Skip to main content

Advertisement

Log in

Evaluation of brain tumors using dynamic 11C-methionine-PET

  • Clinical Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The aim of this study is to assess whether dynamic imaging of 11C-methionine (MET) uptake on positron emission tomography (PET) is useful for the differential diagnosis of brain tumor histology. Regional MET uptake in static brain PET scans from three consecutive phases (5–15, 15–25, and 25–35 min) after intravenous injection were measured in 144 patients with brain tumors. Regions of interest (ROI) were placed in the pituitary gland, confluence, choroid plexus, coronal radiation, brainstem, frontal cortex, parietal cortex, cerebellum, and brain tumors. The standard uptake value (SUV) of the ROIs in the normal brain structures and brain tumors were measured, and the mean MET SUV region/normal frontal lobe cortex uptake ratio (R/N ratio) of the normal brain structures and the maximum MET SUV tumor/normal frontal cortex uptake ratio (T/N ratio) were evaluated semi-quantitatively. There were significant dynamic declines of the mean MET R/N ratio in the normal pituitary gland and confluence; however, there were significant dynamic increases in white matter. Significant dynamic decrease of the maximum MET T/N ratio was seen in meningiomas and oligodendrocytic tumors, whereas significant dynamic increase was seen in glioblastomas and malignant lymphomas. Dynamic changes of MET uptake vary significantly with the normal brain structures and brain tumor histology. These results suggest that MET-PET may be useful in the differential diagnosis of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AA:

Anaplastic astrocytoma

AOD:

Anaplastic oligodendroglioma

DA:

Diffuse astrocytoma

GBM:

Glioblastoma multiform

MET:

Methionine

ML:

Malignant lymphoma

OD:

Oligodendroglioma

PET:

Positron emission tomography

R/N ratio:

Region/normal brain ratio

SUV:

Standard uptake value

T/N ratio:

Tumor/normal brain ratio

References

  1. De Witte O, Goldberg I, Wikler D et al (2001) Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 95:746–750

    Article  PubMed  Google Scholar 

  2. Herholz K, Holzer T, Bauer B et al (1998) 11C-methionine PET for differential diagnosis of low grade gliomas. Neurology 50:1316–1322

    Article  PubMed  CAS  Google Scholar 

  3. Kato T, Shinoda J, Oka N et al (2008) Analysis of 11C-methionine uptake in low grade gliomas and correlation with proliferative activity. Am J Neuroradiol 29:1867–1871

    Article  PubMed  CAS  Google Scholar 

  4. Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of l-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507

    Article  PubMed  Google Scholar 

  5. Ogawa T, Inugami A, Hatazawa J et al (1996) Clinical positron emission tomography for brain tumors: comparison of fludeoxyglucose F 18 and l-methyl-11C-methionine. Am J Neuroradiol 17:345–353

    PubMed  CAS  Google Scholar 

  6. Ogawa T, Shihido F, Kanno I et al (1993) Cerebral glioma: evaluation with methionine PET. Radiology 186:45–53

    PubMed  CAS  Google Scholar 

  7. Tovi M, Lilja A, Bergstrom M et al (1990) Delineation of gliomas with magnetic resonance imaging using Gd-DTPA in comparison with computed tomography and positron emission tomography. Acta Radiol 31:417–429

    PubMed  CAS  Google Scholar 

  8. Nojiri T, Nariai T, Aoyagi M et al (2009) Contributions of biological tumor parameters to the incorporation rate of l-[methyl-11C] methionine into astrocytomas and oligodendrogliomas. J Neurooncol 93:233–241

    Article  PubMed  CAS  Google Scholar 

  9. Kato T, Shinoda J, Nakayama N et al (2008) Metabolic assessment of gliomas using 11C-methionine, 18F-fluorodeoxy-glucose, and 11C-choline positron-emission tomography. Am J Neuroradiol 29:1176–1182

    Article  PubMed  CAS  Google Scholar 

  10. Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography 11C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549

    Article  PubMed  CAS  Google Scholar 

  11. Derlon JM, Chapon F, Noel MH et al (2000) Non-invasive grading of oligodendrogliomas: correlation between in vivo metabolic pattern and histopathology. Eur J Nucl Med 27:778–787

    Article  PubMed  CAS  Google Scholar 

  12. Tsuyuguchi N, Matsuoka Y, Sunada I et al (2001) Evaluation of pleomorphic xanthoastrocytoma by use of positron emission tomography with 18F-fluorodeoxyglucose and 11C-methionine tracers. Am J Neuroradiol 22:311–313

    PubMed  CAS  Google Scholar 

  13. Roelcke U, Radu EW, Hausmann O et al (1998) Tracer transport and metabolism in a patient with juvenile pilocytic astrocytoma: a PET study. J Neurooncol 36:279–283

    Article  PubMed  CAS  Google Scholar 

  14. Norris AM, Carrington BM, Slevin NJ (1997) Late radiation change in the CNS: MR imaging following gadolinium enhancement. Clin Radiol 52:356–362

    Article  PubMed  CAS  Google Scholar 

  15. Hustinx R, Pourdehnad M, Kaschten B et al (2005) PET imaging for differentiating recurrent brain tumor from radiation necrosis. Radiol Clin North Am 43:35–47

    Article  PubMed  Google Scholar 

  16. Hein P, Eskey C, Dunn J et al (2004) Diffusion-weighted imaging in the follow-up of treated high grade gliomas. Am J Neuroradiol 25:201–209

    PubMed  Google Scholar 

  17. Terakawa Y, Tsuyuguchi N, Iwai Y et al (2008) Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 49:694–699

    Article  PubMed  Google Scholar 

  18. Jacobs A (1995) Amino acid uptake in ischemically compromised brain tissue. Stroke 26:1859–1866

    Article  PubMed  CAS  Google Scholar 

  19. Mineura K, Sasajima T, Kowada M et al (1997) Indications for differential diagnosis of nontumor central nervous system disease from tumors. A positron emission tomography study. J Neuroimaging 7:8–15

    PubMed  CAS  Google Scholar 

  20. Dethy S, Manto M, Kentos A et al (1995) PET findings in a brain abscess associated with a silent atrial septal defect. Clin Neurol Neurosurg 97:349–353

    Article  PubMed  CAS  Google Scholar 

  21. Kawai N, Okauchi M, Miyake K et al (2010) 11C-methionine positron emission tomography in nontumorous brain lesions. No Shinkei Geka 38:985–995

    PubMed  Google Scholar 

  22. Kracht LW, Friese M, Herholz K et al (2003) Methyl-[11C]-l-methionine uptake as measured by positron emission tomography correlates to microvessel density in patients with glioma. Eur J Nucl Med Mol Imaging 30:868–873

    Article  PubMed  CAS  Google Scholar 

  23. Ishiwata K, Kubota K, Murakami M et al (1993) Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 34:1936–1943

    PubMed  CAS  Google Scholar 

  24. Moulin-Romsee G, D’Hondt E, de Groot T et al (2007) Non-invasive grading of tumor using dynamic amino acid PET imaging: dose it work for 11C-methionine? Eur J Nucl Med Mol Imaging 34:2082–2087

    Article  PubMed  Google Scholar 

  25. Thompson CJ, Dagher A, Lunney DN (1986) A technique to reject scattered radiation in PET transmission scans. Proc SPIE 671:244–253

    CAS  Google Scholar 

  26. Kapouleus I, Alavi A, Alves WM et al (1991) Registration of three-dimensional MR and PET images of the human brain without markers. Radiology 181:731–739

    Google Scholar 

  27. Uda T, Tsuyuguchi N, Terakawa Y et al (2010) Evaluation of the accumulation of 11C-methionine with standardized uptake value in the normal brain. J Nucl Med 51:219–222

    Article  PubMed  Google Scholar 

  28. Cha S, Tihan T, Crawford F et al (2005) Differentiation of low-grade oligodendrogliomas from low-grade astrocytomas using quantitative blood-volume measurements derived from dynamic susceptibility contrast MR imaging. Am J Neuroradiol 26:266–273

    PubMed  Google Scholar 

  29. Aroen HJ, Gazit IE, Louis DN et al (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191:41–51

    Google Scholar 

  30. Sugihara T, Korogi Y, Koichi M et al (1998) Correlation of MR and imaging-determined cerebral blood volume maps with histologic and angiographic determination of vascularity of gliomas. Am J Roentgenol 171:1479–1486

    Google Scholar 

  31. Nyberg G, Bergstrom M, Enblad P et al (1997) PET-methionine of skull base neuromas and meningiomas. Acta Otolaryngol 117:482–489

    Article  PubMed  CAS  Google Scholar 

  32. Dowd CF, Halbach VV, Higashida RT (2003) Meningiomas: the role of preoperative angiography and embolization. Neurosurg Focus 15:E10

    Article  PubMed  Google Scholar 

  33. Utriainen M, Metsahonkala L, Salmi TT et al (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1386

    Article  PubMed  Google Scholar 

  34. Galldiks N, Kracht LW, Berthold F et al (2009) [11C]-l-methionine positron emission tomography in the management of children and young adults with brain tumors. J Neurooncol 96:231–239

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Y. Muragaki and Dr. T. Maruyama (Department of Neurosurgery, Neurologic Institute, Tokyo Women’s Medical University, Tokyo, Japan) for academic support. We thank Mr. S. Fukuyama, Mr. Y. Kasuya, and Mr. R. Okumura (Kizawa Memorial Hospital, Minokamo, Gifu, Japan) for technical support. We thank Mr. A. Mori for PET tracer production (methyl iodide synthesis and methionine module, Sumitomo Heavy Industries, Tokyo, Japan).

Conflict of interest

The authors declare no potential conflicts of interest relevant to this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatsuki Aki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aki, T., Nakayama, N., Yonezawa, S. et al. Evaluation of brain tumors using dynamic 11C-methionine-PET. J Neurooncol 109, 115–122 (2012). https://doi.org/10.1007/s11060-012-0873-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-012-0873-9

Keywords

Navigation