Skip to main content

Advertisement

Log in

A micro-imaging study linking bone cancer pain with tumor growth and bone resorption in a rat model

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Bone metastases represent a frequent complication of advanced breast cancer. As tumor growth-induced bone remodeling progresses, episodes of severe pain and fractures of weight-bearing limbs increase. All of these skeletal-related events influence the patient’s quality of life and survival. In the present study, we sought to determine whether some of these pain-related behaviors could be directly correlated to tumor progression and bone remodeling. For this purpose, we used a rat model of bone cancer pain based on the implantation of mammary carcinoma cells in the medullary cavity of the femur. The bone content and tumor growth were monitored over time by magnetic resonance imaging (MRI) and micro X-ray computed tomography (μCT). The same animals were evaluated for changes in their reflexive withdrawal responses to mechanical stimuli (allodynia) and weight-bearing deficits. As assessed by MRI, we found a negative correlation between tumor volume and allodynia or postural deficits throughout the experiment. Using μCT, we found that the bone volume/total volume (BV/TV) ratios for trabecular and cortical bone correlated with both mechanical hypersensitivity and weight-bearing impairment. However, whereas trabecular BV/TV stabilized between days 7 and 10 post-tumor detection, the cortical bone loss reached its maximum at that time. Our imaging approach also allowed us to consistently detect the tumor before the onset of pain, paving the way for the preemptive identification of at-risk patients. Altogether, these results improve our understanding of the events leading to tumor-induced bone pain and could eventually help in the design of novel strategies for the management of bone diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Weilbaecher KN, Guise TA, McCauley LK (2011) Cancer to bone: a fatal attraction. Nat Rev Cancer 11(6):411–425

    Article  CAS  PubMed  Google Scholar 

  2. Coleman RE (2006) Clinical features of metastatic bone disease and risk of skeletal morbidity. Clin Cancer Res 12(20 Pt 2):6243s–6249s

    Article  PubMed  Google Scholar 

  3. Suva LJ et al (2011) Bone metastasis: mechanisms and therapeutic opportunities. Nat Rev Endocrinol 7(4):208–218

    Article  CAS  PubMed  Google Scholar 

  4. Jemal A et al (2010) Cancer statistics, 2010. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  5. Trinkaus M et al (2009) Examination of the mechanisms of osteolysis in patients with metastatic breast cancer. Oncol Rep 21(5):1153–1159

    CAS  PubMed  Google Scholar 

  6. Rove KO, Crawford ED (2009) Metastatic cancer in solid tumors and clinical outcome: skeletal-related events. Oncology 23(14 Suppl 5):21–27

    PubMed  Google Scholar 

  7. Coleman RE (1997) Skeletal complications of malignancy. Cancer 80(8 Suppl):1588–1594

    Article  CAS  PubMed  Google Scholar 

  8. Jensen AO et al (2011) Incidence of bone metastases and skeletal-related events in breast cancer patients: a population-based cohort study in Denmark. BMC Cancer 11:29

    Article  PubMed  Google Scholar 

  9. van den Beuken-van Everdingen MH et al (2007) Prevalence of pain in patients with cancer: a systematic review of the past 40 years. Ann Oncol 18(9):1437–1449

    Article  PubMed  Google Scholar 

  10. Kirou-Mauro AM et al (2009) Has pain management in cancer patients with bone metastases improved? A seven-year review at an outpatient palliative radiotherapy clinic. J Pain Symptom Manag 37(1):77–84

    Article  Google Scholar 

  11. Paes FM et al (2011) Radiopharmaceuticals: when and how to use them to treat metastatic bone pain. J Support Oncol 9(6):197–205

    Article  CAS  PubMed  Google Scholar 

  12. Pacharinsak C, Beitz A (2008) Animal models of cancer pain. Comp Med 58(3):220–233

    CAS  PubMed  Google Scholar 

  13. Jimenez-Andrade JM et al (2010) Bone cancer pain. Ann N Y Acad Sci 1198:173–181

    Article  PubMed  Google Scholar 

  14. Schwei MJ et al (1999) Neurochemical and cellular reorganization of the spinal cord in a murine model of bone cancer pain. J Neurosci 19(24):10886–10897

    CAS  PubMed  Google Scholar 

  15. Mao-Ying QL et al (2006) A rat model of bone cancer pain induced by intra-tibia inoculation of Walker 256 mammary gland carcinoma cells. Biochem Biophys Res Commun 345(4):1292–1298

    Article  CAS  PubMed  Google Scholar 

  16. Medhurst SJ et al (2002) A rat model of bone cancer pain. Pain 96(1–2):129–140

    Article  CAS  PubMed  Google Scholar 

  17. Zhang RX et al (2005) Spinal glial activation in a new rat model of bone cancer pain produced by prostate cancer cell inoculation of the tibia. Pain 118(1–2):125–136

    Article  CAS  PubMed  Google Scholar 

  18. Halvorson KG et al (2006) Similarities and differences in tumor growth, skeletal remodeling and pain in an osteolytic and osteoblastic model of bone cancer. Clin J Pain 22(7):587–600

    Article  PubMed  Google Scholar 

  19. Bloom AP et al (2011) Breast cancer-induced bone remodeling, skeletal pain, and sprouting of sensory nerve fibers. J Pain 12(6):698–711

    Article  PubMed  Google Scholar 

  20. Jimenez-Andrade JM et al (2010) Pathological sprouting of adult nociceptors in chronic prostate cancer-induced bone pain. J Neurosci 30(44):14649–14656

    Article  CAS  PubMed  Google Scholar 

  21. Jimenez-Andrade JM et al (2011) Preventive or late administration of anti-NGF therapy attenuates tumor-induced nerve sprouting, neuroma formation, and cancer pain. Pain 152(11):2564–2574

    Article  CAS  PubMed  Google Scholar 

  22. Sabino MA et al (2002) Simultaneous reduction in cancer pain, bone destruction, and tumor growth by selective inhibition of cyclooxygenase-2. Cancer Res 62(24):7343–7349

    CAS  PubMed  Google Scholar 

  23. Fox A et al (2004) Anti-hyperalgesic activity of the cox-2 inhibitor lumiracoxib in a model of bone cancer pain in the rat. Pain 107(1–2):33–40

    Article  CAS  PubMed  Google Scholar 

  24. Nagae M, Hiraga T, Yoneda T (2007) Acidic microenvironment created by osteoclasts causes bone pain associated with tumor colonization. J Bone Miner Metab 25(2):99–104

    Article  PubMed  Google Scholar 

  25. El Mouedden M, Meert TF (2007) The impact of the opioids fentanyl and morphine on nociception and bone destruction in a murine model of bone cancer pain. Pharmacol Biochem Behav 87(1):30–40

    Article  PubMed  Google Scholar 

  26. Sevcik MA et al (2004) Bone cancer pain: the effects of the bisphosphonate alendronate on pain, skeletal remodeling, tumor growth and tumor necrosis. Pain 111(1–2):169–180

    Article  CAS  PubMed  Google Scholar 

  27. Tripathy D, Body JJ, Bergstrom B (2004) Review of ibandronate in the treatment of metastatic bone disease: experience from phase III trials. Clin Ther 26(12):1947–1959

    Article  CAS  PubMed  Google Scholar 

  28. Jimenez Andrade JM, Mantyh P (2010) Cancer pain: from the development of mouse models to human clinical trials. Translational pain research: from mouse to man. Frontiers in Neuroscience. CRC Press, Boca Raton

  29. Costelloe CM et al (2009) Imaging bone metastases in breast cancer: techniques and recommendations for diagnosis. Lancet Oncol 10(6):606–614

    Article  PubMed  Google Scholar 

  30. Houssami N, Costelloe CM (2012) Imaging bone metastases in breast cancer: evidence on comparative test accuracy. Ann Oncol 23(4):834–843

    Article  CAS  PubMed  Google Scholar 

  31. Hsu WK et al (2008) Characterization of osteolytic, osteoblastic, and mixed lesions in a prostate cancer mouse model using 18F-FDG and 18F-fluoride PET/CT. J Nucl Med 49(3):414–421

    Article  PubMed  Google Scholar 

  32. Zitzmann-Kolbe S et al (2010) D-18F-fluoromethyl tyrosine imaging of bone metastases in a mouse model. J Nucl Med 51(10):1632–1636

    Article  PubMed  Google Scholar 

  33. Cheng C et al (2011) Evaluation of treatment response of cilengitide in an experimental model of breast cancer bone metastasis using dynamic PET with 18F-FDG. Hell J Nucl Med 14(1):15–20

    PubMed  Google Scholar 

  34. Merz M et al (2011) Sorafenib tosylate and paclitaxel induce anti-angiogenic, anti-tumour and anti-resorptive effects in experimental breast cancer bone metastases. Eur J Cancer 47(2):277–286

    Article  CAS  PubMed  Google Scholar 

  35. Bauerle T et al (2010) Drug-induced vessel remodeling in bone metastases as assessed by dynamic contrast enhanced magnetic resonance imaging and vessel size imaging: a longitudinal in vivo study. Clin Cancer Res 16(12):3215–3225

    Article  PubMed  Google Scholar 

  36. Grankvist J et al (2012) MRI and PET/CT of patients with bone metastases from breast carcinoma. Eur J Radiol 81(1):e13–e18

    Article  CAS  PubMed  Google Scholar 

  37. Walkington L, Coleman RE (2011) Advances in management of bone disease in breast cancer. Bone 48(1):80–87

    Article  CAS  PubMed  Google Scholar 

  38. Coleman RE, McCloskey EV (2011) Bisphosphonates in oncology. Bone 49(1):71–76

    Article  CAS  PubMed  Google Scholar 

  39. Aapro MS, Coleman RE (2012) Bone health management in patients with breast cancer: current standards and emerging strategies. Breast 21(1):8–19

    Article  PubMed  Google Scholar 

  40. Eisenhauer EA et al (2009) New response evaluation criteria in solid tumours: revised RECIST guideline (version 1.1). Eur J Cancer 45(2):228–247

    Article  CAS  PubMed  Google Scholar 

  41. Doré-Savard L et al (2010) Behavioral, medical imaging and histological features of a new rat model of bone cancer pain. PLoS One 5(10):e13774

    Article  PubMed  Google Scholar 

  42. Tetreault P et al (2011) Weight bearing evaluation in inflammatory, neuropathic and cancer chronic pain in freely moving rats. Physiol Behav 104(3):495–502

    Article  CAS  PubMed  Google Scholar 

  43. Castaneda-Corral G et al (2011) The majority of myelinated and unmyelinated sensory nerve fibers that innervate bone express the tropomyosin receptor kinase A. Neuroscience 178:196–207

    Article  CAS  PubMed  Google Scholar 

  44. Mercadante S, Fulfaro F (2007) Management of painful bone metastases. Curr Opin Oncol 19(4):308–314

    Article  PubMed  Google Scholar 

  45. Angst MS, Clark JD (2006) Opioid-induced hyperalgesia: a qualitative systematic review. Anesthesiology 104(3):570–587

    Article  CAS  PubMed  Google Scholar 

  46. King T et al (2007) Morphine treatment accelerates sarcoma-induced bone pain, bone loss, and spontaneous fracture in a murine model of bone cancer. Pain 132(1–2):154–168

    Article  CAS  PubMed  Google Scholar 

  47. Hamaoka T et al (2004) Bone imaging in metastatic breast cancer. J Clin Oncol 22(14):2942–2953

    Article  PubMed  Google Scholar 

  48. Gauvain KM et al (2005) MRI detection of early bone metastases in b16 mouse melanoma models. Clin Exp Metastasis 22(5):403–411

    Article  PubMed  Google Scholar 

  49. Wang L et al (2008) MRI and hybrid PET/CT for monitoring tumour metastasis in a metastatic breast cancer model in rabbit. Nucl Med Commun 29(2):137–143

    Article  PubMed  Google Scholar 

  50. Kundra V et al (2007) In vivo imaging of prostate cancer involving bone in a mouse model. Prostate 67(1):50–60

    Article  PubMed  Google Scholar 

  51. Murakami K et al (2008) Correlation between high field MR images and histopathological findings of rat transplanted cancer immediately after partial microwave coagulation. Magn Reson Med Sci 7(3):105–112

    Article  PubMed  Google Scholar 

  52. Reichardt W et al (2009) Diffusion-weighted imaging as predictor of therapy response in an animal model of Ewing sarcoma. Invest Radiol 44(5):298–303

    Article  PubMed  Google Scholar 

  53. Rozel S et al (2009) Synergy between anti-CCL2 and docetaxel as determined by DW-MRI in a metastatic bone cancer model. J Cell Biochem 107(1):58–64

    Article  CAS  PubMed  Google Scholar 

  54. Walker K et al (2002) Disease modifying and anti-nociceptive effects of the bisphosphonate, zoledronic acid in a model of bone cancer pain. Pain 100(3):219–229

    Article  CAS  PubMed  Google Scholar 

  55. Shah M et al (2012) An MMP13-selective inhibitor delays primary tumor growth and the onset of tumor-associated osteolytic lesions in experimental models of breast cancer. PLoS ONE 7(1):e29615

    Article  CAS  PubMed  Google Scholar 

  56. Holland PM et al (2010) Combined therapy with the RANKL inhibitor RANK-Fc and rhApo2L/TRAIL/dulanermin reduces bone lesions and skeletal tumor burden in a model of breast cancer skeletal metastasis. Cancer Biol Ther 9(7):539–550

    Article  CAS  PubMed  Google Scholar 

  57. Svensson CI et al (2008) Role of p38 mitogen activated protein kinase in a model of osteosarcoma-induced pain. Pharmacol Biochem Behav 90(4):664–675

    Article  CAS  PubMed  Google Scholar 

  58. Ghilardi JR et al (2011) Sustained blockade of neurotrophin receptors TrkA, TrkB and TrkC reduces non-malignant skeletal pain but not the maintenance of sensory and sympathetic nerve fibers. Bone 48(2):389–398

    Article  CAS  PubMed  Google Scholar 

  59. Mantyh WG et al (2010) Blockade of nerve sprouting and neuroma formation markedly attenuates the development of late stage cancer pain. Neuroscience 171(2):588–598

    Article  CAS  PubMed  Google Scholar 

  60. Peters CM et al (2005) Tumor-induced injury of primary afferent sensory nerve fibers in bone cancer pain. Exp Neurol 193(1):85–100

    Article  PubMed  Google Scholar 

  61. Sevcik MA et al (2005) Anti-NGF therapy profoundly reduces bone cancer pain and the accompanying increase in markers of peripheral and central sensitization. Pain 115(1–2):128–141

    Article  CAS  PubMed  Google Scholar 

  62. Kaan TK et al (2010) Systemic blockade of P2X3 and P2X2/3 receptors attenuates bone cancer pain behaviour in rats. Brain 133(9):2549–2564

    Article  PubMed  Google Scholar 

  63. Ghilardi JR et al (2010) Administration of a tropomyosin receptor kinase inhibitor attenuates sarcoma-induced nerve sprouting, neuroma formation and bone cancer pain. Mol Pain 6:87

    Article  CAS  PubMed  Google Scholar 

  64. Zwolak P et al (2008) Local irradiation in combination with bevacizumab enhances radiation control of bone destruction and cancer-induced pain in a model of bone metastases. Int J Cancer 122(3):681–688

    Article  CAS  PubMed  Google Scholar 

  65. Hipp JA, Springfield DS, Hayes WC (1995) Predicting pathologic fracture risk in the management of metastatic bone defects. Clin Orthop Relat Res 312:120–135

    PubMed  Google Scholar 

  66. El Mouedden M, Meert TF (2005) Evaluation of pain-related behavior, bone destruction and effectiveness of fentanyl, sufentanil, and morphine in a murine model of cancer pain. Pharmacol Biochem Behav 82(1):109–119

    Article  PubMed  Google Scholar 

  67. Tong Z et al (2010) Tumor tissue-derived formaldehyde and acidic microenvironment synergistically induce bone cancer pain. PLoS ONE 5(4):e10234

    Article  PubMed  Google Scholar 

  68. Yoneda T et al (2011) Involvement of acidic microenvironment in the pathophysiology of cancer-associated bone pain. Bone 48(1):100–105

    Article  CAS  PubMed  Google Scholar 

  69. Lipton A, Jacobs I (2011) Denosumab: benefits of RANK ligand inhibition in cancer patients. Curr Opin Support Palliat Care 5(3):258–264

    PubMed  Google Scholar 

  70. Pantano F et al (2011) New targets, new drugs for metastatic bone pain: a new philosophy. Expert Opin Emerg Drugs 16(3):403–405

    Article  CAS  PubMed  Google Scholar 

  71. Costa L, Major PP (2009) Effect of bisphosphonates on pain and quality of life in patients with bone metastases. Nat Clin Pract Oncol 6(3):163–174

    Article  CAS  PubMed  Google Scholar 

  72. Costa L et al (2011) Anticancer evidence for zoledronic acid across the cancer continuum. Crit Rev Oncol Hematol 77(Suppl 1):S31–S37

    Article  PubMed  Google Scholar 

  73. Zheleznyak A et al. (2011) Integrin alpha(v)beta (3) as a PET imaging biomarker for osteoclast number in mouse models of negative and positive osteoclast regulation. Mol Imaging Biol Aug 19: 1–9

    Google Scholar 

  74. Lage MJ et al (2008) The cost of treating skeletal-related events in patients with prostate cancer. Am J Manag Care 14(5):317–322

    PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Canadian Institutes of Health Research (CIHR) and the Cancer Research Society (CRS) awarded to P.S. It was also initiated by financial support from the Quebec Bio-Imaging Network and the network for Oral and Bone Health Research. L.D.-S. is the recipient of a Frederick Banting and Charles Best CIHR scholarship and is a trainee supported by the Canadian Arthritis Network. M.L. is the Canadian Research Chair in MRI. P.S. is a CIHR new investigator and director of the Sherbrooke’s Neuroscience Center. P.S. and M.L. are members of the FRSQ-funded Centre de recherche clinique Étienne-Lebel. We are also grateful to Nathalie Carrier at the Centre de Recherche Clinique Etienne-Lebel for her help with the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Sarret.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doré-Savard, L., Beaudet, N., Tremblay, L. et al. A micro-imaging study linking bone cancer pain with tumor growth and bone resorption in a rat model. Clin Exp Metastasis 30, 225–236 (2013). https://doi.org/10.1007/s10585-012-9530-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9530-0

Keywords

Navigation