Skip to main content
Log in

Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Heart failure (HF) is associated with sympathetic overactivity, which contributes to disease progression and arrhythmia development. Cardiac sympathetic innervation imaging can be performed using radiotracers that are taken up in the presynaptic nerve terminal of sympathetic nerves. The commonly used radiotracers are 123I-metaiodobenzylguanidine (123I-mIBG) for planar and single-photon emission computed tomography imaging, and 11C-hydroxyephedrine for positron emission tomography imaging. Sympathetic innervation imaging has been used in assessing prognosis, response to treatment, risk of ventricular arrhythmias and sudden death and prediction of response to cardiac resynchronization therapy in patients with HF. Other potential applications of these techniques are in patients with chemotherapy-induced cardiomyopathy, predicting myocardial recovery in patients with left ventricular assist devices, and assessing reinnervation following cardiac transplantation. There is a lack of standardization with respect to technique of 123I-mIBG imaging that needs to be overcome for the imaging modality to gain popularity in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Go AS, Mozaffarian D, Roger VL et al (2013) Heart disease and stroke statistics—2013 update: a report from the American Heart Association. Circulation 127:e6–e245

    Article  PubMed  Google Scholar 

  2. Bristow MR (1984) The adrenergic nervous system in heart failure. N Engl J Med 311:850–851

    Article  CAS  PubMed  Google Scholar 

  3. Chidsey CA, Braunwald E, Morrow AG (1965) Catecholamine excretion and cardiac stores of norepinephrine in congestive heart failure. Am J Med 39:442–451

    Article  CAS  PubMed  Google Scholar 

  4. Hasking GJ, Ester MD, Jennings GL et al (1986) Norepinephrine spillover to plasma in patients with congestive heart failure: evidence of increased overall and cardiorenal sympathetic nervous activity. Circulation 73:615–621

    Article  CAS  PubMed  Google Scholar 

  5. Davis D, Baily R, Zeus R (1988) Abnormalities in systemic norepinephrine kinetics in human congestive heart failure. Am J Physiol 254:760E–766E

    Google Scholar 

  6. Kaye DM, Lambert GW, Lefkovits J et al (1994) Neurochemical evidence of cardiac sympathetic activation and increased central nervous system norepinephrine turnover in severe congestive heart failure. J Am Coll Cardiol 23(3):570–578

    Article  CAS  PubMed  Google Scholar 

  7. Meredith IT, Eisenhofer G, Lambert GW et al (1993) Cardiac sympathetic nervous activity in congestive heart failure. Evidence for increased neuronal norepinephrine release and preserved neuronal uptake. Circulation 88(1):136–145

    Article  CAS  PubMed  Google Scholar 

  8. Pool PE, Covell JW, Levitt M et al (1967) Reduction of cardiac tyrosine hydroxylase activity in experimental congestive heart failure: its role in the depletion of cardiac norepinephrine stores. Circ Res 20:349–353

    Article  CAS  PubMed  Google Scholar 

  9. Chang PC, Kriek E, van der Krogt JA et al (1991) Does regional norepinephrine spillover represent local sympathetic activity? Hypertension 18:56–66

    Article  CAS  PubMed  Google Scholar 

  10. Eisenhofer G, Friberg P, Rundqvist B et al (1996) Cardiac sympathetic nerve function in congestive heart failure. Circulation 93(9):1667–1676

    Article  CAS  PubMed  Google Scholar 

  11. Rundqvist B, Elam M, Bergmann-Sverrisdottir Y et al (1997) Increased cardiac adrenergic drive precedes generalized sympathetic activation in human heart failure. Circulation 95(1):169–175

    Article  CAS  PubMed  Google Scholar 

  12. Ramchandra R, Hood SG, Watson AM et al (2008) Responses of cardiac sympathetic nerve activity to changes in circulating volume differ in normal and heart failure sheep. Am J Physiol Regul Integr Comp Physiol 295:R719–R726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Ramchandra R, Hood SG, Denton DA et al (2009) Basis for the preferential activation of cardiac sympathetic nerve activity in heart failure. Proc Natl Acad Sci USA 106:924–928

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Ramchandra R, Hood SG, Frithiof R et al (2009) Discharge properties of cardiac and renal sympathetic nerves and their impaired responses to changes in blood volume in heart failure. Am J Physiol Regul Integr Comp Physiol 297:R665–R674

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Travin MI (2009) Cardiac neuronal imaging at the edge of clinical application. Cardiol Clin 27:311–327

    Article  PubMed  Google Scholar 

  16. Ungerer M, Bohm M, Elce JS et al (1993) Altered expression of beta-adrenergic receptor kinase and beta 1-adrenergic receptors in the failing human heart. Circulation 87:454–463

    Article  CAS  PubMed  Google Scholar 

  17. Caldwell JH, Link JM, Levy WC et al (2008) Evidence for pre to postsynaptic mismatch of the cardiac sympathetic nervous system in ischemic congestive heart failure. J Nucl Med 49:234–241

    Article  PubMed  Google Scholar 

  18. Hattori N, Schwaiger M (2000) Metaiodobenzylguanidine scintigraphy of the heart. What have we learnt clinically? Eur J Nucl Med 27:1–6

    Article  CAS  PubMed  Google Scholar 

  19. Kline RC, Swanson DP, Wieland DM et al (1981) Myocardial imaging in man with I-123 meta-iodobenzylguanidine. J Nucl Med 22:129–132

    CAS  PubMed  Google Scholar 

  20. Dilsizian V, Chandrashekhar Y, Narula J (2010) Introduction of new tests: low are the mountains, high the expectations. J Am Coll Cardiol 3:117–119

    Article  Google Scholar 

  21. Agostini D, Carrio I, Verberne HJ (2009) How to use myocardial 123I-MIBG scintigraphy in chronic heart failure. Eur J Nucl Med Mol Imaging 36:555–559

    Article  PubMed  Google Scholar 

  22. Thackeray JT, Bengel FM (2013) Assessment of cardiac autonomic neuronal function using PET imaging. J Nucl Cardiol 20(1):150–165

    Article  PubMed  Google Scholar 

  23. Rosenspire KC, Haka MS, Van Dort ME et al (1990) Synthesis and preliminary evaluation of carbon-11-meta-hydroxyephedrine: a false transmitter agent for heart neuronal imaging. J Nucl Med 31:1328–1334

    CAS  PubMed  Google Scholar 

  24. DeGrado TR, Hutchins GD, Toorongian SA et al (1993) Myocardial kinetics of carbon-11-meta hydroxyephedrine: retention mechanisms and effects of norepinephrine. J Nucl Med 34:1287–1293

    CAS  PubMed  Google Scholar 

  25. Schwaiger M, Kalff V, Rosenspire K et al (1990) Noninvasive evaluation of sympathetic nervous system in human heart by positron emission tomography. Circulation 82:457–464

    Article  CAS  PubMed  Google Scholar 

  26. Raffel DM, Corbett JR, del Rosario RB et al (1996) Clinical evaluation of carbon-11-phenylephrine: MAO-sensitive marker of cardiac sympathetic neurons. J Nucl Med 37:1923–1931

    CAS  PubMed  Google Scholar 

  27. Goldstein DS, Eisenhofer G, Dunn BB et al (1993) Positron emission tomographic imaging of cardiac sympathetic innervation using 6-[18F]fluorodopamine: initial findings in humans. J Am Coll Cardiol 22:1961–1971

    Article  CAS  PubMed  Google Scholar 

  28. Caldwell JH, Kroll K, Li Z et al (1998) Quantitation of presynaptic cardiac sympathetic function with carbon-11-meta-hydroxyephedrine. J Nucl Med 39:1327–1334

    CAS  PubMed  Google Scholar 

  29. Matsunari I, Aoki H, Nomura Y et al (2010) Iodine-123 metaiodobenzylguanidine imaging and carbon-11 hydroxyephedrine positron emission tomography compared in patients with left ventricular dysfunction. Circ Cardiovasc Imaging 3:595–603

    Article  PubMed  Google Scholar 

  30. Verberne HJ, Brewster LM, Somsen GA et al (2008) Prognostic value of myocardial 123I-metaiodobenzylguanidine (MIBG) parameters in patients with heart failure: a systematic review. Eur Heart J 29(9):1147–1159

    Article  PubMed  Google Scholar 

  31. Jacobson AF, Senior R, Cerqueira MD et al (2010) Myocardial iodine-123 meta-iodobenzylguanidine imaging and cardiac events in heart failure. Results of the prospective ADMIRE-HF (AdreView Myocardial Imaging for Risk Evaluation in Heart Failure) study. J Am Coll Cardiol 55:2212–2221

    Article  PubMed  Google Scholar 

  32. Nakata T, Nakajima K, Yamashina S et al (2013) A pooled analysis of multicenter cohort studies of 123 I-mIBG imaging of sympathetic innervation for assessment of long-term prognosis in heart failure. J Am Coll Cardiol Imaging 6(7):772–784

    Article  Google Scholar 

  33. Ketchum ES, Jacobson AF, Caldwell JH et al (2012) Selective improvement in Seattle heart failure model risk stratification using iodine-123 meta-iodobenzylguanidine imaging. J Nucl Cardiol 19(5):1007–1016

    Article  PubMed  Google Scholar 

  34. Fukuoka S, Hayashida K, Hirose Y et al (1997) Use of iodine-123 metaiodobenzylguanidine myocardial imaging to predict the effectiveness of beta-blocker therapy in patients with dilated cardiomyopathy. Eur J Nucl Med 24:523–529

    CAS  PubMed  Google Scholar 

  35. Yamazaki J, Muto H, Kabano T et al (2001) Evaluation of beta-blocker therapy in patients with dilated cardiomyopathy—clinical meaning of iodine 123-metaiodobenzylguanidine myocardial single-photon emission computed tomography. Am Heart J 141:645–652

    Article  CAS  PubMed  Google Scholar 

  36. Kasama S, Toyama T, Hatori T et al (2007) Evaluation of cardiac sympathetic nerve activity and left ventricular remodelling in patients with dilated cardiomyopathy on the treatment containing carvedilol. Eur Heart J 28(8):989–995

    Article  CAS  PubMed  Google Scholar 

  37. Agostini D, Belin A, Amar MH et al (2000) Improvement of cardiac neuronal function after carvedilol treatment in dilated cardiomyopathy: a 1231-MIBG scintigraphic study. J Nucl Med 41(5):845–851

    CAS  PubMed  Google Scholar 

  38. Gerson MC, Craft LL, McGuire N et al (2002) Carvedilol improves left ventricular function in heart failure patients with idiopathic dilated cardiomyopathy and a wide range of sympathetic nervous system function as measured by iodine 123 metaiodobenzylguanidine. J Nucl Cardiol 9(6):608–615

    Article  PubMed  Google Scholar 

  39. de Peuter OR, Verberne HJ, Kok WE et al (2013) Differential effects of nonselective versus selective β-blockers on cardiac sympathetic activity and hemostasis in patients with heart failure. J Nucl Med 54(10):1733–1739

    Article  PubMed  Google Scholar 

  40. Azevedo ER, Kubo T, Mak S et al (2001) Nonselective versus selective beta-adrenergic receptor blockade in congestive heart failure: differential effects on sympathetic activity. Circulation 104(18):2194–2199

    Article  CAS  PubMed  Google Scholar 

  41. Somsen GA, van Vlies B, de Milliano PA et al (1996) Increased myocardial [123I]-metaiodobenzylguanidine uptake after enalapril treatment in patients with chronic heart failure. Heart 76(3):218–225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Takeishi Y, Atsumi H, Fujiwara S et al (1997) ACE inhibition reduces cardiac iodine-123-MIBG release in heart failure. J Nucl Med 38(7):1085–1089

    CAS  PubMed  Google Scholar 

  43. Kasama S, Toyama T, Kumakura H et al (2003) Addition of valsartan to an angiotensin-converting enzyme inhibitor improves cardiac sympathetic nerve activity and left ventricular function in patients with congestive heart failure. J Nucl Med 44(6):884–890

    CAS  PubMed  Google Scholar 

  44. Kasama S, Toyama T, Kumakura H et al (2002) Spironolactone improves cardiac sympathetic nerve activity and symptoms in patients with congestive heart failure. J Nucl Med 43(10):1279–1285

    CAS  PubMed  Google Scholar 

  45. Toyama T, Hoshizaki H, Seki R et al (2004) Efficacy of amiodarone treatment on cardiac symptom, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: comparison with beta-blocker therapy. J Nucl Cardiol 11(2):134–141

    Article  PubMed  Google Scholar 

  46. Toyama T, Hoshizaki H, Yoshimura Y et al (2008) Combined therapy with carvedilol and amiodarone is more effective in improving cardiac symptoms, function, and sympathetic nerve activity in patients with dilated cardiomyopathy: comparison with carvedilol therapy alone. J Nucl Cardiol 15(1):57–64

    Article  PubMed  Google Scholar 

  47. Kasama S, Toyama T, Sumino H et al (2008) Prognostic value of serial cardiac 123I-MIBG imaging in patients with stabilized chronic heart failure and reduced left ventricular ejection fraction. J Nucl Med 49(6):907–914

    Article  PubMed  Google Scholar 

  48. Adabag AS, Luepker RV, Roger VL et al (2010) Sudden cardiac death: epidemiology and risk factors. Nat Rev Cardiol 7:216–225

    Article  PubMed  Google Scholar 

  49. Podrid PJ, Fuchs T, Candinas R (1990) Role of the sympathetic nervous system in the genesis of ventricular arrhythmia. Circulation 82:103–113

    Google Scholar 

  50. Epstein AE, DiMarco JP, Ellenbogen KA et al (2008) ACC/AHA/HRS 2008 Guidelines for Device-Based Therapy of Cardiac Rhythm Abnormalities: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the ACC/AHA/NASPE 2002 Guideline Update for Implantation of Cardiac Pacemaker and Antiarrhythmia Devices) developed in collaboration with the American Association for Thoracic Surgery and Society of Thoracic Surgeons. J Am Coll Cardiol 51:e1–e62

    Article  PubMed  Google Scholar 

  51. Stecker EC, Vickers C, Waltz J et al (2006) Population-based analysis of sudden cardiac death with and without left ventricular systolic dysfunction. Two-year findings from the Oregon Sudden Unexpected Death Study. J Am Coll Cardiol 47:1161–1166

    Article  PubMed  Google Scholar 

  52. Arora R, Ferrick KJ, Nakata T et al (2003) I-123 MIBG imaging and heart rate variability analysis to predict the need for an implantable cardioverter defibrillator. J Nucl Cardiol 10:121–131

    Article  PubMed  Google Scholar 

  53. Boogers MJ, Borleffs CJ, Henneman MM et al (2010) Cardiac sympathetic denervation assessed with 123-iodine metaiodobenzylguanidine imaging predicts ventricular arrhythmias in implantable cardioverter-defibrillator patients. J Am Coll Cardiol 55(24):2769–2777

    Article  PubMed  Google Scholar 

  54. Tamaki S, Yamada T, Okuyama Y et al (2009) Cardiac iodine-123 metaiodobenzylguanidine imaging predicts sudden cardiac death independently of left ventricular ejection fraction in patients with chronic heart failure and left ventricular systolic dysfunction: results from a comparative study with signal-averaged electrocardiogram, heart rate variability, and QT dispersion. J Am Coll Cardiol 53(5):426–435

    Article  CAS  PubMed  Google Scholar 

  55. Chou CC, Zhou S, Hayashi H et al (2007) Remodeling of action potential and intracellular calcium cycling dynamics during subacute myocardial infarction promotes ventricular arrhythmias in langendorff-perfused rabbit hearts. J Physiol 580:895–906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Naud P, Guasch E, Nattel S (2010) Physiological versus pathological cardiac electrical remodeling: potential basis and relevance to clinical management. J Physiol 588:4855–4856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Zipes DP (1990) Influence of myocardial ischemia and infarction on autonomic innervation of heart. Circulation 82:1095–1105

    Article  CAS  PubMed  Google Scholar 

  58. Kammerling JJ, Green FJ, Watanabe AM et al (1987) Denervation supersensitivity of refractoriness in noninfarcted areas apical to transmural myocardial infarction. Circulation 76:383–393

    Article  CAS  PubMed  Google Scholar 

  59. Bax JJ, Kraft O, Buxton AE et al (2008) 123 I-MIBG scintigraphy to predict inducibility of ventricular arrhythmias on cardiac electrophysiology testing: a prospective multicenter pilot study. Circ Cardiovasc Imaging 1:131–140

    Article  PubMed  Google Scholar 

  60. Fallavollita JA, Heavey BM, Luisi AJ Jr et al (2014) Regional myocardial sympathetic denervation predicts the risk of sudden cardiac arrest in ischemic cardiomyopathy. J Am Coll Cardiol 63(2):141–149

    Article  PubMed Central  PubMed  Google Scholar 

  61. Nishioka SA, Martinelli Filho M, Brandão SC et al (2007) Cardiac sympathetic activity pre and post resynchronization therapy evaluated by 123I-MIBG myocardial scintigraphy. J Nucl Cardiol 14(6):852–859

    Article  PubMed  Google Scholar 

  62. Burri H, Sunthorn H, Somsen A et al (2008) Improvement in cardiac sympathetic nerve activity in responders to resynchronization therapy. Europace 10(3):374–378

    Article  PubMed  Google Scholar 

  63. Cha Y, Panithaya C, Ying-Xue D et al (2011) Cardiac sympathetic reserve and response to cardiac resynchronization therapy. Circulation. Heart Failure 4(3):339–344

    Article  PubMed  Google Scholar 

  64. Tanaka H, Tatsumi K, Fujiwara S et al (2012) Effect of left ventricular dyssynchrony on cardiac sympathetic activity in heart failure patients with wide QRS duration. Circ J 76(2):382–389

    Article  PubMed  Google Scholar 

  65. Ewer MS, Ali MK, Mackay B et al (1984) A comparison of cardiac biopsy grades and ejection fraction estimations in patients receiving adriamycin. J Clin Oncol 2:112–117

    CAS  PubMed  Google Scholar 

  66. Wakasugi S, Wada A, Hasegawa Y et al (1992) Detection of abnormal cardiac adrenergic neuron activity in adriamycin-induced cardiomyopathy with iodine-125-meta-iodobenzylguanidine. J Nucl Med 33:208–214

    CAS  PubMed  Google Scholar 

  67. Wakasugi S, Fischman AJ, Babich JW et al (1993) Metaiodobenzylguanidine: evaluation of its potential as a tracer for monitoring doxorubicin cardiomyopathy. J Nucl Med 34:1283–1286

    CAS  PubMed  Google Scholar 

  68. Lekakis J, Prassopoulos V, Athanassiadis P et al (1996) Doxorubicin-induced cardiac neurotoxicity: study with iodine 123-labeled metaiodobenzyiguanidine scintigraphy. J Nucl Cardiol 3:37–41

    Article  CAS  PubMed  Google Scholar 

  69. Jeon TJ, Lee JD, Ha JW et al (2000) Evaluation of cardiac adrenergic neuronal damage in rats with doxorubicin-induced cardiomyopathy using iodine-131 BG autoradiography and PGP 9.5 immunohistochemistry. Eur J Nucl Med 27:686–693

    Article  CAS  PubMed  Google Scholar 

  70. Maybaum S, Mancini D, Xydas S et al (2007) Cardiac improvement during mechanical circulatory support: a prospective multicenter study of the LVAD Working Group. Circulation 115:2497–2505

    Article  PubMed  Google Scholar 

  71. Ogletree-Hughes ML, Stull LB, Sweet WE et al (2001) Mechanical unloading restores beta-adrenergic responsiveness and reverses receptor downregulation in the failing human heart. Circulation 104:881–886

    Article  CAS  PubMed  Google Scholar 

  72. Drakos SG, Athanasoulis T, Malliaras KG et al (2010) Myocardial sympathetic innervation and long-term left ventricular mechanical unloading. JACC Cardiovasc Imaging 3(1):64–70

    Article  PubMed  Google Scholar 

  73. George RS, Birks EJ, Cheetham A et al (2013) The effect of long-term left ventricular assist device support on myocardial sympathetic activity in patients with non-ischaemic dilated cardiomyopathy. Eur J Heart Fail 15(9):1035–1043

    Article  CAS  PubMed  Google Scholar 

  74. Estorch M, Campreciós M, Flotats A et al (1999) Sympathetic reinnervation of cardiac allografts evaluated by 123I-MIBG imaging. J Nucl Med 40(6):911–916

    CAS  PubMed  Google Scholar 

  75. Buendia-Fuentes F, Almenar L, Ruiz C et al (2011) Sympathetic reinnervation 1 year after heart transplantation, assessed using iodine-123 metaiodobenzylguanidine imaging. Transplant Proc 43(6):2247–2248

    Article  CAS  PubMed  Google Scholar 

  76. Bengel FM, Ueberfuhr P, Ziegler SI et al (1999) Serial assessment of sympathetic reinnervation after orthotopic heart transplantation. A longitudinal study using PET and C-11 hydroxyephedrine. Circulation 99(14):1866–1871

    Article  CAS  PubMed  Google Scholar 

  77. Odaka K, von Scheidt W, Ziegler SI et al (2001) Reappearance of cardiac presynaptic sympathetic nerve terminals in the transplanted heart: correlation between PET using (11)C-hydroxyephedrine and invasively measured norepinephrine release. J Nucl Med 42:1011–1016

    CAS  PubMed  Google Scholar 

  78. van der Veen L, Scholte A, Stokkel M (2010) Mathematical methods to determine quantitative parameters of myocardial 123I-MIBG studies: a review of the literature. Nucl Med Commun 31(7):617–628

    PubMed  Google Scholar 

  79. Inoue Y, Suzuki A, Shirouzu I et al (2003) Effect of collimator choice on quantitative assessment of cardiac iodine 123 MIBG uptake. J Nucl Cardiol 10:623–632

    Article  PubMed  Google Scholar 

  80. Dobbeleir AA, Hambye AS, Franken PR (1999) Influence of high-energy photons on the spectrum of iodine-123 with low and medium-energy collimators: consequences for imaging with 123I-labelled compounds in clinical practice. Eur J Nucl Med 26:655–658

    Article  CAS  PubMed  Google Scholar 

  81. Nakajima K, Matsubara K, Ishikawa T et al (2007) Correction of iodine-123-labeled meta-iodobenzylguanidine uptake with multi-window methods for standardization of the heart-to-mediastinum ratio. J Nucl Cardiol 14(6):843–851

    Article  PubMed  Google Scholar 

  82. Nakajima K, Okuda K, Matsuo S et al (2012) Standardization of metaiodobenzylguanidine heart to mediastinum ratio using a calibration phantom: effects of correction on normal databases and a multicentre study. Eur J Nucl Med Mol Imaging 39:113–119

    Article  CAS  PubMed  Google Scholar 

  83. Okuda K, Nakajima K, Hosoya T et al (2011) Semi-automated algorithm for calculating heart-to-mediastinum ratio in cardiac Iodine-123 MIBG imaging. J Nucl Cardiol 18(1):82–89

    Article  PubMed  Google Scholar 

  84. Jacobson AF, Matsuoka DT (2013) Influence of myocardial region of interest definition on quantitative analysis of planar 123I-mIBG images. Eur J Nucl Med Mol Imaging 40(4):558–564

    Article  PubMed  Google Scholar 

  85. Sakata K, Iida K, Mochizuki N et al (2009) Physiological changes in human cardiac sympathetic innervation and activity assessed by (123)I-metaiodobenzylguanidine (MIGB) imaging. Circ J 73(2):310–315

    Article  PubMed  Google Scholar 

  86. Tobes MC, Jaques S Jr, Wieland DM, Sisson JC (1985) Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine. J Nucl Med 26:897–907

    CAS  PubMed  Google Scholar 

  87. Fagret D, Wolf J, Comet M (1988) Influence of adrenergic blocking agents on the myocardial uptake of 123 iodine metaiodobenzylguanidine (123I-MIBG) [abstract]. Eur J Nucl Med 14:259

    Article  Google Scholar 

  88. Estorch M, Carrio I, Mena E et al (2004) Challenging the neuronal MIBG uptake by pharmacological intervention: effect of a single dose of oral amitriptyline on regional cardiac MIBG uptake. Eur J Nucl Med Mol Imaging 31:1575–1580

    Article  CAS  PubMed  Google Scholar 

  89. Sherman PS, Fisher SJ, Wieland DM et al (1985) Over the counter drugs block heart accumulation of MIBG. J Nucl Med 26:P35

    Google Scholar 

  90. Grossman E, Messerli FH (1998) Effect of calcium antagonists on sympathetic activity. Eur Heart J 19(Suppl F):F27–F31

    CAS  PubMed  Google Scholar 

  91. Stefanelli A, Treglia G, Bruno I et al (2013) Pharmacological interference with 123I-metaiodobenzylguanidine: a limitation to developing cardiac innervation imaging in clinical practice? Eur Rev Med Pharmacol Sci 17(10):1326–1333

    CAS  PubMed  Google Scholar 

  92. Ahmad G, Mesubi O, Dickfeld T et al (2012) Assessment of regional cardiac innervation using I123-meta-iodobenzylguanidine for guiding ventricular tachycardia ablation [abstract]. In: Scientific sessions—Heart Rhythm Society 9–12 May 2012, Boston, MA

  93. Klein T, Mesubi O, Ahmad G et al (2012) Assessment of global cardiac innervation using I123-Meta-iodobenzylguanidine before and after ventricular tachycardia ablation [abstract]. In: Scientific sessions—American Heart Association. 4–6 Nov 2012, Los Angeles, CA

  94. Bengel FM (2011) Imaging targets of the sympathetic nervous system of the heart: translational considerations. J Nucl Med 52:1167–1170

    Article  CAS  PubMed  Google Scholar 

  95. Liu Y, Srivastiva A, Mulnix T et al (2010) Quantification of normal pattern of regional myocardial uptake of 18F LMI1195, a novel tracer for imaging myocardial sympathetic function: first-in-human study [abstract]. J Nucl Med 51(suppl2):250P

    Google Scholar 

  96. Chen IY, Wu JC (2011) Cardiovascular molecular imaging: focus on clinical translation. Circulation 123(4):425–443

Download references

Conflict of interest

No conflict of interest or funding sources for preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuchita Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, S., Amanullah, A. Radionuclide imaging of cardiac sympathetic innervation in heart failure: unlocking untapped potential. Heart Fail Rev 20, 215–226 (2015). https://doi.org/10.1007/s10741-014-9456-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-014-9456-5

Keywords

Navigation