Skip to main content
Log in

The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood

  • Clinical Study - Patient Study
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Astrocytomas are the most common brain tumors of childhood and adolescence. Low-grade astrocytomas (LGAs), in general, have favorable prognosis, but recurrence or progressive disease with dissemination, malignant transformation, and death occur in some cases. Current clinical and pathological measures including age, sex, imaging characteristics, location and size of the tumor, histopathology, and degree of resection cannot predict with certainty which tumors will demonstrate aggressive behavior. The objective of the study is to determine the predictive value of positron emission tomography (PET) and a proliferation index (PI) in identifying high risk LGAs. We reviewed 46 cases ages 5 months to 17 years with low-grade (WHO I-II) astrocytomas. All patients had PET scans utilizing [18F] fluorodeoxyglucose (FDG) and 24 cases had measurements with Ki-67/MIB-1 immunohistochemistry. Review of our data confirmed progressive disease (PD) in 18/46 (39%) of cases with 9/21 (42%) occurring after subtotal resection and 9/25 (36%) after gross total resection. The mortality rate was 5/46 (10.8%). Tumors with FDG hypermetabolism were significantly more likely to demonstrate aggressive behavior and PD. Increased PI values also suggested PD. Progression-free survival and time to progression were significantly longer for patients with hypometabolic scans. Time to progression was significantly longer with lower PI values. Results demonstrate that PET and PI are useful measures in the identification and stratification of high risk LGAs. The ability to identify a subset of progressive LGAs earlier may suggest the need for second-look neurosurgical procedures or more intensified adjuvant treatment that may ultimately improve outcome and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

LGA:

Low-grade astrocytoma

PET:

Positron emission tomography

FDG:

[18F] fluorodeoxyglucose

PI:

Proliferative index

PD:

Progressive disease

GTR:

Gross total resection

TTP:

Time to progression

HR:

Hazard ratio

STR:

Subtotal resection

PFS:

Progressive free survival

OS:

Overall survival

CI:

Confidence interval

References

  1. Dirks PB, Jay V, Becker LE (1994) Development of anaplastic changes in low-grade astrocytomas of childhood. Neurosurgery 34:68–78. doi:10.1097/00006123-199401000-00010

    CAS  PubMed  Google Scholar 

  2. Mason WP (2005) Progress in clinical neurosciences: advances in the management of low-grade gliomas. Can J Neurol Sci 32:18–26

    Article  PubMed  Google Scholar 

  3. Stupp R, Janzer RC, Hegi ME et al (2003) Prognostic factors for low-grade gliomas. Semin Oncol 30(suppl):23–28. doi:10.1053/j.seminoncol.2003.11.029

    Article  PubMed  Google Scholar 

  4. Utriainen M, Metsahonkala L, Salmi TT et al (2002) Metabolic characterization of childhood brain tumors: comparison of 18F-fluorodeoxyglucose and 11C-methionine positron emission tomography. Cancer 95:1376–1386. doi:10.1002/cncr.10798

    Article  PubMed  Google Scholar 

  5. Giammarile F, Cinotti LE, Jouvet A et al (2004) High and low grade oligodendrogliomas (ODG): correlation of amino-acid and glucose uptakes using PET and histological classifications. J Neurooncol 68:263–274. doi:10.1023/B:NEON.0000033384.43417.82

    Article  CAS  PubMed  Google Scholar 

  6. Torii K, Tsuyuguchi N, Kawabe J et al (2005) Correlation of amino-acid uptake using methionine PET and histological classifications in various gliomas. Ann Nucl Med 19:677–683. doi:10.1007/BF02985116

    Article  PubMed  Google Scholar 

  7. Kwon JW, Kim IO, Cheon JE et al (2006) Paediatric brain-stem gliomas: MRI, FDG-PET and histological grading correlation. Pediatr Radiol 36:959–964. doi:10.1007/s00247-006-0256-5

    Article  PubMed  Google Scholar 

  8. Kaplan AM, Bandy DJ, Manwaring KH et al (1999) Functional brain mapping using positron emission tomography scanning in preoperative neurosurgical planning for pediatric brain tumors. J Neurosurg 91:797–803

    Article  CAS  PubMed  Google Scholar 

  9. Reinges MH, Krings T, Meyer PT et al (2004) Preoperative mapping of cortical motor function: prospective comparison of functional magnetic resonance imaging and [15O]-H2O-positron emission tomography in the same co-ordinate system. Nucl Med Commun 25:987–997. doi:10.1097/00006231-200410000-00002

    Article  PubMed  Google Scholar 

  10. Ribom D, Eriksson A, Hartman M et al (2001) Positron emission tomography (11) C-methionine and survival in patients with low-grade gliomas. Cancer 92:1541–1549. doi:10.1002/1097-0142(20010915)92:6<1541::AID-CNCR1480>3.0.CO;2-D

    Article  CAS  PubMed  Google Scholar 

  11. De Witte O, Oulad-Ben-Taib N, Branle F et al (2004) Contribution of PET to the management of patients with low-grade glioma. Neurochirurgie 50:468–473. doi:10.1016/S0028-3770(04)98327-0

    Article  PubMed  Google Scholar 

  12. Nariai T, Tanaka Y, Wakimoto H et al (2005) Usefulness of L-[methyl-11C] methionine-positron emission tomography as a biological monitoring tool in the treatment of glioma. J Neurosurg 103:498–507

    Article  PubMed  Google Scholar 

  13. McKeever PE, Strawderman MS, Yamini B et al (1998) MIB-1 proliferation index predicts survival among patients with grade II astrocytoma. J Neuropathol Exp Neurol 57:931–936. doi:10.1097/00005072-199810000-00005

    Article  CAS  PubMed  Google Scholar 

  14. Giannini C, Scheithauer BW, Burger PC et al (1999) Cellular proliferation in pilocytic and diffuse astrocytomas. J Neuropathol Exp Neurol 58:46–53. doi:10.1097/00005072-199901000-00006

    Article  CAS  PubMed  Google Scholar 

  15. Bowers DC, Gargan L, Kapur P et al (2003) Study or the MIB-1 labeling indexing as a predictor of tumor progression in pilocytic astrocytomas in children and adolescents. J Clin Oncol 21:2968–2973. doi:10.1200/JCO.2003.01.017

    Article  PubMed  Google Scholar 

  16. Prayson RA (2005) The utility of MIB-1/Ki-67 immunostaining in the evaluation of central nervous system neoplasms. Adv Anat Pathol 12:144–148. doi:10.1097/01.pap.0000163957.21409.52

    Article  PubMed  Google Scholar 

  17. Johannessen AL, Torp SH (2006) The clinical value of Ki-67/MIB-1 labeling index in human astrocytomas. Pathol Oncol Res 12:143–147. doi:10.1007/BF02893360

    Article  PubMed  Google Scholar 

  18. Woods RP, Mazziotti JC, Cherry SR (1993) MRI PET Registration with automation algorithm. J Comput Assist Tomogr 17:536–546. doi:10.1097/00004728-199307000-00004

    Article  CAS  PubMed  Google Scholar 

  19. Wisoff JH, Sanford A, Holmes E et al (2003) Impact of surgical resection on low grade gliomas of childhood: a report from the CCG9891/POG9130 low grade astrocytoma study. [Abstract] ASCO. Annual meeting

  20. Shaw EG, Wisoff JH (2003) Prospective clinical trials of intracranial low-grade glioma in adults and children. Neuro Oncol 5:153–160. doi:10.1215/S1152851702000601

    Article  PubMed  PubMed Central  Google Scholar 

  21. Herholz K, Holzer T, Bauer B (1998) 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 50:1316–1322

    Article  CAS  PubMed  Google Scholar 

  22. Kaplan AM, Lawson MA, Spataro J et al (1999) Positron emission tomography using [18F] fluorodeoxyglucose and [11C] L-methionine to metabolically characterize dysembryoplastic neuroepithelial tumors. J Child Neurol 4:673–677. doi:10.1177/088307389901401009

    Article  Google Scholar 

  23. Chung JK, Kim YK, Kim SK et al (2002) Usefulness of 11C-methionine PET in the evaluation of brain lesions that are hypo or isometabolic on 18F-FDG PET. Eur J Nucl Med Mol Imaging 29:176–182. doi:10.1007/s00259-001-0690-4

    Article  CAS  PubMed  Google Scholar 

  24. Pirotte B, Goldman S, Van Bogaert P et al (2005) Intergration of [11C] methionine-positron emission tomographic and magnetic resonance imaging for image-guided surgical resection of infiltrative low-grade brain tumors in children. Neurosurgery 57:128–139. doi:10.1227/01.NEU.0000163598.59870.6D

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Special thanks to Melissa Jankowski and Lisa Kay for assistance and manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Allen M. Kaplan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruer, M.C., Kaplan, A.M., Etzl, M.M. et al. The value of positron emission tomography and proliferation index in predicting progression in low-grade astrocytomas of childhood. J Neurooncol 95, 239–245 (2009). https://doi.org/10.1007/s11060-009-9922-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9922-4

Keywords

Navigation