Skip to main content

Advertisement

Log in

Management of newly diagnosed glioblastoma: guidelines development, value and application

  • Topic Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

The movement to create guidelines for management of medical maladies has been gaining strength for quality, academic, financial and political purposes over the past two decades. This applies to neurological diseases, too. Evidence-based guidelines created in a multidisciplinary fashion using predetermined criteria for grading scientific data and translating this to similarly ranked recommendations is a valuable approach to meeting this goal. The following is a summary of the methods used for, and the results of, an evidence-based guideline for the management of newly diagnosed glioblastoma. In addition to outlining recommendations by discipline, it also addresses how concerns and conflicts were addressed in their development and provides comment on future directions in management of this situation that may improve outcome. It is important that clinicians directly experienced in patient management take the lead in creation of guidelines related to the diseases they deal with, as these clinicians are clearly the most suited to being able to arrive at a meaningful and useful product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Johnstone PA (2008) ACR appropriateness criteria. Int J Radiat Oncol Biol Phys 70:1303–1304. doi:10.1016/j.ijrobp.2007.08.075

    PubMed  Google Scholar 

  2. Burstin H, Lanier D (2001) Update from funders: Center for Primary Care Research and Agency for Health Care Research and Quality. Med Care 39:309–311. doi:10.1097/00005650-200104000-00001

    PubMed  CAS  Google Scholar 

  3. Brem SS, Beirman PJ, Black P, Brem H, Chamberlain MC, Chiocca EA, DeAngelis LM, Fenstermaker RA, Friedman A, Gilbert MR, Glass J, Grossman SA, Heimberger AB, Junck L, Linette GP, Loeffler JJ, Maor MH, Moots P, Mrugala M, Nabors LB, Newton HB, Olivi A, Pornow J, Prados M (2008) Central Nervous System cancers, clinical practice guidelines in oncologyTM. J Natl Compr Cancer Cent Netw 6:456–504

    CAS  Google Scholar 

  4. Sackett DL, Straus SE, Richardson WS, Rosenberg W (2000) Evidence-based medicine: how to practice and teach EBM, vol 2. Churchill Livingstone, Edinburgh

    Google Scholar 

  5. Field MJ, Lohr KN (1990) Clinical practice guidelines: directions for a new program. National Academy Press, Washington DC, pp 78–95

    Google Scholar 

  6. Olson JJ, Ryken T (2008) Guidelines for the treatment of newly diagnosed glioblastoma: introduction. J Neurooncol 89:255–258. doi:10.1007/s11060-008-9595-4

    PubMed  Google Scholar 

  7. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46. doi:10.1177/001316446002000104

    Google Scholar 

  8. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. doi:10.2307/2529310

    PubMed  CAS  Google Scholar 

  9. Walters BC (1998) Clinical practice parameter development in neurosurgery. In: Bean JR (ed) Neurosurgery in transition: the socioeconomic transformation of neurological surgery. Williams and Wilkins, Baltimore, pp 99–111

    Google Scholar 

  10. Moher D, Schulz KF et al (2001) The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials. Lancet 357:1191–1194. doi:10.1016/S0140-6736(00)04337-3

    PubMed  CAS  Google Scholar 

  11. Lai R, Chu R et al (2006) Quality of randomized controlled trials reporting in the primary treatment of brain tumors. J Clin Oncol 24(7):1136–1144. doi:10.1200/JCO.2005.03.1179

    PubMed  Google Scholar 

  12. DerSimonian R, Laird N (1986) Meta-analysis of clinical trials. Control Clin Trials 7:177–188. doi:10.1016/0197-2456(86)90046-2

    PubMed  CAS  Google Scholar 

  13. Fine HA, Dear KBG, Loeffler JS, Black PM, Canellos GP (1993) Meta-analysis of radiation therapy with and without adjuvant chemotherapy for malignant gliomas in adults. Cancer 71:2585–2597. doi:10.1002/1097-0142(19930415)71:8<2585::AID-CNCR2820710825>3.0.CO;2-S

    PubMed  CAS  Google Scholar 

  14. Glioma Meta-analysis Trialists Group (2002) Chemotherapy in adult high-grade gliomas: a systemic review and meta-analysis of individual patient data from 12 randomized trials. Lancet 359:1011–1018. doi:10.1016/S0140-6736(02)08091-1

    Google Scholar 

  15. Piedbois P (2004) Meta-analysis based on abstracted data: a step in the right direction, but only a first step. J Clin Oncol 19:3839–3841. doi:10.1200/JCO.2004.06.924

    Google Scholar 

  16. Methodology of guideline development (2002) Guidelines for the management of acute cervical spine and spinal cord injuries. Neurosurgery 50(3):S2–S6

    Google Scholar 

  17. Dean BL, Drayer BP, Bird CR et al (1990) Gliomas: classification with MR imaging. Radiology 174:411–415

    PubMed  CAS  Google Scholar 

  18. Amundsen P, Dugstad G, Syvertsen AH (1978) The reliability of computer tomography of the diagnosis and differential diagnosis of meningiomas, gliomas and brain metastases. Acta Neurochir (Wien) 41:177–190. doi:10.1007/BF01809148

    CAS  Google Scholar 

  19. Carapella CM, Carpinelli G, Knijn A et al (1997) Potential role of in vitro 1H magnetic resonance spectroscopy in the definition of malignancy grading of human neuroepithelial brain tumors. Acta Neurochir Suppl (Wien) 68:127–132

    CAS  Google Scholar 

  20. Reimann B, Papke K, Hoess N et al (2002) Noninvasive grading of untreated gliomas: a comparative study of MR imaging and 3- (iodine 123)-L-a-methyltyrosine SPECT. Radiology 225:567–574. doi:10.1148/radiol.2252011431

    Google Scholar 

  21. Tamiya T, Kinoshita K, Ono Y et al (2000) Proton magnetic resonance spectroscopy reflects cellular proliferative activity in astrocytomas. Neuroradiology 42:333–338. doi:10.1007/s002340050894

    PubMed  CAS  Google Scholar 

  22. Howe FA, Barton SJ, Cudlip SA et al (2003) Metabolic profiles of human brain tumors using quantitative in vivo magnetic resonance 1H spectroscopy. Magn Reson Med 49:223–232. doi:10.1002/mrm.10367

    PubMed  CAS  Google Scholar 

  23. Moller-Hartmann W, Herminghaus S, Krings T et al (2002) Clinical application of proton magnetic resonance spectroscopy in the diagnosis of intracranial mass lesions. Neuroradiology 44:371–381. doi:10.1007/s00234-001-0760-0

    PubMed  CAS  Google Scholar 

  24. Lee SJ, Kim JH, Kim YM et al (2001) Perfusion MR imaging in gliomas: comparison with histologic grade. Korean J Radiol 2:1–7

    PubMed  CAS  Google Scholar 

  25. Shin JH, Lee HK, Kwun BD et al (2002) Using relative cerebral blood flow and volume to evaluate the histopathologic grade of cerebral gliomas. Am J Radiol 179:783–789

    Google Scholar 

  26. Roberts HC, Roberts TPL, Bollen AW et al (2001) Correlation of microvascular permeability derived from dynamic contrast enhanced MR imaging with histologic grad and tumor labeling index: a study in human brain tumors. Acad Radiol 8:384–391. doi:10.1016/S1076-6332(03)80545-7

    PubMed  CAS  Google Scholar 

  27. Lacroix M, Abi-Said D, Fourney DR et al (2001) A multivariate analysis of 416 patients with glioblastoma multiforme: prognosis, extent of resection, and survival. J Neurosurg 95(2):190–198

    Article  PubMed  CAS  Google Scholar 

  28. Hess KR (1999) Extent of resection as a prognostic variable in the treatment of gliomas. J Neurooncol 42(3):227–231. doi:10.1023/A:1006118018770

    PubMed  CAS  Google Scholar 

  29. Jackson RJ, Fuller GN, Abi-Said D et al (2001) Limitations of stereotactic biopsy in the initial management of gliomas. Neuro-oncol 3(3):193–200. doi:10.1215/15228517-3-3-193

    PubMed  CAS  Google Scholar 

  30. Vuorinen V, Hinkka S, Farkkila M, Jaaskelainen J (2003) Debulking or biopsy of malignant glioma in elderly people—a randomised study. Acta Neurochir (Wien) 145(1):5–10. doi:10.1007/s00701-002-1030-6

    CAS  Google Scholar 

  31. Stummer W, Pichlmeier U, Meinel T, Wiestler OD, Zanella F, Reulen HJ (2006) Fluorescence-guided surgery with 5-aminolevulinic acid for resection of malignant glioma: a randomized controlled multicentre phase III trial. Lancet Oncol 7(5):392–401. doi:10.1016/S1470-2045(06)70665-9

    PubMed  CAS  Google Scholar 

  32. Simpson JR, Horton J, Scott C et al (1993) Influence of location and extent of surgical resection on survival of patients with glioblastoma multiforme: results of three consecutive Radiation Therapy Oncology Group (RTOG) clinical trials. Int J Radiat Oncol Biol Phys 26(2):239–244

    PubMed  CAS  Google Scholar 

  33. Ammirati M, Vick N, Liao YL, Ciric I, Mikhael M (1987) Effect of the extent of surgical resection on survival and quality of life in patients with supratentorial glioblastomas and anaplastic astrocytomas. Neurosurgery 21(2):201–206. doi:10.1097/00006123-198708000-00012

    PubMed  CAS  Google Scholar 

  34. Levin VA, Wara WM, Davis RL et al (1985) Phase III comparison of BCNU and the combination of procarbazine, CCNU, and vincristine administered after radiotherapy with hydroxyurea for malignant gliomas. J Neurosurg 63(2):218–223

    PubMed  CAS  Google Scholar 

  35. Kiwit JC, Floeth FW, Bock WJ (1996) Survival in malignant glioma: analysis of prognostic factors with special regard to cytoreductive surgery. Zentralbl Neurochir 57(2):76–88

    PubMed  CAS  Google Scholar 

  36. Burger PC, Scheithauer BW, Vogel FS (2002) Surgical pathology of the nervous system and its coverings. Churchill Livingstone, New York

    Google Scholar 

  37. Kleihues P, Cavenee WK (2000) Pathology and genetics of tumours of the nervous system. IARC Press, Lyon

    Google Scholar 

  38. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (2007) WHO classification of tumours of the Central Nervous System. International Agency for Research, Lyon

    Google Scholar 

  39. Burger PC, Scheithauer BW (1994) Tumors of the Central Nervous System. Armed Forces Institute of Pathology, Washington, DC

    Google Scholar 

  40. Daumas-Duport C, Scheithauer B, O’Fallon J et al (1988) Grading of astrocytomas, A simple and reproducible method. Cancer 62:2152–2165. doi:10.1002/1097-0142(19881115)62:10<2152::AID-CNCR2820621015>3.0.CO;2-T

    PubMed  CAS  Google Scholar 

  41. Revesz T, Scaravilli F, Coutinho L et al (1993) Reliability of histological diagnosis including grading in gliomas biopsied by image-guided stereotactic technique. Brain 116(Pt 4):781–793. doi:10.1093/brain/116.4.781

    PubMed  Google Scholar 

  42. Gupta M, Djalilvand A, Brat DJ (2005) Clarifying the diffuse gliomas: an update on the morphologic features and markers that discriminate oligodendroglioma from astrocytoma. Am J Clin Pathol 124:755–768. doi:10.1309/6JNX4PA60TQ5U5VG

    PubMed  CAS  Google Scholar 

  43. Burger PC, Nelson JS (1997) Stereotactic brain biopsies: specimen preparation and evaluation. Arch Pathol Lab Med 121:477–480

    PubMed  CAS  Google Scholar 

  44. Martinez AJ, Pollack I, Hall WA et al (1988) Touch preparations in the rapid intraoperative diagnosis of Central Nervous System lesions, A comparison with frozen sections and paraffin embedded sections. Mod Pathol 1:378–384

    PubMed  CAS  Google Scholar 

  45. Reyes MG, Homsi MF, McDonald LW et al (1991) Imprints, smears, and frozen sections of brain tumors. Neurosurgery 29:575–579. doi:10.1097/00006123-199110000-00015

    PubMed  CAS  Google Scholar 

  46. Brainard JA, Prayson RA, Barnett GH (1997) Frozen section evaluation of stereotactic brain biopsies: diagnostic yield at the stereotactic target position in 188 cases. Arch Pathol Lab Med 121:481–484

    PubMed  CAS  Google Scholar 

  47. Gaudin PB, Sherman ME, Brat DJ et al (1997) Accuracy of grading gliomas on CT-guided stereotactic biopsies: a survival analysis. Diagn Cytopathol 17:461–466. doi:10.1002/(SICI)1097-0339(199712)17:6<461::AID-DC16>3.0.CO;2-K

    PubMed  CAS  Google Scholar 

  48. Prayson RA, Agamanolis DP, Cohen ML et al (2000) Interobserver reproducibility among neuropathologists and surgical pathologists in fibrillary astrocytoma grading. J Neurol Sci 175:33–39. doi:10.1016/S0022-510X(00)00274-4

    PubMed  CAS  Google Scholar 

  49. Prayson RA (2002) Cell proliferation and tumors of the Central Nervous System, part II: radiolabeling, cytometric, and immunohistochemical techniques. J Neuropathol Exp Neurol 61:663–672

    PubMed  Google Scholar 

  50. McKeever PE, Ross DA, Strawderman MS, Brunberg JA, Greenberg HS, Junck L (1997) A comparison of the predictive power for survival in gliomas provided by MIB-1, bromodeoxyuridine and proliferating cell nuclear antigen with histopathologic and clinical parameters. J Neuropathol Exp Neurol 56:798–805. doi:10.1097/00005072-199756070-00006

    PubMed  CAS  Google Scholar 

  51. Giannini C, Scheithauer BW, Burger PC, Christensen MR, Wollan PC, Sebo TJ et al (1999) Cellular proliferation in pilocytic and diffuse astrocytomas. J Neuropathol Exp Neurol 58:46–53. doi:10.1097/00005072-199901000-00006

    PubMed  CAS  Google Scholar 

  52. Wakimoto H, Aoyagi M, Nakayama T, Nagashima G, Yamamoto S, Tamaki M et al (1996) Prognostic significance of Ki-67 labeling indices obtained using MIB-1 monoclonal antibody in patients with supratentorial astrocytomas. Cancer 77:373–380. doi:10.1002/(SICI)1097-0142(19960115)77:2<373::AID-CNCR21>3.0.CO;2-Y

    PubMed  CAS  Google Scholar 

  53. Moskowitz SI, Jin T, Prayson RA (2006) Role of MIB1 in predicting survival in patients with glioblastomas. J Neurooncol 76:193–200. doi:10.1007/s11060-005-5262-1

    PubMed  Google Scholar 

  54. Hunter SB, Brat DJ, Olson JJ, Von Deimling A, Zhou W, Van Meir EG (2003) Alterations in molecular pathways of diffusely infiltrating glial neoplasms: application to tumor classification and anti-tumor therapy. Int J Oncol 23:857–869 Review

    PubMed  CAS  Google Scholar 

  55. Ohgaki H, Kleihues P (2005) Population-based studies on incidence, survival rates, and genetic alterations in astrocytic and oligodendroglial gliomas. J Neuropathol Exp Neurol 64:479–489

    PubMed  CAS  Google Scholar 

  56. Collins VP (2007) Mechanisms of disease: genetic predictors of response to treatment in brain tumors. Nat Clin Pract Oncol 4:362–374. doi:10.1038/ncponc0820

    PubMed  CAS  Google Scholar 

  57. Smith JS, Perry A, Borell TJ, Lee HK, O’Fallon J, Hosek SM et al (2000) Alterations of chromosome arms 1p and 19q as predictors of survival in oligodendrogliomas, astrocytomas, and mixed oligoastrocytomas. J Clin Oncol 18:636–645

    PubMed  CAS  Google Scholar 

  58. Perry A, Fuller CE, Banerjee R, Brat DJ, Scheithauer BW (2003) Ancillary FISH analysis for 1p and 19q status: preliminary observations in 287 gliomas and oligodendroglioma mimics. Front Biosci 8:a1–a9. doi:10.2741/896

    PubMed  CAS  Google Scholar 

  59. Cairncross JG, Ueki K, Zlatescu MC, Lisle DK, Finkelstein DM, Hammond RR et al (1998) Specific genetic predictors of chemotherapeutic response and survival in patients with anaplastic oligodendrogliomas. J Natl Cancer Inst 90:1473–1479. doi:10.1093/jnci/90.19.1473

    PubMed  CAS  Google Scholar 

  60. Smith JS, Alderete B, Minn Y, Borell TJ, Perry A, Mohapatra G et al (1999) Localization of common deletion regions on 1p and 19q in human gliomas and their association with histological subtype. Oncogene 18:4144–4152. doi:10.1038/sj.onc.1202759

    PubMed  CAS  Google Scholar 

  61. Aldape K, Burger PC, Perry A (2007) Clinicopathologic aspects of 1p/19q loss and the diagnosis of oligodendroglioma. Arch Pathol Lab Med 131:242–251

    PubMed  CAS  Google Scholar 

  62. Reifenberger J, Reifenberger G, Liu L, James CD, Wechsler W, Collins VP (1994) Molecular genetic analysis of oligodendroglial tumors shows preferential allelic deletions on 19q and 1p. Am J Pathol 145:1175–1190

    PubMed  CAS  Google Scholar 

  63. McDonald JM, See SJ, Tremont IW, Colman H, Gilbert MR, Groves M et al (2005) The prognostic impact of histology and 1p/19q status in anaplastic oligodendroglial tumors. Cancer 104:1468–1477. doi:10.1002/cncr.21338

    PubMed  CAS  Google Scholar 

  64. Burger PC, Minn AY, Smith JS, Borell TJ, Jedlicka AE, Huntley BK et al (2001) Losses of chromosomal arms 1p and 19q in the diagnosis of oligodendroglioma, A study of paraffin-embedded sections. Mod Pathol 14:842–853. doi:10.1038/modpathol.3880400

    PubMed  CAS  Google Scholar 

  65. Ueki K, Nishikawa R, Nakazato Y, Hirose T, Hirato J, Funada N et al (2002) Correlation of histology and molecular genetic analysis of 1p, 19q, 10q, TP53, EGFR, CDK4, and CDKN2A in 91 astrocytic and oligodendroglial tumors. Clin Cancer Res 8:196–201

    PubMed  CAS  Google Scholar 

  66. Nigro JM, Takahashi MA, Ginzinger DG, Law M, Passe S, Jenkins RB et al (2001) Detection of 1p and 19q loss in oligodendroglioma by quantitative microsatellite analysis, a real-time quantitative polymerase chain reaction assay. Am J Pathol 158:1253–1262

    PubMed  CAS  Google Scholar 

  67. Chahlavi A, Kanner A, Peereboom D, Staugaitis SM, Elson P, Barnett G (2003) Impact of chromosome 1p status in response of oligodendroglioma to temozolomide: preliminary results. J Neurooncol 61:267–273. doi:10.1023/A:1022580610598

    PubMed  Google Scholar 

  68. Cairncross G, Berkey B, Shaw E, Jenkins R, Scheithauer B, Brachman D et al (2006) Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol 24:2707–2714. doi:10.1200/JCO.2005.04.3414

    PubMed  CAS  Google Scholar 

  69. Brat DJ, Seiferheld WF, Perry A, Hammond EH, Murray KJ, Schulsinger AR et al (2004) Analysis of 1p, 19q, 9p, and 10q as prognostic markers for high-grade astrocytomas using fluorescence in situ hybridization on tissue microarrays from Radiation Therapy Oncology Group trials. Neuro-oncol 6:96–103. doi:10.1215/S1152851703000231

    PubMed  CAS  Google Scholar 

  70. Schmidt MC, Antweiler S, Urban N, Mueller W, Kuklik A, Meyer-Puttlitz B et al (2002) Impact of genotype and morphology on the prognosis of glioblastoma. J Neuropathol Exp Neurol 61:321–328

    PubMed  CAS  Google Scholar 

  71. Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N et al (2001) PTEN mutation, EGFR amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst 93:1246–1256. doi:10.1093/jnci/93.16.1246

    PubMed  CAS  Google Scholar 

  72. Liu L, Backlund LM, Nilsson BR, Grander D, Ichimura K, Goike HM et al (2005) Clinical significance of EGFR amplification and the aberrant EGFRvIII transcript in conventionally treated astrocytic gliomas. J Mol Med 83:917–926. doi:10.1007/s00109-005-0700-2

    PubMed  CAS  Google Scholar 

  73. Frederick L, Wang XY, Eley G, James CD (2000) Diversity and frequency of epidermal growth factor receptor mutations in human glioblastomas. Cancer Res 60:1383–1387

    PubMed  CAS  Google Scholar 

  74. Wong AJ, Ruppert JM, Bigner SH, Grzeschik CH, Humphrey PA, Bigner DS et al (1992) Structural alterations of the epidermal growth factor receptor gene in human gliomas. Proc Natl Acad Sci USA 89:2965–2969. doi:10.1073/pnas.89.7.2965

    PubMed  CAS  Google Scholar 

  75. Olson JJ, Barnett D, Yang J, Assietti R, Cotsonis G, James CD (1998) Gene amplification as a prognostic factor in primary brain tumors. Clin Cancer Res 4:215–222

    PubMed  CAS  Google Scholar 

  76. Huncharek M, Kupelnick B (2000) Epidermal growth factor receptor gene amplification as a prognostic marker in glioblastoma multiforme: results of a meta-analysis. Oncol Res 12:107–112

    PubMed  CAS  Google Scholar 

  77. Simmons ML, Lamborn KR, Takahashi M, Chen P, Israel MA, Berger MS et al (2001) Analysis of complex relationships between age, p53, epidermal growth factor receptor, and survival in glioblastoma patients. Cancer Res 61:1122–1128

    PubMed  CAS  Google Scholar 

  78. Aldape KD, Ballman K, Furth A, Buckner JC, Giannini C, Burger PC et al (2004) Immunohistochemical detection of EGFRvIII in high malignancy grade astrocytomas and evaluation of prognostic significance. J Neuropathol Exp Neurol 63:700–707

    PubMed  CAS  Google Scholar 

  79. Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M et al (2005) Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 11:1462–1466. doi:10.1158/1078-0432.CCR-04-1737

    PubMed  CAS  Google Scholar 

  80. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V et al (2000) Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. N Engl J Med 343:1350–1354. doi:10.1056/NEJM200011093431901

    PubMed  CAS  Google Scholar 

  81. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ et al (2005) Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 352:987–996. doi:10.1056/NEJMoa043330

    PubMed  CAS  Google Scholar 

  82. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M et al (2005) MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med 352:997–1003. doi:10.1056/NEJMoa043331

    PubMed  CAS  Google Scholar 

  83. Mikeska T, Bock C, El-Maarri O, Hubner A, Ehrentraut D, Schramm J et al (2007) Optimization of quantitative MGMT promoter methylation analysis using pyrosequencing and combined bisulfite restriction analysis. J Mol Diagn 9:368–381. doi:10.2353/jmoldx.2007.060167

    PubMed  CAS  Google Scholar 

  84. Pollack IF, Hamilton RL, Sobol RW, Burnham J, Yates AJ, Holmes EJ et al (2006) O6-methylguanine-DNA methyltransferase expression strongly correlates with outcome in childhood malignant gliomas: results from the CCG-945 cohort. J Clin Oncol 24:3431–3437. doi:10.1200/JCO.2006.05.7265

    PubMed  CAS  Google Scholar 

  85. Fruehauf JP, Brem H, Brem S, Sloan A, Barger G, Huang W et al (2006) In vitro drug response and molecular markers associated with drug resistance in malignant gliomas. Clin Cancer Res 12:4523–4532. doi:10.1158/1078-0432.CCR-05-1830

    PubMed  CAS  Google Scholar 

  86. Walker MD et al (1978) Evaluation of BCNU and/or radiotherapy in the treatment of anaplastic gliomas. A cooperative clinical trial. J Neurosurg 49:333–343

    PubMed  CAS  Google Scholar 

  87. Walker MD et al (1980) Randomized comparisons of radiotherapy and nitrosoureas for the treatment of malignant glioma after surgery. N Engl J Med 303:1323–1329

    PubMed  CAS  Google Scholar 

  88. Sandberg-Wollheim M et al (1991) A randomized study of chemotherapy with procarbazine, vincristine, and lomustine with and without radiation therapy for astrocytoma grades 3 and/or 4. Cancer 68:22–29. doi:10.1002/1097-0142(19910701)68:1<22::AID-CNCR2820680105>3.0.CO;2-2

    PubMed  CAS  Google Scholar 

  89. Bleehen NM, Stenning SP (1991) A Medical Research Council trial of two radiotherapy doses in the treatment of grades 3 and 4 astrocytoma, The Medical Research Council Brain Tumour Working Party. Br J Cancer 64:769–774

    PubMed  CAS  Google Scholar 

  90. Nelson DF et al (1993) Hyperfractionated radiation therapy and bis-chlorethyl nitrosourea in the treatment of malignant glioma––possible advantage observed at 72.0 Gy in 1.2 Gy B.I.D. fractions: report of the Radiation Therapy Oncology Group Protocol 8302. Int J Radiat Oncol Biol Phys 25:193–207

    PubMed  CAS  Google Scholar 

  91. Roa W et al (2004) Abbreviated course of radiation therapy in older patients with glioblastoma multiforme: a prospective randomized clinical trial. J Clin Oncol 22:1583–1588. doi:10.1200/JCO.2004.06.082

    PubMed  CAS  Google Scholar 

  92. Phillips C et al (2003) A randomized trial comparing 35 Gy in ten fractions with 60 Gy in 30 fractions of cerebral irradiation for glioblastoma multiforme and older patients with anaplastic astrocytoma. Radiother Oncol 68:23–26. doi:10.1016/S0167-8140(03)00206-8

    PubMed  Google Scholar 

  93. Ford JM et al (1997) A short fractionation radiotherapy treatment for poor prognosis patients with high grade glioma. Clin Oncol (R Coll Radiol) 9:20–24. doi:10.1016/S0936-6555(97)80053-2

    CAS  Google Scholar 

  94. Glinski B (1993) Postoperative hypofractionated radiotherapy versus conventionally fractionated radiotherapy in malignant gliomas, A preliminary report on a randomized trial. J Neurooncol 16:167–172. doi:10.1007/BF01324704

    PubMed  CAS  Google Scholar 

  95. Prados MD et al (2001) Phase III trial of accelerated hyperfractionation with or without difluromethylornithine (DFMO) versus standard fractionated radiotherapy with or without DFMO for newly diagnosed patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 49:71–77. doi:10.1016/S0360-3016(00)01458-9

    PubMed  CAS  Google Scholar 

  96. Deutsch M et al (1989) Results of a randomized trial comparing BCNU plus radiotherapy, streptozotocin plus radiotherapy, BCNU plus hyperfractionated radiotherapy, and BCNU following misonidazole plus radiotherapy in the postoperative treatment of malignant glioma. Int J Radiat Oncol Biol Phys 16:1389–1396

    PubMed  CAS  Google Scholar 

  97. Ludgate CM et al (1988) Superfractionated radiotherapy in grade III, IV intracranial gliomas. Int J Radiat Oncol Biol Phys 15:1091–1095

    PubMed  CAS  Google Scholar 

  98. Shin KH et al (1985) Multiple daily fractionated radiation therapy and misonidazole in the management of malignant astrocytoma, A preliminary report. Cancer 56:758–760. doi:10.1002/1097-0142(19850815)56:4<758::AID-CNCR2820560410>3.0.CO;2-2

    PubMed  CAS  Google Scholar 

  99. Fulton DS et al (1984) Misonidazole combined with hyperfractionation in the management of malignant glioma. Int J Radiat Oncol Biol Phys 10:1709–1712

    PubMed  CAS  Google Scholar 

  100. Shin KH, Muller PJ, Geggie PH (1983) Superfractionation radiation therapy in the treatment of malignant astrocytoma. Cancer 52:2040–2043. doi:10.1002/1097-0142(19831201)52:11<2040::AID-CNCR2820521112>3.0.CO;2-K

    PubMed  CAS  Google Scholar 

  101. Payne DG et al (1982) Malignant astrocytoma: hyperfractionated and standard radiotherapy with chemotherapy in a randomized prospective clinical trial. Cancer 50:2301–2306. doi:10.1002/1097-0142(19821201)50:11<2301::AID-CNCR2820501114>3.0.CO;2-J

    PubMed  CAS  Google Scholar 

  102. Laperriere NJ et al (1998) Randomized study of brachytherapy in the initial management of patients with malignant astrocytoma. Int J Radiat Oncol Biol Phys 41:1005–1011. doi:10.1016/S0360-3016(98)00159-X

    PubMed  CAS  Google Scholar 

  103. Selker RG et al (2002) The Brain Tumor Cooperative Group NIH Trial 87–01: a randomized comparison of surgery, external radiotherapy, and carmustine versus surgery, interstitial radiotherapy boost, external radiation therapy, and carmustine. Neurosurgery 51:343–355. doi:10.1097/00006123-200208000-00009 (discussion 355–357)

    PubMed  Google Scholar 

  104. Souhami L et al (2004) Randomized comparison of stereotactic radiosurgery followed by conventional radiotherapy with carmustine to conventional radiotherapy with carmustine for patients with glioblastoma multiforme: report of Radiation Therapy Oncology Group 93–05 protocol. Int J Radiat Oncol Biol Phys 60:853–860. doi:10.1016/j.ijrobp.2004.04.011

    PubMed  Google Scholar 

  105. Lee S et al (1999) Patterns of failure following high-dose 3-D conformal radiotherapy for high-grade astrocytomas: a quantitative dosimetric study. Int J Radiat Oncol Biol Phys 43:79–88. doi:10.1016/S0360-3016(98)00266-1

    PubMed  CAS  Google Scholar 

  106. Massey V, Wallner K (1990) Patterns of second recurrence of malignant astrocytomas. Int J Radiat Oncol Biol Phys 18:395–398

    PubMed  CAS  Google Scholar 

  107. Wallner K et al (1989) Patterns of failure following treatment for glioblastoma and anaplastic astrocytoma. Int J Radiat Oncol Biol Phys 16:1405–1409

    PubMed  CAS  Google Scholar 

  108. Shapiro WR et al (1989) Randomized trial of three chemotherapy regimens and two radiotherapy regimens and two radiotherapy regimens in postoperative treatment of malignant glioma. Brain Tumor Cooperative Group Trial 8001. J Neurosurg 71:1–9

    PubMed  CAS  Google Scholar 

  109. Kita M et al (1989) Radiotherapy of malignant glioma––prospective randomized clinical study of whole brain vs local irradiation. Gan no rinsho Jpn J Cancer Clin 35:1289–1294

    CAS  Google Scholar 

  110. Valtonen S, Timonen U, Toivanen P, Kalimo H, Kivipelto L, Heiskanen O, Unsgaard G, Kuurne T (1997) Interstitial chemotherapy with carmustine-loaded polymers for high grade gliomas: a randomized double-blind study. Neurosurgery 41:44–49. doi:10.1097/00006123-199707000-00011

    PubMed  CAS  Google Scholar 

  111. Westphal M, Hilt DC, Bortey E, Delavault P, Olivares R, Warnke PC, Whittle IR, Jaaskelainen J, Ram Z (2003) A phase 3 trial of local chemotherapy with biodegradable carmistine (BCNU) wafers (Gliadel wafers) in patients with primary malignant gliomas. Neuro-oncol 5:79–88. doi:10.1215/15228517-5-2-79

    PubMed  CAS  Google Scholar 

  112. Brandes AA, Vastola F, Basso U, Berti F, Pinna G, Rotilio A et al (2003) A prospective study on glioblastoma in the elderly. Cancer 97:657–662. doi:10.1002/cncr.11097

    PubMed  Google Scholar 

  113. Chinot OL, Barrie M, Frauger E, Dufour H, Figarella-Branger D, Palmari J et al (2004) Phase II study of temozolomide without radiotherapy in newly diagnosed glioblastoma multiforme in an elderly populations. Cancer 100:2208–2214. doi:10.1002/cncr.20224

    PubMed  CAS  Google Scholar 

  114. Glantz M, Chamberlain M, Liu Q, Litofsky NS, Recht LD (2003) Temozolomide as an alternative to irradiation for elderly patients with newly diagnosed malignant gliomas. Cancer 97:2262–2266. doi:10.1002/cncr.11323

    PubMed  CAS  Google Scholar 

  115. Mukundan S, Holder CA, Olson JJ (2008) Neuroradiological assessment of newly diagnosed glioblastoma. J Neurooncol 89:259–269. doi:10.1007/s11060-008-9616-3

    PubMed  Google Scholar 

  116. Ryken TC, Frankel B, Julien T, Olson JJ (2008) Surgical management of newly diagnosed glioblastoma in adults: role of cytoreductive surgery. J Neurooncol 89:271–286. doi:10.1007/s11060-008-9614-5

    PubMed  Google Scholar 

  117. Brat DJ, Prayson RA, Ryken TC, Olson JJ (2008) Diagnosis of malignant glioma: role of neuropathology. J Neurooncol 89:287–311. doi:10.1007/s11060-008-9618-1

    PubMed  Google Scholar 

  118. Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760. doi:10.1038/nature05236

    PubMed  CAS  Google Scholar 

  119. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432:396–401. doi:10.1038/nature03128

    PubMed  CAS  Google Scholar 

  120. Khwaja FW, Duke-Cohan JS, Brat DJ, Van Meir EG (2006) Attractin is elevated in the cerebrospinal fluid of patients with malignant astrocytoma and mediates glioma cell migration. Clin Cancer Res 12:6331–6336. doi:10.1158/1078-0432.CCR-06-1296

    PubMed  CAS  Google Scholar 

  121. Khwaja FW, Nolen JD, Mendrinos SE, Lewis MM, Olson JJ, Pohl J et al (2006) Proteomic analysis of cerebrospinal fluid discriminates malignant and nonmalignant disease of the Central Nervous System and identifies specific protein markers. Proteomics 6:6277–6287. doi:10.1002/pmic.200600135

    PubMed  CAS  Google Scholar 

  122. Phillips HS, Kharbanda S, Chen R, Forrest WF, Soriano RH, Wu TD et al (2006) Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 9:157–173. doi:10.1016/j.ccr.2006.02.019

    PubMed  CAS  Google Scholar 

  123. Nutt CL, Mani DR, Betensky RA, Tamayo P, Cairncross JG, Ladd C et al (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res 63:1602–1607

    PubMed  CAS  Google Scholar 

  124. Pomeroy SL, Tamayo P, Gaasenbeek M, Sturla LM, Angelo M, McLaughlin ME et al (2002) Prediction of Central Nervous System embryonal tumour outcome based on gene expression. Nature 415:436–442. doi:10.1038/415436a

    PubMed  CAS  Google Scholar 

  125. Buatti J, Ryken R, Smith MC, Sneed P, Suh J, Mehta M, Olson JJ (2008) Radiation therapy of pathologically confirmed newly diagnosed glioblastoma in adults. J Neurooncol 89:313–337. doi:10.1007/s11060-008-9617-2

    PubMed  Google Scholar 

  126. Fadul CE, Wen PY, Kim L, Olson JJ (2008) Cytotoxic chemotherapeutic management of newly diagnosed glioblastoma multiforme. J Neurooncol 89:339–357. doi:10.1007/s11060-008-9615-4

    PubMed  CAS  Google Scholar 

  127. Quinn JA, Desjardins A, Weingart J et al (2005) Phase I trial of temozolomide plus O6-benzylguanine for patients with recurrent or progressive malignant glioma. J Clin Oncol 23:7178–7187. doi:10.1200/JCO.2005.06.502

    PubMed  CAS  Google Scholar 

  128. Barvaux VA, Ranson M, Brown R et al (2004) Dual repair modulation reverses Temozolomide resistance in vitro. Mol Cancer Ther 3:123–127

    PubMed  CAS  Google Scholar 

  129. Woolford LB, Southgate TD, Margison GP et al (2006) The P140K mutant of human O(6)-methylguanine-DNA-methyltransferase (MGMT) confers resistance in vitro and in vivo to temozolomide in combination with the novel MGMT inactivator O(6)-(4-bromothenyl)guanine. J Gene Med 8:29–34. doi:10.1002/jgm.816

    PubMed  CAS  Google Scholar 

  130. Plummer R, Middleton M, Wilson R, et al. (2005) Final clinical, pharmacokinetic and pharmacodynamic results of the phase I study of the novel poly(ADP-ribose)polymerase (PARP) inhibitor, AGO14699, in combination with temozolomide AACR-NCI-EORTC International Conference on Molecular Targets and Cancer Therapeutics Abstr B268

  131. Tentori L, Graziani G (2005) Chemopotentiation by PARP inhibitors in cancer therapy. Pharmacol Res 52(1):25–33. doi:10.1016/j.phrs.2005.02.010

    PubMed  CAS  Google Scholar 

  132. Tentori L, Leonetti C, Scarsella M et al (2005) Brain distribution and efficacy as chemosensitizer of an oral formulation of PARP-1 inhibitor GPI 15427 in experimental models of CNS tumors. Int J Oncol 26:415–422

    PubMed  CAS  Google Scholar 

  133. Weaver KD, Yeyeodu S, Cusack JC Jr, Baldwin AS Jr, Ewend MG (2003) Potentiation of chemotherapeutic agents following antagonism of nuclear factor kappa B in human gliomas. J Neurooncol 61:187–196. doi:10.1023/A:1022554824129

    PubMed  Google Scholar 

  134. Nakanishi C, Toi M (2005) Nuclear factor-kappaB inhibitors as sensitizers to anticancer drugs. Nat Rev Cancer 5(4):297–309. doi:10.1038/nrc1588

    PubMed  CAS  Google Scholar 

  135. Kesari S, Ramakrishna N, Sauvageot C, Stiles C, Wen PY (2006) Targeted molecular therapies for recurrent malignant glioma. Curr Oncol Rep 8:58–70. doi:10.1007/s11912-006-0011-y

    PubMed  CAS  Google Scholar 

  136. Wen PY, Kesari S, Drappatz J (2006) Malignant gliomas: strategies to increase the effectiveness of targeted molecular treatment. Expert Rev Anticancer Ther 6:733–754. doi:10.1586/14737140.6.5.733

    PubMed  CAS  Google Scholar 

  137. Goldbrunner RH, Bendszus M, Wood J, Kiderlen M, Sasaki M, Tonn JC (2004) PTK787/ZK222584, an inhibitor of vascular endothelial growth factor receptor tyrosine kinases, decreases glioma growth and vascularization. Neurosurgery 55:426–432

    PubMed  Google Scholar 

  138. Herbst RS, Heymach JV, O’Reilly MS, Onn A, Ryan AJ (2007) Vandetanib (ZD6474): an orally available receptor tyrosine kinase inhibitor that selectively targets pathways critical for tumor growth and angiogenesis. Expert Opin Investig Drugs 16:239–249. doi:10.1517/13543784.16.2.239

    PubMed  CAS  Google Scholar 

  139. Brockman J (1996) The third culture: beyond scientific revolution. Simon and Schuster, New York

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the editorial expertise of Emily Feinstein. Additionally, the authors wish to thank the individuals who directly participated in the writing of these guidelines in their original form: Chad Holder, Bruce Frankel, Terrance Julien, Richard A. Prayson, John Buatti, Mark C. Smith, Penny Sneed, John H. Suh, Minesh Mehta, Patrick Wen, and Lyndon Kim. We also wish to express appreciation to the AANS/CNS Joint Guidelines Committee for their review, comments and suggestions during the preparation of these guidelines in their original form.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeffrey J. Olson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, J.J., Fadul, C.E., Brat, D.J. et al. Management of newly diagnosed glioblastoma: guidelines development, value and application. J Neurooncol 93, 1–23 (2009). https://doi.org/10.1007/s11060-009-9838-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-009-9838-z

Keywords

Navigation