Skip to main content
Log in

Traceability in Fluorometry: Part II. Spectral Fluorescence Standards

  • Published:
Journal of Fluorescence Aims and scope Submit manuscript

Abstract

The need for the traceable characterization of fluorescence instruments is emphasized from a chemist’s point of view, focusing on spectral fluorescence standards for the determination of the wavelength- and polarization-dependent relative spectral responsivity and relative spectral irradiance of fluorescence measuring systems, respectively. In a first step, major sources of error of fluorescence measurements and instrument calibration are revealed to underline the importance of this issue and to illustrate advantages and disadvantages of physical and chemical transfer standards for generation of spectral correction curves. Secondly, examples for sets of traceable chemical emission and excitation standards are shown that cover a broad spectral region and simple procedures for the determination of corrected emission spectra with acceptable uncertainties are presented. With proper consideration of the respective measurement principle and geometry, these dye-based characterization procedures can be not only applied to spectrofluorometers but also to other types of fluorescence measuring systems and even to Raman spectrometers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. R. Lakowicz (1999). Principles of Fluorescence Spectroscopy, 2nd edn., Kluwer Academic/Plenum Press, New York.

    Google Scholar 

  2. J. R. Lakowicz (Ed.) (1992–2004). Topics in Fluorescence Spectroscopy Series, Vols. 1–8, Plenum, New York.

    Google Scholar 

  3. O. S. Wolfbeis (Series Ed.) (2001–2004). Springer Series on Fluorescence, Methods and Applications, Vols. 1–3, Springer, Berlin.

  4. S. G. Schulman (Ed.) (1985–1993). Molecular Luminescence Spectroscopy, Parts 1–3, Wiley Interscience, New York.

    Google Scholar 

  5. W. T. Mason (1999). Fluorescent and Luminescent Probes for Biological Activity, 2nd edn., Academic Press, San Diego.

    Google Scholar 

  6. J. W. Eastman (1966). Standardization of fluorescence spectra and the calibration of spectrofluorimeters. Appl. Opt. 5(7), 1125–1132.

    Google Scholar 

  7. A. K. Gaigalas, L. Li, O. Hemderson, R. Vogt, J. Barr, G. Marti, J. Weaver, and A. Schwartz (2001). The development of fluorescence intensity standards. J. Res. Natl. Inst. Stand. Technol. 106(2), 381–389.

    Google Scholar 

  8. J. Hollandt, R. D. Taubert, J. Seidel, U. Resch-Genger, A. Gugg-Helminger, D. Pfeifer, C. Monte, and W. Pilz (in press), Traceability in fluorometry: Part I. Physical standards, J. Fluoresc. 15(3), 311.

  9. J. N. Miller (1981). Standards in Fluorescence Spectrometry, Ultraviolet Spectrometry Group, London.

    Google Scholar 

  10. R. A. Velapoldi and H. H. Tonnesen (2004). Corrected emission spectra and quantum yields for a series of fluorescent compounds in the visible spectral region. J. Fluoresc. 14(4), 465–472.

    Google Scholar 

  11. C. A. Parker (1968). Photoluminescence of Solutions, Elsevier, Amsterdam.

    Google Scholar 

  12. G. A. Wagnieres, W. M. Star, and B. C. Wilson (1998). In vivo fluorescence spectroscopy and imaging for oncological applications. Photochem. Photobiol. 68(5), 603–632.

    Google Scholar 

  13. B. Banerjee, B. E. Miedema, and H. R. Chandarsekhar (1999). Role of basement membrane collagen and ellastin in the autofluorescence of the colon. J. Invest. Med. 47(6) 326–332.

    Google Scholar 

  14. A. Schwartz, E. Fernandez-Repollet, R. Vogt, and J. W. Gratama (1996). Standardizing flow cytometry: Construction of a standardized fluorescence calibration plot using matching spectral calibrators. Cytometry 26B(1), 22–31.

    Google Scholar 

  15. A. Schwartz, G. E. Marti, J. W. Gratama, and E. Fernandez-Repollet (1998). Standardizing flow cytometry: A classification system of fluorescence standards used for flow cytometry. Cytometry 33A(2), 106–114.

    Google Scholar 

  16. G. Saunders and H. Parkes (1999). Analytical Molecular Biology: Quality and Validation, RSC, Cambridge.

    Google Scholar 

  17. EN ISO/IEC 17025.

  18. ASTM E 388-72 (reapproved 2003). Spectral bandwidth and wavelength accuracy of fluorescence spectrometers.

  19. ASTM E 578-83 (reapproved 2003). Linearity of fluorescence measuring system.

  20. ASTM E 579-84 (reapproved 2003). Limit of detection of fluorescence of quinine sulfate.

  21. G. Marti (1997). History, Practical Theory and Consensus of Quantitaive Flow Cytometry Measurements, Standards for QC/QA in Flow Cytometry, CBER, FDA Methesda, MD.

  22. R. A. Velapoldi (1987). Liquid standards in fluorescence spectrometry. In C. Burgess and K. D. Mielenz (Eds.), Advances in Standards and Methodology in Spectrophotometry, Elsevier, Amsterdam, pp. 175–193.

  23. I. Billard, E. Ansoborlo, K. Afferson, S. Arpigny, M. E. Azenha, D. Brich, P. bros, H. D. Burrows, G. Choppin, L. Couston, V. Dubois, T. Fangh¨nel, G. Geipel, S. Hubert, J. I. Kim, T. Kimura, R. Klenze, A. Kronenberg, M. Kumke, G. Lagarde, G. Llamarque, S. Lis, C. Madic, G. Meinrath, C. Moulin, R. Nagaishi, D. Parker, G. Plancque, F. Scherbaum, E. Simoni, S. Sinkov, and C. Viallesoubranne (2003). Aqueous solutions of uranium(VI) as studied by time-resolved emission spectroscopy: A round-robin test. Appl. Spectrsc. 57(8), 1027–1038.

    Google Scholar 

  24. D. F. Eaton (1988). Reference materials for fluorescence measurement. Pure Appl. Chem. 60(7), 1107–1114.

    Google Scholar 

  25. R. A. Velapoldi and M. S. Epstein (1989). Luminescence standards for macro and microspectrofluorometry. In M. C. Goldberg (Ed.), Luminescence Applications in Biological, Chemical, Environmental and Hydrological Sciences, ACS Symposium Series 383, American Chemical Society, Washington, DC, pp. 98–126.

    Google Scholar 

  26. R. A. Velapoldi and K. D. Mielenz (1980). A fluorescence standard reference material: Quinine sulfate dihydrate, NBS Spec. Publ. 260-64, PB 80132046, Springfield, VA.

  27. International Vocabulary of Basics and General Terms in Metrology (1994). 2nd edn., Beuth Verlag GmbH.

  28. W. D. Niles and F. S. Cohen (1995). Radiometric calibration of a video fluorescence microscope for the quantitative imaging of resonance energy transfer. Rev. Sci. Instrum. 66(6), 3527– 3536.

    Google Scholar 

  29. K. Iwata, H. Hamaguchi, and M. Tasumi (1988). Sensitivity calibration of multichannel Raman spectrometers using the least-squares-fitted-fluorescence spectrum of quinine. Appl. Spectrosc. 42(1), 12–14.

    Google Scholar 

  30. J. W. Verhoeven (1996). Glossary of terms used in photochemistry. Pure Appl. Chem. 68(12), 2223–2286.

    Google Scholar 

  31. W. H. Melhuish (1984). Nomenclature, symbols, units and their usage in spectrochemical analysis. VI: Molecular luminescence spectroscopy. Pure Appl. Chem. 56(2), 231–245.

    Google Scholar 

  32. K. D. Mielenz (1978). Refraction correction for fluorescence spectra of aqueous solutions. Appl. Opt. 17(18), 2876–2877.

    Google Scholar 

  33. L. F. Costa, K. D. Mielenz, and F. Grum (1982). in K. D. Mielenz (Ed.), Optical Radiation Measurements, Vol. 3: Measurement of Photoluminescence, New York, pp. 139–174.

  34. J. W. Hofstraat and M. J. Latuhihin (1994). Correction of fluorescence-spectra, Appl. Spectr. 48(4), 436–447.

    Google Scholar 

  35. U. Resch-Genger, K. Hoffmann, W. Nietfeld, A. Engel, B. Ebert, R. Macdonald, J. Neukammer, D. Pfeifer, and A. Hoffmann (in press). How to improve quality assurance in fluorometry: Fluorescence-inherent sources of error and suited fluorescence standards. J. Fluoresc. 15(3), 347.

  36. G. Kort¨m and B. Finckh (1941–1944). Eine photographische methode zur Aufnahme quantitativer vergleichbarer fluoreszenzspektren. Spectrochim. Acta 2, 137–149.

    Google Scholar 

  37. E. Lippert, W. N¨gele, I. Seibold-Blankenstein, U. Staiger, and W. Voss (1959). Messung von Fluoreszenzspektren mit Hilfe von Spektralphotometern und Vergleichsstandards. Z. Anal. Chem. 170(1), 1–18.

    Google Scholar 

  38. J. A. Gardecki and M. Maroncelli (1998). Set of secondary emission standards for calibration of the spectral responsivity in emission spectroscopy. Appl. Spectr. 52(9), 1179–1189.

    Google Scholar 

  39. N. P. Fox (1991). Trap detectors and their properties. Metrologia 28(3), 197–202.

    Google Scholar 

  40. K. D. Mielenz and K. L. Eckerle (1972). Spectrophotometer linearity testing using the double-aperture method. Appl. Opt. 11(10), 2294–2303.

    Google Scholar 

  41. A. Credi and L. Prodi (1998). From observed to corrected luminescence intensity of solution systems: an easy-to-apply correction method for standard spectrofluorimeters. Spectrochim. Acta Part A 54(1), 159–170.

    Google Scholar 

  42. L. Norgaard (1996). Spectral resolution and prediction of slit widths in fluorescence spectroscopy by two- and three-way methods. J. Chemometrics 10(5/6), 615–630.

    Google Scholar 

  43. E. D. Cehelnik, K. D. Mielenz, and R. A. Velapoldi (1975). Polarization effects on fluorescence measurements. J. Res. Natl. Bur. Stand. A 79(1), 1–15.

    Google Scholar 

  44. H. Minato, M. Nanjo, and Y. Nayatani (1983). Errors in spectrophotometry and colorimetry of fluorescent samples caused by polarization of the measuring system. Color Res. Appl. 8(4), 238–244.

    Google Scholar 

  45. M. Levitus, J. L. Bourdelande, G. Marqués, and P. F. Aramendía (1999). Fluorescence anisotropy of dyes included in crosslinked polystyrene. J. Photochem. Photobiol. A 126(1–3), 77–82.

    Google Scholar 

  46. D. Bartholomeusz and J. D. Andrade (2002). Photodetector calibration method for reporting bioluminescence measurements in standardized units, in Proceedings of the Symposium on Bioluminescence and Chemiluminescence, Bioluminescence & Chemiluminescence: Progress & Current Applications, World Scientific Publishing Co. Pte. Ltd., Singapore, pp. 189–192.

  47. G. Eppeldauer (1998). Spectral response based calibration method of tristimulus colorimeters. J. Res. Natl. Inst. Stand. Technol. 103(6), 615–619.

    Google Scholar 

  48. U. Resch-Genger, D. Pfeifer, C. Monte, A. Hoffmann, K. Hoffmann, M. Spieles, and K. Rurack, patent pending.

  49. A. Thompson and K. L. Eckerle (1989). Standards for corrected fluorescence spectra. Proc. SPIE Int. Soc. Opt. Eng. 1054, 20–25.

    Google Scholar 

  50. U. Resch-Genger, D. Pfeifer, C. Monte, and A. Hoffmann (in press).

  51. E. Ejder (1969). Methods of representing emission, excitation, and photoconductivity spectra. J. Opt. Soc. A 59(2), 223–224.

    Google Scholar 

  52. C. A. Parker and W. T. Rees (1960). Correction of fluorescence spectra and measurement of fluorescence quantum efficiency. Analyst 85(1013) 587–600.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Resch-Genger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Resch-Genger, U., Pfeifer, D., Monte, C. et al. Traceability in Fluorometry: Part II. Spectral Fluorescence Standards. J Fluoresc 15, 315–336 (2005). https://doi.org/10.1007/s10895-005-2629-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10895-005-2629-9

Key Words

Navigation