Skip to main content
Log in

Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Diffusion tensor imaging (DTI) by magnetic resonance imaging (MRI) is now used not only for delineating white matter fiber tracts, but also for assessing the histological characteristics of pathological tissues. Among these uses, predicting the extent or existence of tumor cell invasion into white matter by DTI is under extensive investigation. The previously reported tumor infiltration index (TII) holds great potential for the discrimination of pure vasogenic edema from tumor-infiltrated edema. However, conflicting data are being reported questioning the clinical value of TII. The present investigation reevaluated the utility of TII in patients with meningioma or glioma. We found that TII was unable to discriminate vasogenic from tumor-infiltrated edema. Conversely, detailed voxel-by-voxel comparison of TII and 11C-methionie PET in the T2-hyperintense area of gliomas showed that TII and 11C-methionie PET has a positive correlation, suggesting that, although TII is unable to discriminate the cause of edema, the extent of tumor cell invasion into white matter is depicted in gliomas by TII. These data suggest that TII involves both vasogenic and tumor-infiltrated factors, rather than only a single factor. A more intensive investigation is required to reach a complete understanding of TII.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W (2007) Clinical applications of PET in brain tumors. J Nucl Med 48:1468–1481

    Article  PubMed  Google Scholar 

  2. Hirata M, Kato A, Taniguchi M et al (2004) Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage 23:46–53

    Article  PubMed  Google Scholar 

  3. Kato T, Shinoda J, Nakayama N et al (2008) Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. Am J Neuroradiol 29:1176–1182

    Article  CAS  PubMed  Google Scholar 

  4. Bello L, Gambini A, Castellano A et al (2008) Motor and language DTI Fiber Tracking combined with intraoperative subcortical mapping for surgical removal of gliomas. Neuroimage 39:369–382

    Article  PubMed  Google Scholar 

  5. Kamada K, Sawamura Y, Takeuchi F et al (2005) Functional identification of the primary motor area by corticospinal tractography. Neurosurgery 56:98–109 (discussion 198–109)

    Article  PubMed  Google Scholar 

  6. Kamada K, Todo T, Masutani Y et al (2005) Combined use of tractography-integrated functional neuronavigation and direct fiber stimulation. J Neurosurg 102:664–672

    Article  PubMed  Google Scholar 

  7. Kinoshita M, Yamada K, Hashimoto N et al (2005) Fiber-tracking does not accurately estimate size of fiber bundle in pathological condition: initial neurosurgical experience using neuronavigation and subcortical white matter stimulation. Neuroimage 25:424–429

    Article  PubMed  Google Scholar 

  8. Mikuni N, Okada T, Nishida N et al (2007) Comparison between motor evoked potential recording and fiber tracking for estimating pyramidal tracts near brain tumors. J Neurosurg 106:128–133

    Article  PubMed  Google Scholar 

  9. Mori S, Frederiksen K, van Zijl PC et al (2002) Brain white matter anatomy of tumor patients evaluated with diffusion tensor imaging. Ann Neurol 51:377–380

    Article  PubMed  Google Scholar 

  10. Nimsky C, Ganslandt O, Fahlbusch R (2006) Implementation of fiber tract navigation. Neurosurgery 58:ONS-292-303 (discussion ONS-303-294)

  11. Nimsky C, Ganslandt O, Hastreiter P et al (2005) Preoperative and intraoperative diffusion tensor imaging-based fiber tracking in glioma surgery. Neurosurgery 56:130–137 (discussion 138)

    PubMed  Google Scholar 

  12. Nimsky C, Ganslandt O, Merhof D et al (2006) Intraoperative visualization of the pyramidal tract by diffusion-tensor-imaging-based fiber tracking. Neuroimage 30:1219–1229

    Article  PubMed  Google Scholar 

  13. Basser PJ, Mattiello J, LeBihan D (1994) MR diffusion tensor spectroscopy and imaging. Biophys J 66:259–267

    Article  CAS  PubMed  Google Scholar 

  14. Beppu T, Inoue T, Shibata Y et al (2003) Measurement of fractional anisotropy using diffusion tensor MRI in supratentorial astrocytic tumors. J Neurooncol 63:109–116

    Article  PubMed  Google Scholar 

  15. Goebell E, Paustenbach S, Vaeterlein O et al (2006) Low-grade and anaplastic gliomas: differences in architecture evaluated with diffusion-tensor MR imaging. Radiology 239:217–222

    Article  PubMed  Google Scholar 

  16. Kinoshita M, Hashimoto N, Goto T et al (2008) Fractional anisotropy and tumor cell density of the tumor core show positive correlation in diffusion tensor magnetic resonance imaging of malignant brain tumors. Neuroimage 43:29–35

    Article  CAS  PubMed  Google Scholar 

  17. Kinoshita M, Hashimoto N, Goto T et al (2009) Use of fractional anisotropy for determination of the cut-off value in (11)C-methionine positron emission tomography for glioma. Neuroimage 45:7

    Article  Google Scholar 

  18. Lu S, Ahn D, Johnson G et al (2003) Peritumoral diffusion tensor imaging of high-grade gliomas and metastatic brain tumors. Am J Neuroradiol 24:937–941

    PubMed  Google Scholar 

  19. Stadlbauer A, Nimsky C, Buslei R et al (2007) Diffusion tensor imaging and optimized fiber tracking in glioma patients: histopathologic evaluation of tumor-invaded white matter structures. Neuroimage 34:949–956

    Article  PubMed  Google Scholar 

  20. Wang S, Kim S, Chawla S et al (2009) Differentiation between glioblastomas and solitary brain metastases using diffusion tensor imaging. Neuroimage 44:653–660

    Article  PubMed  Google Scholar 

  21. Provenzale JM, McGraw P, Mhatre P et al (2004) Peritumoral brain regions in gliomas and meningiomas: investigation with isotropic diffusion-weighted MR imaging and diffusion-tensor MR imaging. Radiology 232:451–460

    Article  PubMed  Google Scholar 

  22. Lu S, Ahn D, Johnson G et al (2004) Diffusion-tensor MR imaging of intracranial neoplasia and associated peritumoral edema: introduction of the tumor infiltration index. Radiology 232:221–228

    Article  PubMed  Google Scholar 

  23. Kreher BW, Schneider JF, Mader I et al (2005) Multitensor approach for analysis and tracking of complex fiber configurations. Magn Reson Med 54:1216–1225

    Article  CAS  PubMed  Google Scholar 

  24. Basser PJ, Mattiello J, LeBihan D (1994) Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B 103:247–254

    Article  CAS  PubMed  Google Scholar 

  25. Berger G, Maziere M, Knipper R et al (1979) Automated synthesis of 11C-labelled radiopharmaceuticals: imipramine, chlorpromazine, nicotine and methionine. Int J Appl Radiat Isot 30:393–399

    Article  CAS  PubMed  Google Scholar 

  26. Veninga T, Huisman H, van der Maazen RW et al (2004) Clinical validation of the normalized mutual information method for registration of CT and MR images in radiotherapy of brain tumors. J Appl Clin Med Phys 5:66–79

    Article  PubMed  Google Scholar 

  27. Gupta RK, Cloughesy TF, Sinha U et al (2000) Relationships between choline magnetic resonance spectroscopy, apparent diffusion coefficient and quantitative histopathology in human glioma. J Neurooncol 50:215–226

    Article  CAS  PubMed  Google Scholar 

  28. Strugar JG, Criscuolo GR, Rothbart D et al (1995) Vascular endothelial growth/permeability factor expression in human glioma specimens: correlation with vasogenic brain edema and tumor-associated cysts. J Neurosurg 83:682–689

    Article  CAS  PubMed  Google Scholar 

  29. Herholz K, Holzer T, Bauer B et al (1998) 11C-Methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    CAS  PubMed  Google Scholar 

  30. Kracht LW, Miletic H, Busch S et al (2004) Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 10:7163–7170

    Article  CAS  PubMed  Google Scholar 

  31. Pirotte B, Goldman S, Massager N et al (2004) Comparison of 18F-FDG and 11C-methionine for PET-guided stereotactic brain biopsy of gliomas. J Nucl Med 45:1293–1298

    CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This investigation was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan (subject numbers; 18591589 and 19790997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manabu Kinoshita.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kinoshita, M., Goto, T., Okita, Y. et al. Diffusion tensor-based tumor infiltration index cannot discriminate vasogenic edema from tumor-infiltrated edema. J Neurooncol 96, 409–415 (2010). https://doi.org/10.1007/s11060-009-9979-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9979-0

Keywords

Navigation