Skip to main content

Advertisement

Log in

The brain tissue response to surgical injury and its possible contribution to glioma recurrence

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Surgery is the first line therapy for glioma. However, glioma recurs in 90 % of the patients in the resection margin. The impact of surgical brain injury (SBI) on glioma recurrence is largely overlooked. Herein, we review some of the mechanisms involved in tissue repair that may impact glioma recurrence at the resection margin. Many processes or molecules involved in tissue repair after brain injury are also critical for glioma growth. They include a wide array of secreted growth factors, cytokines and transcription factors including NFКB and STAT3 which in turn activate proliferative and anti-apoptotic genes and processes such as angiogenesis and inflammation. Because some residual glioma cells always remain in the tumor resection margin, there are now compelling arguments to suggest that some aspects of the brain tissue response to SBI can also participate to glioma recurrence at the resection margin. Brain tissue response to SBI recruits angiogenesis and inflammation that precede and then follow tumor recurrence at the resection margin. The healing response to SBI is double edged, as inflammation is involved in regeneration and healing, and has both pro- and anti-tumorigenic functions. A promising therapeutic approach is to normalize and re-educate the molecular and cellular responses at the resection margin to promote anti-tumorigenic processes involved in healing while inhibiting pro-tumorigenic activities. Manipulation of the inflammatory response to SBI to prevent local recurrence could also enhance the efficacy of other therapies such as immunotherapy. However, our current knowledge is far from sufficient to achieve this goal. Acknowledging, understanding and manipulating the double-edged role played by SBI in glioma recurrence is surely challenging, but it cannot be longer delayed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Lemée J-M, Clavreul A, Menei P (2015) Intratumoral heterogeneity in glioblastoma: don’t forget the peritumoral brain zone. Neuro-Oncol 17:1322–1332

    Article  PubMed  Google Scholar 

  2. Giese A, Bjerkvig R, Berens ME, Westphal M (2003) Cost of migration: invasion of malignant gliomas and implications for treatment. J Clin Oncol 21:1624–1636

    Article  CAS  PubMed  Google Scholar 

  3. Jadhav V, Zhang JH (2008) Surgical brain injury: prevention is better than cure. Front Biosci 13:3793–3797

    Article  PubMed  Google Scholar 

  4. Gempt J, Gerhardt J, Toth V, Hüttinger S, Ryang Y-M, Wostrack M, Krieg SM, Meyer B, Förschler A, Ringel F (2013) Postoperative ischemic changes following brain metastasis resection as measured by diffusion-weighted magnetic resonance imaging. J Neurosurg 119:1395–1400

    Article  PubMed  Google Scholar 

  5. Frontczak-Baniewicz M, Chrapusta SJ, Sulejczak D (2011) Long-term consequences of surgical brain injury—characteristics of the neurovascular unit and formation and demise of the glial scar in a rat model. Folia Neuropathol 49:204–218

    PubMed  Google Scholar 

  6. Frontczak-Baniewicz M, Walski M (2003) New vessel formation after surgical brain injury in the rat’s cerebral cortex I. Formation of the blood vessels proximally to the surgical injury. Acta Neurobiol Exp 63:65–75

    Google Scholar 

  7. Mueller MM, Fusenig NE (2004) Friends or foes—bipolar effects of the tumour stroma in cancer. Nat Rev Cancer 4:839–849

    Article  CAS  PubMed  Google Scholar 

  8. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357:539–545

    Article  CAS  PubMed  Google Scholar 

  9. Deelman HT (1927) The part played by injury and repair in the development of cancer. Br Med J 1:872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fisher B, Fisher ER (1959) Experimental evidence in support of the dormant tumor cell. Science 130:918–919

    Article  CAS  PubMed  Google Scholar 

  11. Bogden AE, Moreau JP, Eden PA (1997) Proliferative response of human and animal tumours to surgical wounding of normal tissues: onset, duration and inhibition. Br J Cancer 75:1021–1027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dolberg DS, Hollingsworth R, Hertle M, Bissell MJ (1985) Wounding and its role in RSV-mediated tumor formation. Science 230:676–678

    Article  CAS  PubMed  Google Scholar 

  13. Kuraishy A, Karin M, Grivennikov SI (2011) Tumor promotion via injury- and death-induced inflammation. Immunity 35:467–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Grivennikov SI, Greten FR, Karin M (2010) Immunity, inflammation, and cancer. Cell 140:883–899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Grivennikov SI, Karin M (2010) Inflammation and oncogenesis: a vicious connection. Curr Opin Genet Dev 20:65–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Diakos CI, Charles KA, McMillan DC, Clarke SJ (2014) Cancer-related inflammation and treatment effectiveness. Lancet Oncol 15:e493–e503

    Article  PubMed  Google Scholar 

  17. Indraccolo S, Stievano L, Minuzzo S, Tosello V, Esposito G, Piovan E, Zamarchi R, Chieco-Bianchi L, Amadori A (2006) Interruption of tumor dormancy by a transient angiogenic burst within the tumor microenvironment. Proc Natl Acad Sci U S A 103:4216–4221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kong B, Michalski CW, Friess H, Kleeff J (2010) Surgical procedure as an inducer of tumor angiogenesis. Exp Oncol 32:186–189

    CAS  PubMed  Google Scholar 

  19. Demicheli R, Retsky MW, Hrushesky WJM, Baum M, Gukas ID (2008) The effects of surgery on tumor growth: a century of investigations. Ann Oncol 19:1821–1828

    Article  CAS  PubMed  Google Scholar 

  20. Burda JE, Sofroniew MV (2014) Reactive gliosis and the multicellular response to CNS damage and disease. Neuron 81:229–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Reis C, Wang Y, Akyol O, Ho WM, Ii RA, Stier G, Martin R, Zhang JH (2015) What’s new in traumatic brain injury: update on tracking, monitoring and treatment. Int J Mol Sci 16:11903–11965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dvorak HF (1986) Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N Engl J Med 315:1650–1659

    Article  CAS  PubMed  Google Scholar 

  23. Schäfer M, Werner S (2008) Cancer as an overhealing wound: an old hypothesis revisited. Nat Rev Mol Cell Biol 9:628–638

    Article  PubMed  Google Scholar 

  24. Liu J-M, Mao B-Y, Hong S, Liu Y-H, Wang X-J (2008) The postoperative brain tumour stem cell (BTSC) niche and cancer recurrence. Adv Ther 25:389–398

    Article  PubMed  Google Scholar 

  25. Carpenter AV, Flanders WD, Frome EL, Cole P, Fry SA (1987) Brain cancer and nonoccupational risk factors: a case-control study among workers at two nuclear facilities. Am J Public Health 77:1180–1182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wrensch M, Miike R, Lee M, Neuhaus J (2000) Are prior head injuries or diagnostic X-rays associated with glioma in adults? The effects of control selection bias. Neuroepidemiology 19:234–244

    Article  CAS  PubMed  Google Scholar 

  27. Zampieri P, Meneghini F, Grigoletto F, Gerosa M, Licata C, Casentini L, Longatti PL, Padoan A, Mingrino S (1994) Risk factors for cerebral glioma in adults: a case-control study in an Italian population. J Neurooncol 19:61–67

    Article  CAS  PubMed  Google Scholar 

  28. Gousias K, Markou M, Voulgaris S, Goussia A, Voulgari P, Bai M, Polyzoidis K, Kyritsis A, Alamanos Y (2009) Descriptive epidemiology of cerebral gliomas in northwest Greece and study of potential predisposing factors, 2005-2007. Neuroepidemiology 33:89–95

    Article  CAS  PubMed  Google Scholar 

  29. Moorthy RK, Rajshekhar V (2004) Development of glioblastoma multiforme following traumatic cerebral contusion: case report and review of literature. Surg Neurol 61:180–184

    Article  PubMed  Google Scholar 

  30. Zairi F, Aboukais R, Maurage CA, Assaker R (2014) Glioblastoma occurring after the surgical resection of a craniopharyngioma. Br J Neurosurg 28:284–286

    Article  PubMed  Google Scholar 

  31. Inskip PD, Mellemkjaer L, Gridley G, Olsen JH (1998) Incidence of intracranial tumors following hospitalization for head injuries (Denmark). Cancer Causes Control 9:109–116

    Article  CAS  PubMed  Google Scholar 

  32. Salvati M, Caroli E, Rocchi G, Frati A, Brogna C, Orlando ER (2004) Post-traumatic glioma. Report of four cases and review of the literature. Tumori 90:416–419

    PubMed  Google Scholar 

  33. Stummer W, van den Bent MJ, Westphal M (2011) Cytoreductive surgery of glioblastoma as the key to successful adjuvant therapies: new arguments in an old discussion. Acta Neurochir 153:1211–1218

    Article  PubMed  Google Scholar 

  34. Keles GE, Anderson B, Berger MS (1999) The effect of extent of resection on time to tumor progression and survival in patients with glioblastoma multiforme of the cerebral hemisphere. Surg Neurol 52:371–379

    Article  CAS  PubMed  Google Scholar 

  35. Sanai N, Polley M-Y, McDermott MW, Parsa AT, Berger MS (2011) An extent of resection threshold for newly diagnosed glioblastomas. J Neurosurg 115:3–8

    Article  PubMed  Google Scholar 

  36. Mellergård P, Sjögren F, Hillman J (2010) Release of VEGF and FGF in the extracellular space following severe subarachnoidal haemorrhage or traumatic head injury in humans. Br J Neurosurg 24:261–267

    Article  PubMed  Google Scholar 

  37. Mellergård P, Åneman O, Sjögren F, Säberg C, Hillman J (2011) Differences in cerebral extracellular response of interleukin-1β, interleukin-6, and interleukin-10 after subarachnoid hemorrhage or severe head trauma in humans. Neurosurgery 68:12–19

    Article  PubMed  Google Scholar 

  38. Haley EM, Kim Y (2014) The role of basic fibroblast growth factor in glioblastoma multiforme and glioblastoma stem cells and in their in vitro culture. Cancer Lett 346:1–5

    Article  CAS  PubMed  Google Scholar 

  39. Dunn IF, Heese O, Black PM (2000) Growth factors in glioma angiogenesis: FGFs, PDGF, EGF, and TGFs. J Neurooncol 50:121–137

    Article  CAS  PubMed  Google Scholar 

  40. Zhu VF, Yang J, Lebrun DG, Li M (2012) Understanding the role of cytokines in glioblastoma multiforme pathogenesis. Cancer Lett 316:139–150

    Article  CAS  PubMed  Google Scholar 

  41. Helmy A, Carpenter KLH, Menon DK, Pickard JD, Hutchinson PJA (2011) The cytokine response to human traumatic brain injury: temporal profiles and evidence for cerebral parenchymal production. J Cereb Blood Flow Metab 31:658–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lindholm D, Castrén E, Kiefer R, Zafra F, Thoenen H (1992) Transforming growth factor-beta 1 in the rat brain: increase after injury and inhibition of astrocyte proliferation. J Cell Biol 117:395–400

    Article  CAS  PubMed  Google Scholar 

  43. Han J, Alvarez-Breckenridge CA, Wang Q-E, Yu J (2015) TGF-β signaling and its targeting for glioma treatment. Am J Cancer Res 5:945–955

    PubMed  PubMed Central  Google Scholar 

  44. Magnus N, Garnier D, Meehan B et al (2014) Tissue factor expression provokes escape from tumor dormancy and leads to genomic alterations. Proc Natl Acad Sci U S A 111:3544–3549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Gdynia G, Keith M, Kopitz J et al (2010) Danger signaling protein HMGB1 induces a distinct form of cell death accompanied by formation of giant mitochondria. Cancer Res 70:8558–8568

    Article  CAS  PubMed  Google Scholar 

  46. Bassi R, Giussani P, Anelli V, Colleoni T, Pedrazzi M, Patrone M, Viani P, Sparatore B, Melloni E, Riboni L (2008) HMGB1 as an autocrine stimulus in human T98G glioblastoma cells: role in cell growth and migration. J Neurooncol 87:23–33

    Article  CAS  PubMed  Google Scholar 

  47. Nugue G, Wion D (2012) Angiogenesis and the tumor space–time continuum. Proc Natl Acad Sci 109:E914–E914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Caja L, Bellomo C, Moustakas A (2015) Transforming growth factor β and bone morphogenetic protein actions in brain tumors. FEBS Lett 589:1588–1597

    Article  CAS  PubMed  Google Scholar 

  49. Dufour A, Overall CM (2013) Missing the target: matrix metalloproteinase antitargets in inflammation and cancer. Trends Pharmacol Sci 34:233–242

    Article  CAS  PubMed  Google Scholar 

  50. Yamaguchi M, Jadhav V, Obenaus A, Colohan A, Zhang JH (2007) Matrix metalloproteinase inhibition attenuates brain edema in an in vivo model of surgically-induced brain injury. Neurosurgery 61:1067–1075

    Article  PubMed  Google Scholar 

  51. Dyck SM, Karimi-Abdolrezaee S (2015) Chondroitin sulfate proteoglycans: key modulators in the developing and pathologic central nervous system. Exp Neurol 269:169–187

    Article  CAS  PubMed  Google Scholar 

  52. Bradbury EJ, Moon LDF, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB (2002) Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–640

    Article  CAS  PubMed  Google Scholar 

  53. Silver DJ, Siebzehnrubl FA, Schildts MJ, Yachnis AT, Smith GM, Smith AA, Scheffler B, Reynolds BA, Silver J, Steindler DA (2013) Chondroitin sulfate proteoglycans potently inhibit invasion and serve as a central organizer of the brain tumor microenvironment. J Neurosci 33:15603–15617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Dinarello CA (2010) Anti-inflammatory agents: present and future. Cell 140:935–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kapadia R, Yi J-H, Vemuganti R (2008) Mechanisms of anti-inflammatory and neuroprotective actions of PPAR-gamma agonists. Front Biosci 13:1813–1826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Hyong A, Jadhav V, Lee S, Tong W, Rowe J, Zhang JH, Tang J (2008) Rosiglitazone, a PPAR gamma agonist, attenuates inflammation after surgical brain injury in rodents. Brain Res 1215:218–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jeanneteau F, Garabedian MJ, Chao MV (2008) Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect. Proc Natl Acad Sci U S A 105:4862–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Meads MB, Gatenby RA, Dalton WS (2009) Environment-mediated drug resistance: a major contributor to minimal residual disease. Nat Rev Cancer 9:665–674

    Article  CAS  PubMed  Google Scholar 

  59. Klemm F, Joyce JA (2015) Microenvironmental regulation of therapeutic response in cancer. Trends Cell Biol 25:198–213

    Article  PubMed  Google Scholar 

  60. Aggarwal BB, Vijayalekshmi RV, Sung B (2009) Targeting inflammatory pathways for prevention and therapy of cancer: short-term friend, long-term foe. Clin Cancer Res 15:425–430

    Article  CAS  PubMed  Google Scholar 

  61. Haddow A (1971) Immunotherapy of human cancer—its prospects. Proc R Soc Med 64:1039

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu Q, Ni X (2015) ROS-mediated DNA methylation pattern alterations in carcinogenesis. Curr Drug Targets 16:13–19

    Article  PubMed  Google Scholar 

  63. Ziech D, Franco R, Pappa A, Panayiotidis MI (2011) Reactive oxygen species (ROS)—induced genetic and epigenetic alterations in human carcinogenesis. Mutat Res 711:167–173

    Article  CAS  PubMed  Google Scholar 

  64. Tochhawng L, Deng S, Pervaiz S, Yap CT (2013) Redox regulation of cancer cell migration and invasion. Mitochondrion 13:246–253

    Article  CAS  PubMed  Google Scholar 

  65. Kalluri R, Zeisberg M (2006) Fibroblasts in cancer. Nat Rev Cancer 6:392–401

    Article  CAS  PubMed  Google Scholar 

  66. Frontczak-Baniewicz M, Sulejczak D, Andrychowski J, Gewartowska M, Laure-Kamionowska M, Kozłowski W (2013) Morphological evidence of the beneficial role of immune system cells in a rat model of surgical brain injury. Folia Neuropathol 51:324–332

    Article  CAS  PubMed  Google Scholar 

  67. Lu KV, Chang JP, Parachoniak CA et al (2012) VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. Cancer Cell 22:21–35

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fathima Hurmath K, Ramaswamy P, Nandakumar DN (2014) IL-1β microenvironment promotes proliferation, migration, and invasion of human glioma cells. Cell Biol Int 38:1415–1422

    Article  CAS  PubMed  Google Scholar 

  69. Zhang J, Sarkar S, Cua R, Zhou Y, Hader W, Yong VW (2012) A dialog between glioma and microglia that promotes tumor invasiveness through the CCL2/CCR2/interleukin-6 axis. Carcinogenesis 33:312–319

    Article  CAS  PubMed  Google Scholar 

  70. Lawn S, Krishna N, Pisklakova A et al (2015) Neurotrophin signaling via TrkB and TrkC receptors promotes the growth of brain tumor-initiating cells. J Biol Chem 290:3814–3824

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Egidy G, Eberl LP, Valdenaire O, Irmler M, Majdi R, Diserens AC, Fontana A, Janzer RC, Pinet F, Juillerat-Jeanneret L (2000) The endothelin system in human glioblastoma. Lab Investig J Tech Methods Pathol 80:1681–1689

    Article  CAS  Google Scholar 

  72. Drucker KL, Paulsen AR, Giannini C, Decker PA, Blaber SI, Blaber M, Uhm JH, O’Neill BP, Jenkins RB, Scarisbrick IA (2013) Clinical significance and novel mechanism of action of kallikrein 6 in glioblastoma. Neuro-Oncol 15:305–318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Fiebich BL, Akter S, Akundi RS (2014) The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci 8:260

    Article  PubMed  PubMed Central  Google Scholar 

  74. Robert SM, Sontheimer H (2014) Glutamate transporters in the biology of malignant gliomas. Cell Mol Life Sci 71:1839–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr A. Hihi for helpful discussions and critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Wion.

Ethics declarations

Conflict of interest

Authors declare no conflict of interest.

Additional information

Lauriane Hamard and David Ratel have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamard, L., Ratel, D., Selek, L. et al. The brain tissue response to surgical injury and its possible contribution to glioma recurrence. J Neurooncol 128, 1–8 (2016). https://doi.org/10.1007/s11060-016-2096-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-016-2096-y

Keywords

Navigation