Skip to main content
Log in

Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGA–substance P—results from a phase I study

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Complete surgical resection beyond tumor margins cannot be achieved in glioblastoma multiforme (GBM) because of infiltrative nature. In several cancers, neoadjuvant treatment has been implemented to reduce the risk of tumor cell spreading during resection. In GBM, the objective of a neoadjuvant approach is reduction of tumor cells within the main tumor mass and beyond in the infiltration zone. Such an approach can only be performed if elevated intracranial pressure can be medically controlled. In a previous study with recurrent gliomas, we showed that local intratumoral injection of radiolabeled DOTAGA–substance P substantially inhibited further growth and led to radionecrotic transformation of the tumor (CCR 2006). We have now examined this modality as neoadjuvant treatment for GBM, primarily assessing feasibility, toxicity, the extent of resection, and functional outcome. After diagnosis of GBM, 17 patients were included in a prospective phase I study. Repetitive intratumoral injections of radiolabeled DOTAGA–substance P were performed, followed by surgical resection. Chemical synthesis, radiolabeling, and local injection of the peptidic vector [90Yttrium]-DOTAGA–substance P were described previously. Neoadjuvant injection of [90Y]-DOTAGA–substance P was feasible without decompensation of intracranial pressure. Prolonged application of corticosteroids was identified as the main risk factor for side effects. Fifteen patients stabilized or improved their functional status. The mean extent of resection in subsequent surgery was 96%. Neoadjuvant therapy of GBM using locally injected radiolabeled DOTAGA–substance P was feasible and of low toxicity. The high extent of resection and concomitant irradiation of tumor cells in the infiltration zone may be prognostically relevant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Oertel J, von Buttlar E, Schroeder HW, Gaab MR (2005) Prognosis of gliomas in the 1970s and today. Neurosurg Focus 18:e12

    Article  PubMed  Google Scholar 

  2. Stupp R, Mason WP, van den Bent MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996

    Article  CAS  PubMed  Google Scholar 

  3. Walker MD, Green SB, Byar DP et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329

    Article  CAS  PubMed  Google Scholar 

  4. Hegi ME, Diserens AC, Gorlia T et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003

    Article  CAS  PubMed  Google Scholar 

  5. Kreth FW, Berlis A, Spiropoulou V et al (1999) The role of tumor resection in the treatment of glioblastoma multiforme in adults. Cancer 86:2117–2123

    Article  CAS  PubMed  Google Scholar 

  6. Hochberg FH, Pruitt A (1980) Assumptions in the radiotherapy of glioblastoma. Neurology 30:907–911

    CAS  PubMed  Google Scholar 

  7. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95:190–198

    Article  CAS  PubMed  Google Scholar 

  8. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomised controlled multicentre phase III trial. Lancet Oncol 7:392–401

    Article  CAS  PubMed  Google Scholar 

  9. Sanai N, Berger MS (2008) Glioma extent of resection and its impact on patient outcome. Neurosurgery 62:753–764 (discussion 264–266)

    Article  PubMed  Google Scholar 

  10. Kawakami K, Kawakami M, Kioi M, Husain SR, Puri RK (2004) Distribution kinetics of targeted cytotoxin in glioma by bolus or convection-enhanced delivery in a murine model. J Neurosurg 101:1004–1011

    Article  CAS  PubMed  Google Scholar 

  11. Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK (2000) Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res 6:2157–2165

    CAS  PubMed  Google Scholar 

  12. Cokgor I, Akabani G, Kuan CT et al (2000) Phase I trial results of iodine-131-labeled antitenascin monoclonal antibody 81C6 treatment of patients with newly diagnosed malignant gliomas. J Clin Oncol 18:3862–3872

    CAS  PubMed  Google Scholar 

  13. Laske DW, Youle RJ, Oldfield EH (1997) Tumor regression with regional distribution of the targeted toxin TF-CRM107 in patients with malignant brain tumors. Nat Med 3:1362–1368

    Article  CAS  PubMed  Google Scholar 

  14. Maecke HR (2005) Radiolabeled peptides in nuclear oncology: influence of peptide structure and labeling strategy on pharmacology. Ernst Schering Res Found Workshop 46:43–72

    Article  Google Scholar 

  15. Boyd M, Mairs RJ, Keith WN et al (2004) An efficient targeted radiotherapy/gene therapy strategy utilising human telomerase promoters and radioastatine and harnessing radiation-mediated bystander effects. J Gene Med 6:937–947

    Article  CAS  PubMed  Google Scholar 

  16. Kneifel S, Cordier D, Good S et al (2006) Local targeting of malignant gliomas by the diffusible peptidic vector 1,4,7,10-tetraazacyclododecane-1-glutaric acid-4,7,10-triacetic acid-substance P. Clin Cancer Res 12:3843–3850

    Article  CAS  PubMed  Google Scholar 

  17. Hennig IM, Laissue JA, Horisberger U, Reubi JC (1995) Substance-P receptors in human primary neoplasms: tumoral and vascular localization. Int J Cancer 61:786–792

    Article  CAS  PubMed  Google Scholar 

  18. de Bouard S, Herlin P, Christensen JG et al (2007) Antiangiogenic and anti-invasive effects of sunitinib on experimental human glioblastoma. Neuro Oncol 9:412–423

    Article  PubMed  Google Scholar 

  19. Fischer I, Gagner JP, Law M, Newcomb EW, Zagzag D (2005) Angiogenesis in gliomas: biology and molecular pathophysiology. Brain Pathol 15:297–310

    Article  CAS  PubMed  Google Scholar 

  20. Puduvalli VK, Giglio P, Groves MD et al (2008) Phase II trial of irinotecan and thalidomide in adults with recurrent glioblastoma multiforme. Neuro Oncol 10:216–222

    Article  CAS  PubMed  Google Scholar 

  21. Monga DK, O’Connell MJ (2006) Surgical adjuvant therapy for colorectal cancer: current approaches and future directions. Ann Surg Oncol 13:1021–1034

    Article  PubMed  Google Scholar 

  22. Pahlman L, Glimelius B (1990) Pre- or postoperative radiotherapy in rectal and rectosigmoid carcinoma. Report from a randomized multicenter trial. Ann Surg 211:187–195

    Article  CAS  PubMed  Google Scholar 

  23. Bhatnagar AS (2006) Review of the development of letrozole and its use in advanced breast cancer and in the neoadjuvant setting. Breast 15(Suppl 1):S3–S13

    Article  PubMed  Google Scholar 

  24. Sachelarie I, Grossbard ML, Chadha M, Feldman S, Ghesani M, Blum RH (2006) Primary systemic therapy of breast cancer. Oncologist 11:574–589

    Article  CAS  PubMed  Google Scholar 

  25. de Vries NA, Beijnen JH, Boogerd W, van Tellingen O (2006) Blood-brain barrier and chemotherapeutic treatment of brain tumors. Expert Rev Neurother 6:1199–1209

    Article  PubMed  Google Scholar 

  26. Fukumura D, Jain RK (2007) Tumor microenvironment abnormalities: causes, consequences, and strategies to normalize. J Cell Biochem 101:937–949

    Article  CAS  PubMed  Google Scholar 

  27. Sangha H, Lipson D, Foley N et al (2005) A comparison of the Barthel Index and the Functional Independence Measure as outcome measures in stroke rehabilitation: patterns of disability scale usage in clinical trials. Int J Rehabil Res 28:135–139

    Article  PubMed  Google Scholar 

  28. Merlo A, Hausmann O, Wasner M et al (1999) Locoregional regulatory peptide receptor targeting with the diffusible somatostatin analogue 90Y-labeled DOTA0-D-Phe1-Tyr3-octreotide (DOTATOC): a pilot study in human gliomas. Clin Cancer Res 5:1025–1033

    CAS  PubMed  Google Scholar 

  29. Merlo A, Jermann E, Hausmann O et al (1997) Biodistribution of 111In-labelled SCN-bz-DTPA-BC-2 MAb following loco-regional injection into glioblastomas. Int J Cancer 71:810–816

    Article  CAS  PubMed  Google Scholar 

  30. Schumacher T, Hofer S, Eichhorn K et al (2002) Local injection of the 90Y-labelled peptidic vector DOTATOC to control gliomas of WHO grades II and III: an extended pilot study. Eur J Nucl Med Mol Imaging 29:486–493

    Article  CAS  PubMed  Google Scholar 

  31. Kneifel S, Bernhardt P, Uusijarvi H et al (2007) Individual voxelwise dosimetry of targeted 90Y-labelled substance P radiotherapy for malignant gliomas. Eur J Nucl Med Mol Imaging 34:1388–1395

    Article  CAS  PubMed  Google Scholar 

  32. Sims E, Doughty D, Macaulay E et al (1999) Stereotactically delivered cranial radiation therapy: a ten-year experience of linac-based radiosurgery in the UK. Clin Oncol (R Coll Radiol) 11:303–320

    CAS  Google Scholar 

  33. Singh VP, Kansai S, Vaishya S, Julka PK, Mehta VS (2000) Early complications following gamma knife radiosurgery for intracranial meningiomas. J Neurosurg 93(Suppl 3):57–61

    PubMed  Google Scholar 

  34. Takenaka N, Imanishi T, Sasaki H et al (2003) Delayed radiation necrosis with extensive brain edema after gamma knife radiosurgery for multiple cerebral cavernous malformations–case report. Neurol Med Chir (Tokyo) 43:391–395

    Article  Google Scholar 

  35. Fahlbusch R, Nimsky C (2005) Intraoperative MRI developments. Neurosurg Clin N Am 16:xi–xiii

    Article  PubMed  Google Scholar 

  36. Nimsky C, Ganslandt O, Fahlbusch R (2004) Functional neuronavigation and intraoperative MRI. Adv Tech Stand Neurosurg 29:229–263

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Science Foundation Tandem No. 3238-056368.99/1 and No. 3238-069472/2. We thank the medical and technical staff of the Neurosurgical and Nuclear Medicine Clinics and the technical staff of the Division of Radiological Chemistry for supporting this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Cordier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cordier, D., Forrer, F., Kneifel, S. et al. Neoadjuvant targeting of glioblastoma multiforme with radiolabeled DOTAGA–substance P—results from a phase I study. J Neurooncol 100, 129–136 (2010). https://doi.org/10.1007/s11060-010-0153-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0153-5

Keywords

Navigation