Scholar 

  13. J. R. Pappenheimer B. P. Setchell (1973) ArticleTitleCerebral glucose transport and oxygen consumption in sheep and rabbits J. Physiol. 233 529–551 Occurrence Handle1:CAS:528:DyaE2cXlslyqtg%3D%3D Occurrence Handle4754872

    CAS  PubMed  Google Scholar 

  14. A. Gjedde O. Christensen (1984) ArticleTitleEstimates of Michaelis-Menten constants for the two membranes of the brain endothelium J. Cereb. Blood Flow Metab. 4 241–249 Occurrence Handle1:STN:280:BiuB3M3osFM%3D Occurrence Handle6725434

    CAS  PubMed  Google Scholar 

  15. V. J. Cunningham R. J. Hargreaves D. Pelling S. R. Moorhouse (1986) ArticleTitleRegional blood–brain glucose transfer in the rat: a novel double-membrane kinetic analysis J. Cereb. Blood Flow Metab. 6 305–314 Occurrence Handle1:CAS:528:DyaL28XksVSjtb4%3D Occurrence Handle3711158

    CAS  PubMed  Google Scholar 

  16. G. A. Oyler R. B. Duckrow R. A. Hawkins (1992) ArticleTitleComputer simulation of the blood–brain barrier: a model including two membranes, blood flow, facilitated and non-facilitated diffusion J. Neurosci. Methods 44 179–196 Occurrence Handle10.1016/0165-0270(92)90010-B Occurrence Handle1:STN:280:ByyC3MnksVw%3D Occurrence Handle1474851

    Article  CAS  PubMed  Google Scholar 

  17. H. Ashida T. Oonishi N. Uyesaka (1998) ArticleTitleKinetic analysis of the mechanism of action of the multidrug transporter J. Theor. Biol. 195 219–232 Occurrence Handle10.1006/jtbi.1998.0787 Occurrence Handle1:CAS:528:DyaK1MXlslKi Occurrence Handle9822564

    Article  CAS  PubMed  Google Scholar 

  18. R. N. Upton (2002) ArticleTitleTheoretical aspects of P-glycoprotein mediated drug efflux on the distribution volume of anaesthetic-related drugs in the brain Anaesth. Intensive Care 30 183–191 Occurrence Handle1:STN:280:DC%2BD383mt1Clug%3D%3D Occurrence Handle12002926

    CAS  PubMed  Google Scholar 

  19. H. Sun P. M. Bungay W. F. Elmquist (2001) ArticleTitleEffect of capillary efflux transport inhibition on the determination of probe recovery during in vivo microdialysis in the brain J. Pharmacol. Exp. Ther. 297 991–1000 Occurrence Handle1:CAS:528:DC%2BD3MXjvVSiu7c%3D Occurrence Handle11356921

    CAS  PubMed  Google Scholar 

  20. I. Szentistvanyi C. S. Patlak R. A. Ellis H. F. Cserr (1984) ArticleTitleDrainage of interstitial fluid from different regions of rat brain Am. J. Physiol. 246 F835–F844 Occurrence Handle1:STN:280:BiuB2Mvgs1Q%3D Occurrence Handle6742132

    CAS  PubMed  Google Scholar 

  21. M. Hammarlund-Udenaes (2000) ArticleTitleThe use of microdialysis in CNS drug delivery studies. Pharmacokinetic perspectives and results with analgesics and antiepileptics Adv. Drug Deliv. Rev. 45 283–294 Occurrence Handle10.1016/S0169-409X(00)00109-5 Occurrence Handle1:CAS:528:DC%2BD3cXosFerur8%3D Occurrence Handle11108980

    Article  CAS  PubMed  Google Scholar 

  22. E. C. Langede M. Danhof (2002) ArticleTitleConsiderations in the use of cerebrospinal fluid pharmacokinetics to predict brain target concentrations in the clinical setting: implications of the barriers between blood and brain Clin. Pharmacokinet. 41 691–703 Occurrence Handle10.2165/00003088-200241100-00001

    Article  Google Scholar 

  23. W. M. Pardridge (2004) ArticleTitleLog(BB), PS products and in silico models of drug brain penetration Drug Discov. Today 9 392–393 Occurrence Handle10.1016/S1359-6446(04)03065-X Occurrence Handle15081955

    Article  PubMed  Google Scholar 

  24. MathWorks. MATLAB The Language of Technical Computing; Using MATLAB, MathWorks, Natick, MA, 2002.

  25. B. Davies T. Morris (1993) ArticleTitlePhysiological parameters in laboratory animals and humans Pharm. Res. 10 1093–1095 Occurrence Handle10.1023/A:1018943613122 Occurrence Handle1:STN:280:ByyA1M7ivFQ%3D Occurrence Handle8378254

    Article  CAS  PubMed  Google Scholar 

  26. W. M. Pardridge D. Triguero J. Yang P. A. Cancilla (1990) ArticleTitleComparison of in vitro and in vivo models of drug transcytosis through the blood–brain barrier J. Pharmacol. Exp. Ther. 253 884–891 Occurrence Handle1:CAS:528:DyaK3cXktFOnsr8%3D Occurrence Handle2338660

    CAS  PubMed  Google Scholar 

  27. C. Nicholson J. M. Phillips (1981) ArticleTitleIon diffusion modified by tortuosity and volume fraction in the extracellular microenvironment of the rat cerebellum J. Physiol. 321 225–257 Occurrence Handle1:STN:280:Bi2C28bps1c%3D Occurrence Handle7338810

    CAS  PubMed  Google Scholar 

  28. R. Xie M. R. Bouw M. Hammarlund-Udenaes (2000) ArticleTitleModelling of the blood–brain barrier transport of morphine-3-glucuronide studied using microdialysis in the rat: involvement of probenecid-sensitive transport Br. J. Pharmacol. 131 1784–1792 Occurrence Handle1:CAS:528:DC%2BD3MXjtVGrsw%3D%3D Occurrence Handle11139459

    CAS  PubMed  Google Scholar 

  29. M. R. Bouw R. Xie K. Tunblad M. Hammarlund-Udenaes (2001) ArticleTitleBlood–brain barrier transport and brain distribution of morphine-6-glucuronide in relation to the antinociceptive effect in rats—pharmacokinetic/pharmacodynamic modelling Br. J. Pharmacol. 134 1796–1804 Occurrence Handle10.1038/sj.bjp.0704406 Occurrence Handle1:CAS:528:DC%2BD38XkvFSj Occurrence Handle11739257

    Article  CAS  PubMed  Google Scholar 

  30. K. Tunblad M. Hammarlund-Udenaes E. N. Jonsson (2005) ArticleTitleInfluence of probenecid on the delivery of morphine-6-glucuronide to the brain Eur. J. Pharm. Sci. 24 49–57 Occurrence Handle10.1016/j.ejps.2004.09.009 Occurrence Handle1:CAS:528:DC%2BD2MXjtlel Occurrence Handle15626577

    Article  CAS  PubMed  Google Scholar 

  31. K. Tunblad E. N. Jonsson M. Hammarlund-Udenaes (2003) ArticleTitleMorphine blood–brain barrier transport is influenced by probenecid co-administration Pharm. Res. 20 618–623 Occurrence Handle10.1023/A:1023250900462 Occurrence Handle1:CAS:528:DC%2BD3sXivVWksbk%3D Occurrence Handle12739770

    Article  CAS  PubMed  Google Scholar 

  32. Y. Wang D. F. Welty (1996) ArticleTitleThe simultaneous estimation of the influx and efflux blood–brain barrier permeabilities of gabapentin using a microdialysis–pharmacokinetic approach Pharm. Res. 13 398–403 Occurrence Handle10.1023/A:1016092525901 Occurrence Handle1:CAS:528:DyaK28XhvVOiurY%3D Occurrence Handle8692732

    Article  CAS  PubMed  Google Scholar 

  33. S. Mori S. Ohtsuki H. Takanaga T. Kikkawa Y. S. Kang T. Terasaki (2004) ArticleTitleOrganic anion transporter 3 is involved in the brain-to-blood efflux transport of thiopurine nucleobase analogs J. Neurochem. 90 931–941 Occurrence Handle10.1111/j.1471-4159.2004.02552.x Occurrence Handle1:CAS:528:DC%2BD2cXntFeitb0%3D Occurrence Handle15287899

    Article  CAS  PubMed  Google Scholar 

  34. C. Dagenais C. L. Graff G. M. Pollack (2004) ArticleTitleVariable modulation of opioid brain uptake by P-glycoprotein in mice Biochem. Pharmacol. 67 269–276 Occurrence Handle10.1016/j.bcp.2003.08.027 Occurrence Handle1:CAS:528:DC%2BD3sXpvF2qsL0%3D Occurrence Handle14698039

    Article  CAS  PubMed  Google Scholar 

  35. H. Takanaga H. Murakami N. Koyabu H. Matsuo M. Naito T. Tsuruo Y. Sawada (1998) ArticleTitleEfflux transport of tolbutamide across the blood–brain barrier J. Pharm. Pharmacol. 50 1027–1033 Occurrence Handle1:CAS:528:DyaK1cXmvVWjsLc%3D Occurrence Handle9811164

    CAS  PubMed  Google Scholar 

  36. S. Cisternino C. Rousselle M. Debray J. M. Scherrmann (2004) ArticleTitleIn situ transport of vinblastine and selected P-glycoprotein substrates: implications for drug–drug interactions at the mouse blood–brain barrier Pharm. Res. 21 1382–1389 Occurrence Handle10.1023/B:PHAM.0000036911.49191.da Occurrence Handle1:CAS:528:DC%2BD2cXmtlGnurc%3D Occurrence Handle15359572

    Article  CAS  PubMed  Google Scholar 

  37. M. Dogruel J. E. Gibbs S. A. Thomas (2003) ArticleTitleHydroxyurea transport across the blood–brain and blood–cerebrospinal fluid barriers of the guinea-pig J. Neurochem. 87 76–84 Occurrence Handle10.1046/j.1471-4159.2003.01968.x Occurrence Handle1:CAS:528:DC%2BD3sXotFSksb8%3D Occurrence Handle12969254

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Swedish foundation for strategic research (Stockholm, Sweden), by the Swedish Research Council no 11558, and by Uppsala Imanet (Uppsala, Sweden).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margareta Hammarlund-Udenaes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syvänen, S., Xie, R., Sahin, S. et al. Pharmacokinetic Consequences of Active Drug Efflux at the Blood–Brain Barrier. Pharm Res 23, 705–717 (2006). https://doi.org/10.1007/s11095-006-9780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11095-006-9780-0

Key Words

Navigation