Skip to main content

Advertisement

Log in

Mechanism of Cardioprotection by Early Ischemic Preconditioning

  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

A series of brief ischemia/reperfusion cycles (termed ischemic preconditioning, IPC) limits myocardial injury produced by a subsequent prolonged period of coronary artery occlusion and reperfusion. Over the last 2 decades our understanding of IPC’s mechanism has increased exponentially. Hearts exposed to IPC have a better metabolic and ionic status during prolonged ischemia compared to naïve hearts. However, this difference is not thought to be the main mechanism by which IPC protects against infarction. Signaling pathways that are activated by IPC distinguish IPC hearts from naïve hearts. During the trigger phase of IPC, adenosine, bradykinin and opioid receptors are occupied. Although these three receptors trigger signaling through divergent pathways, the signaling converges on protein kinase C. We have proposed that at the end of the index ischemia the activated PKC sensitizes the low-affinity A2b adenosine receptor (A2bAR) through phosphorylation of either the receptor or its coupling proteins so that A2bAR can be activated by endogenous adenosine released by the previously ischemic cardiomyocytes. The sensitized A2bAR would then be responsible for activation of the survival kinases including PI3 kinase, Akt and ERK which then act to inhibit lethal mitochondrial permeability transition pore formation which normally uncouples mitochondria and destroys many myocytes in the first minutes of reperfusion. Herein we review the evidence for the above mechanisms and their functional details.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cohen MV, Downey JM. Myocardial preconditioning promises to be a novel approach to the treatment of ischemic heart disease. Annu Rev Med. 1996;47:21–9.

    Article  CAS  PubMed  Google Scholar 

  2. Murry CE, Jennings RB, Reimer KA. Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation. 1986;74:1124–36.

    CAS  PubMed  Google Scholar 

  3. Murry CE, Richard VJ, Jennings RB, Reimer KA. Myocardial protection is lost before contractile function recovers from ischemic preconditioning. Am J Physiol. 1991;260:H796–804.

    CAS  PubMed  Google Scholar 

  4. Jennings RB, Sebbag L, Schwartz LM, et al. Metabolism of preconditioned myocardium: effect of loss and reinstatement of cardioprotection. J Mol Cell Cardiol. 2001;33:1571–88.

    Article  CAS  PubMed  Google Scholar 

  5. Fleet WF, Johnson TA, Graebner CA, Gettes LS. Effect of serial brief ischemic episodes on extracellular K+, pH, and activation in the pig. Circulation. 1985;72:922–32.

    CAS  PubMed  Google Scholar 

  6. Murry CE, Richard VJ, Reimer KA, Jennings RB. Ischemic preconditioning slows energy metabolism and delays ultrastructural damage during a sustained ischemic episode. Circ Res. 1990;66:913–31.

    CAS  PubMed  Google Scholar 

  7. Soares PR, de Albuquerque CP, Chacko VP, et al. Role of preischemic glycogen depletion in the improvement of postischemic metabolic and contractile recovery of ischemia-preconditioned rat hearts. Circulation. 1997;96:975–83.

    CAS  PubMed  Google Scholar 

  8. Miura T, Suzuki K, Shimamoto K, Iimura O. Suppression of the degradation of adenine nucleotides during ischemia may not be a sufficient mechanism for infarct size limitation by preconditioning. Basic Res Cardiol. 1996;91:425–32.

    Article  CAS  PubMed  Google Scholar 

  9. Weinbrenner C, Wang P, Downey JM. Loss of glycogen during preconditioning is not a prerequisite for protection of the rabbit heart. Basic Res Cardiol. 1996;91:374–81.

    CAS  PubMed  Google Scholar 

  10. Yang X-M, Liu Y, Liu Y, et al. Attenuation of infarction in cynomolgus monkeys: preconditioning and postconditioning. Basic Res Cardiol. 2010;105:119–28.

    Article  PubMed  Google Scholar 

  11. Hausenloy DJ, Yellon DM. New directions for protecting the heart against ischaemia-reperfusion injury: targeting the Reperfusion Injury Salvage Kinase (RISK)-pathway. Cardiovasc Res. 2004;61:448–60.

    Article  CAS  PubMed  Google Scholar 

  12. Solenkova NV, Solodushko V, Cohen MV, Downey JM. Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt. Am J Physiol. 2006;290:H441–9.

    CAS  Google Scholar 

  13. Zhao Z-Q, Corvera JS, Halkos ME, et al. Inhibition of myocardial injury by ischemic postconditioning during reperfusion: comparison with ischemic preconditioning. Am J Physiol. 2003;285:H579–88.

    CAS  Google Scholar 

  14. Förster K, Paul I, Solenkova N, et al. NECA at reperfusion limits infarction and inhibits formation of the mitochondrial permeability transition pore by activating p70S6 kinase. Basic Res Cardiol. 2006;101:319–26.

    Article  PubMed  CAS  Google Scholar 

  15. Methner C, Donat U, Felix SB, Krieg T. Cardioprotection of bradykinin at reperfusion involves transactivation of the epidermal growth factor receptor via matrix metalloproteinase-8. Acta Physiol. 2009;197:265–71.

    Article  CAS  Google Scholar 

  16. Liu GS, Thornton J, Van Winkle DM, et al. Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation. 1991;84:350–6.

    CAS  PubMed  Google Scholar 

  17. Wall TM, Sheehy R, Hartman JC. Role of bradykinin in myocardial preconditioning. J Pharmacol Exp Ther. 1994;270:681–9.

    CAS  PubMed  Google Scholar 

  18. Schultz JEJ, Rose E, Yao Z, Gross GJ. Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol. 1995;268:H2157–61.

    CAS  PubMed  Google Scholar 

  19. Goto M, Liu Y, Yang X-M, et al. Role of bradykinin in protection of ischemic preconditioning in rabbit hearts. Circ Res. 1995;77:611–21.

    CAS  PubMed  Google Scholar 

  20. Cohen MV, Yang X-M, Liu GS, et al. Acetylcholine, bradykinin, opioids, and phenylephrine, but not adenosine, trigger preconditioning by generating free radicals and opening mitochondrial KATP channels. Circ Res. 2001;89:273–8.

    Article  CAS  PubMed  Google Scholar 

  21. Cohen MV, Philipp S, Krieg T, et al. Preconditioning-mimetics bradykinin and DADLE activate PI3-kinase through divergent pathways. J Mol Cell Cardiol. 2007;42:842–51.

    Article  CAS  PubMed  Google Scholar 

  22. Oldenburg O, Qin Q, Krieg T, et al. Bradykinin induces mitochondrial ROS generation via NO, cGMP, PKG, and mitoKATP channel opening and leads to cardioprotection. Am J Physiol. 2004;286:H468–76.

    CAS  Google Scholar 

  23. Banerjee A, Locke-Winter C, Rogers KB, et al. Preconditioning against myocardial dysfunction after ischemia and reperfusion by an α1-adrenergic mechanism. Circ Res. 1993;73:656–70.

    CAS  PubMed  Google Scholar 

  24. Liu Y, Tsuchida A, Cohen MV, Downey JM. Pretreatment with angiotensin II activates protein kinase C and limits myocardial infarction in isolated rabbit hearts. J Mol Cell Cardiol. 1995;27:883–92.

    Article  CAS  PubMed  Google Scholar 

  25. Wang P, Gallagher KP, Downey JM, Cohen MV. Pretreatment with endothelin-1 mimics ischemic preconditioning against infarction in isolated rabbit heart. J Mol Cell Cardiol. 1996;28:579–88.

    Article  CAS  PubMed  Google Scholar 

  26. Kennedy S, Kane KA, Pyne NJ, Pyne S. Targeting sphingosine-1-phosphate signalling for cardioprotection. Curr Opin Pharmacol. 2009;9:194–201.

    Article  CAS  PubMed  Google Scholar 

  27. Murry CE, Richard VJ, Jennings RB, Reimer KA. Preconditioning with ischemia: is the protective effect mediated by free radical-induced myocardial stunning? Circulation. 1988;78(Suppl II):II-77.

    Google Scholar 

  28. Baines CP, Goto M, Downey JM. Oxygen radicals released during ischemic preconditioning contribute to cardioprotection in the rabbit myocardium. J Mol Cell Cardiol. 1997;29:207–16.

    Article  CAS  PubMed  Google Scholar 

  29. Tritto I, D’Andrea D, Eramo N, et al. Oxygen radicals can induce preconditioning in rabbit hearts. Circ Res. 1997;80:743–8.

    CAS  PubMed  Google Scholar 

  30. Vanden Hoek TL, Becker LB, Shao Z, et al. Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes. J Biol Chem. 1998;273:18092–8.

    Article  Google Scholar 

  31. Kuno A, Solenkova NV, Solodushko V, et al. Infarct limitation by a protein kinase G activator at reperfusion in rabbit hearts is dependent on sensitizing the heart to A2b agonists by protein kinase C. Am J Physiol. 2008;295:H1288–95.

    CAS  Google Scholar 

  32. Liu Y, Yang X-M, Iliodromitis EK, et al. Redox signaling at reperfusion is required for protection from ischemic preconditioning but not from a direct PKC activator. Basic Res Cardiol. 2008;103:54–9.

    Article  CAS  PubMed  Google Scholar 

  33. Korichneva I, Hoyos B, Chua R, et al. Zinc release from protein kinase C as the common event during activation by lipid second messenger or reactive oxygen. J Biol Chem. 2002;277:44327–31.

    Article  CAS  PubMed  Google Scholar 

  34. Kevin LG, Camara AKS, Riess ML, et al. Ischemic preconditioning alters real-time measure of O2 radicals in intact hearts with ischemia and reperfusion. Am J Physiol. 2003;284:H566–74.

    CAS  Google Scholar 

  35. Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004;61:461–70.

    Article  CAS  PubMed  Google Scholar 

  36. Carroll R, Gant VA, Yellon DM. Mitochondrial KATP channel opening protects a human atrial-derived cell line by a mechanism involving free radical generation. Cardiovasc Res. 2001;51:691–700.

    Article  CAS  PubMed  Google Scholar 

  37. Forbes RA, Steenbergen C, Murphy E. Diazoxide-induced cardioprotection requires signaling through a redox-sensitive mechanism. Circ Res. 2001;88:802–9.

    Article  CAS  PubMed  Google Scholar 

  38. Costa ADT, Jakob R, Costa CL, et al. The mechanism by which the mitochondrial ATP-sensitive K+ channel opening and H2O2 inhibit the mitochondrial permeability transition. J Biol Chem. 2006;281:20801–8.

    Article  CAS  PubMed  Google Scholar 

  39. Bolli R, Jeroudi MO, Patel BS, et al. Marked reduction of free radical generation and contractile dysfunction by antioxidant therapy begun at the time of reperfusion: evidence that myocardial “stunning” is a manifestation of reperfusion injury. Circ Res. 1989;65:607–22.

    CAS  PubMed  Google Scholar 

  40. Costa ADT, Garlid KD, West IC, et al. Protein kinase G transmits the cardioprotective signal from cytosol to mitochondria. Circ Res. 2005;97:329–36.

    Article  CAS  PubMed  Google Scholar 

  41. Costa ADT, Garlid KD. Intramitochondrial signaling: interactions among mitoKATP, PKCε, ROS, and MPT. Am J Physiol. 2008;295:H874–82.

    CAS  Google Scholar 

  42. Oldenburg O, Qin Q, Sharma AR, et al. Acetylcholine leads to free radical production dependent on KATP channels, Gi proteins, phosphatidylinositol 3-kinase and tyrosine kinase. Cardiovasc Res. 2002;55:544–52.

    Article  CAS  PubMed  Google Scholar 

  43. Miro-Casas E, Ruiz-Meana M, Agullo E, et al. Connexin43 in cardiomyocyte mitochondria contributes to mitochondrial potassium uptake. Cardiovasc Res. 2009;83:747–56.

    Article  CAS  PubMed  Google Scholar 

  44. Heinzel FR, Luo Y, Li X, et al. Impairment of diazoxide-induced formation of reactive oxygen species and loss of cardioprotection in connexin 43 deficient mice. Circ Res. 2005;97:583–6.

    Article  CAS  PubMed  Google Scholar 

  45. Bell RM, Cave AC, Johar S, et al. Pivotal role of NOX-2-containing NADPH oxidase in early ischemic preconditioning. FASEB J. 2005;19:2037–9.

    CAS  PubMed  Google Scholar 

  46. Ytrehus K, Liu Y, Downey JM. Preconditioning protects ischemic rabbit heart by protein kinase C activation. Am J Physiol. 1994;266:H1145–52.

    CAS  PubMed  Google Scholar 

  47. Dorn GW 2nd, Souroujon MC, Liron T, et al. Sustained in vivo cardiac protection by a rationally designed peptide that causes ε protein kinase C translocation. PNAS. 1999;96:12798–803.

    Article  CAS  PubMed  Google Scholar 

  48. Ping P, Song C, Zhang J, et al. Formation of protein kinase Cε-Lck signaling modules confers cardioprotection. J Clin Invest. 2002;109:499–507.

    CAS  PubMed  Google Scholar 

  49. Gray MO, Karliner JS, Mochly-Rosen D. A selective ε-protein kinase C antagonist inhibits protection of cardiac myocytes from hypoxia-induced cell death. J Biol Chem. 1997;272:30945–51.

    Article  CAS  PubMed  Google Scholar 

  50. Liu GS, Cohen MV, Mochly-Rosen D, Downey JM. Protein kinase C-ε is responsible for the protection of preconditioning in rabbit cardiomyocytes. J Mol Cell Cardiol. 1999;31:1937–48.

    Article  CAS  PubMed  Google Scholar 

  51. Chen L, Hahn H, Wu G, et al. Opposing cardioprotective actions and parallel hypertrophic effects of δPKC and εPKC. Proc Natl Acad Sci. 2001;98:11114–9.

    Article  CAS  PubMed  Google Scholar 

  52. Inagaki K, Begley R, Ikeno F, Mochly-Rosen D. Cardioprotection by ε-protein kinase C activation from ischemia: continuous delivery and antiarrhythmic effect of an ε-protein kinase C-activating peptide. Circulation. 2005;111:44–50.

    Article  CAS  PubMed  Google Scholar 

  53. Saurin AT, Pennington DJ, Raat NJH, et al. Targeted disruption of the protein kinase C epsilon gene abolishes the infarct size reduction that follows ischaemic preconditioning of isolated buffer-perfused mouse hearts. Cardiovasc Res. 2002;55:672–80.

    Article  CAS  PubMed  Google Scholar 

  54. Hahn HS, Yussman MG, Toyokawa T, et al. Ischemic protection and myofibrillar cardiomyopathy: dose-dependent effects of in vivo δPKC inhibition. Circ Res. 2002;91:741–8.

    Article  CAS  PubMed  Google Scholar 

  55. Inagaki K, Hahn HS, Dorn GW 2nd, Mochly-Rosen D. Additive protection of the ischemic heart ex vivo by combined treatment with δ-protein kinase C inhibitor and ε-protein kinase C activator. Circulation. 2003;108:869–75.

    Article  CAS  PubMed  Google Scholar 

  56. Kawamura S, Yoshida K-i, Miura T, et al. Ischemic preconditioning translocates PKC-δ and -ε, which mediate functional protection in isolated rat heart. Am J Physiol. 1998;275:H2266–71.

    CAS  PubMed  Google Scholar 

  57. Zhao J, Renner O, Wightman L, et al. The expression of constitutively active isotypes of protein kinase C to investigate preconditioning. J Biol Chem. 1998;273:23072–9.

    Article  CAS  PubMed  Google Scholar 

  58. Mayr M, Metzler B, Chung Y-L, et al. Ischemic preconditioning exaggerates cardiac damage in PKC-δ null mice. Am J Physiol. 2004;287:H946–56.

    CAS  Google Scholar 

  59. Inagaki K, Chen L, Ikeno F, et al. Inhibition of δ-protein kinase C protects against reperfusion injury of the ischemic heart in vivo. Circulation. 2003;108:2304–7.

    Article  CAS  PubMed  Google Scholar 

  60. Inagaki K, Churchill E, Mochly-Rosen D. Epsilon protein kinase C as a potential therapeutic target for the ischemic heart. Cardiovasc Res. 2006;70:222–30.

    Article  CAS  PubMed  Google Scholar 

  61. Murphy E. Primary and secondary signaling pathways in early preconditioning that converge on the mitochondria to produce cardioprotection. Circ Res. 2004;94:7–16.

    Article  CAS  PubMed  Google Scholar 

  62. Kuno A, Critz SD, Cui L, et al. Protein kinase C protects preconditioned rabbit hearts by increasing sensitivity of adenosine A2b-dependent signaling during early reperfusion. J Mol Cell Cardiol. 2007;43:262–71.

    Article  CAS  PubMed  Google Scholar 

  63. Kitakaze M, Hori M, Takashima S, et al. Ischemic preconditioning increases adenosine release and 5′- nucleotidase activity during myocardial ischemia and reperfusion in dogs: implications for myocardial salvage. Circulation. 1993;87:208–15.

    CAS  PubMed  Google Scholar 

  64. Kitakaze M, Hori M, Morioka T, et al. α1-Adrenoceptor activation increases ecto-5′-nucleotidase activity and adenosine release in rat cardiomyocytes by activating protein kinase C. Circulation. 1995;91:2226–34.

    CAS  PubMed  Google Scholar 

  65. Eckle T, Krahn T, Grenz A, et al. Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation. 2007;115:1581–90.

    Article  CAS  PubMed  Google Scholar 

  66. Eckle T, Köhler D, Lehmann R, et al. Hypoxia-inducible factor-1 is central to cardioprotection: a new paradigm for ischemic preconditioning. Circulation. 2008;118:166–75.

    Article  CAS  PubMed  Google Scholar 

  67. Schulz R, Post H, Vahlhaus C, Heusch G. Ischemic preconditioning in pigs: a graded phenomenon. Its relation to adenosine and bradykinin. Circulation. 1998;98:1022–9.

    CAS  PubMed  Google Scholar 

  68. Goto M, Cohen MV, Van Wylen DGL, Downey JM. Attenuated purine production during subsequent ischemia in preconditioned rabbit myocardium is unrelated to the mechanism of protection. J Mol Cell Cardiol. 1996;28:447–54.

    Article  CAS  PubMed  Google Scholar 

  69. Harrison GJ, Willis RJ, Headrick JP. Extracellular adenosine levels and cellular energy metabolism in ischemically preconditioned rat heart. Cardiovasc Res. 1998;40:74–87.

    Article  CAS  PubMed  Google Scholar 

  70. Philipp S, Yang X-M, Cui L, et al. Postconditioning protects rabbit hearts through a protein kinase C-adenosine A2b receptor cascade. Cardiovasc Res. 2006;70:308–14.

    Article  CAS  PubMed  Google Scholar 

  71. Hausenloy DJ, Tsang A, Mocanu MM, Yellon DM. Ischemic preconditioning protects by activating prosurvival kinases at reperfusion. Am J Physiol. 2005;288:H971–6.

    CAS  Google Scholar 

  72. Baines CP, Wang L, Cohen MV, Downey JM. Myocardial protection by insulin is dependent on phosphatidylinositol 3-kinase but not protein kinase C or KATP channels in the isolated rabbit heart. Basic Res Cardiol. 1999;94:188–98.

    Article  CAS  PubMed  Google Scholar 

  73. Xu Z, Yang X-M, Cohen MV, et al. Limitation of infarct size in rabbit hearts by the novel adenosine receptor agonist AMP 579 administered at reperfusion. J Mol Cell Cardiol. 2000;32:2339–47.

    Article  CAS  PubMed  Google Scholar 

  74. Albrecht B, Krahn T, Philipp S, et al. Selective adenosine A2b receptor activation mimics postconditioning in a rabbit infarct model. Circulation. 2006;114(Suppl II):II-14–5.

    Google Scholar 

  75. Baxter GF, Mocanu MM, Brar BK, et al. Cardioprotective effects of transforming growth factor-β1 during early reoxygenation or reperfusion are mediated by p42/p44 MAPK. J Cardiovasc Pharmacol. 2001;38:930–9.

    Article  CAS  PubMed  Google Scholar 

  76. Schulman D, Latchman DS, Yellon DM. Urocortin protects the heart from reperfusion injury via upregulation of p42/p44 MAPK signaling pathway. Am J Physiol. 2002;283:H1481–8.

    CAS  Google Scholar 

  77. Liao Z, Brar BK, Cai Q, et al. Cardiotrophin-1 (CT-1) can protect the adult heart from injury when added both prior to ischaemia and at reperfusion. Cardiovasc Res. 2002;53:902–10.

    Article  CAS  PubMed  Google Scholar 

  78. Yang X-M, Krieg T, Cui L, et al. NECA and bradykinin at reperfusion reduce infarction in rabbit hearts by signaling through PI3K, ERK, and NO. J Mol Cell Cardiol. 2004;36:411–21.

    Article  CAS  PubMed  Google Scholar 

  79. Yang X-M, Philipp S, Downey JM, Cohen MV. Atrial natriuretic peptide administered just prior to reperfusion limits infarction in rabbit hearts. Basic Res Cardiol. 2006;101:311–8.

    Article  CAS  PubMed  Google Scholar 

  80. Cai Z, Semenza GL. Phosphatidylinositol-3-kinase signaling is required for erythropoietin-mediated acute protection against myocardial ischemia/reperfusion injury. Circulation. 2004;109:2050–3.

    Article  CAS  PubMed  Google Scholar 

  81. Parsa CJ, Kim J, Riel RU, et al. Cardioprotective effects of erythropoietin in the reperfused ischemic heart: a potential role for cardiac fibroblasts. J Biol Chem. 2004;279:20655–62.

    Article  CAS  PubMed  Google Scholar 

  82. Hausenloy DJ, Ong S-B, Yellon DM. The mitochondrial permeability transition pore as a target for preconditioning and postconditioning. Basic Res Cardiol. 2009;104:189–202.

    Article  CAS  PubMed  Google Scholar 

  83. Kitakaze M, Asakura M, Kim J, et al. Human atrial natriuretic peptide and nicorandil as adjuncts to reperfusion treatment for acute myocardial infarction (J-WIND): two randomised trials. Lancet. 2007;370:1483–93.

    Article  CAS  PubMed  Google Scholar 

  84. Piot C, Croisille P, Staat P, et al. Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 2008;359:473–81.

    Article  CAS  PubMed  Google Scholar 

  85. Hunter DR, Haworth RA, Southard JH. Relationship between configuration, function, and permeability in calcium-treated mitochondria. J Biol Chem. 1976;251:5069–77.

    CAS  PubMed  Google Scholar 

  86. Crompton M, Costi A. Kinetic evidence for a heart mitochondrial pore activated by Ca2+, inorganic phosphate and oxidative stress. A potential mechanism for mitochondrial dysfunction during cellular Ca2+ overload. Eur J Biochem. 1988;178:489–501.

    Article  CAS  PubMed  Google Scholar 

  87. Crompton M, Ellinger H, Costi A. Inhibition by cyclosporin A of a Ca2+-dependent pore in heart mitochondria activated by inorganic phosphate and oxidative stress. Biochem J. 1988;255:357–60.

    CAS  PubMed  Google Scholar 

  88. Nazareth W, Yafei N, Crompton M. Inhibition of anoxia-induced injury in heart myocytes by cyclosporin A. J Mol Cell Cardiol. 1991;23:1351–4.

    Article  CAS  PubMed  Google Scholar 

  89. Griffiths EJ, Halestrap AP. Protection by cyclosporin A of ischemia/reperfusion-induced damage in isolated rat hearts. J Mol Cell Cardiol. 1993;25:1461–9.

    Article  CAS  PubMed  Google Scholar 

  90. Griffiths EJ, Halestrap AP. Mitochondrial non-specific pores remain closed during cardiac ischaemia, but open upon reperfusion. Biochem J. 1995;307:93–8.

    CAS  PubMed  Google Scholar 

  91. Hausenloy DJ, Maddock HL, Baxter GF, Yellon DM. Inhibiting mitochondrial permeability transition pore opening: a new paradigm for myocardial preconditioning? Cardiovasc Res. 2002;55:534–43.

    Article  CAS  PubMed  Google Scholar 

  92. Baines CP. The mitochondrial permeability transition pore and ischemia-reperfusion injury. Basic Res Cardiol. 2009;104:181–8.

    Article  CAS  PubMed  Google Scholar 

  93. Baines CP. The molecular composition of the mitochondrial permeability transition pore. J Mol Cell Cardiol. 2009;46:850–7.

    Article  CAS  PubMed  Google Scholar 

  94. Tong H, Imahashi K, Steenbergen C, Murphy E. Phosphorylation of glycogen synthase kinase-3β during preconditioning through a phosphatidylinositol-3-kinase-dependent pathway is cardioprotective. Circ Res. 2002;90:377–9.

    Article  CAS  PubMed  Google Scholar 

  95. Gross ER, Hsu AK, Gross GJ. Opioid-induced cardioprotection occurs via glycogen synthase kinase β inhibition during reperfusion in intact rat hearts. Circ Res. 2004;94:960–6.

    Article  CAS  PubMed  Google Scholar 

  96. Nishihara M, Miura T, Miki T, et al. Erythropoietin affords additional cardioprotection to preconditioned hearts by enhanced phosphorylation of glycogen synthase kinase-3β. Am J Physiol. 2006;291:H748–55.

    CAS  Google Scholar 

  97. Korzick DH, Kostyak JC, Hunter JC, Saupe KW. Local delivery of PKCε-activating peptide mimics ischemic preconditioning in aged hearts through GSK-3β but not F1-ATPase inactivation. Am J Physiol. 2007;293:H2056–63.

    CAS  Google Scholar 

  98. Das S, Wong R, Rajapakse N, et al. Glycogen synthase kinase 3 inhibition slows mitochondrial adenine nucleotide transport and regulates voltage-dependent anion channel phosphorylation. Circ Res. 2008;103:983–91.

    Article  CAS  PubMed  Google Scholar 

  99. Obame FN, Plin-Mercier C, Assaly R, et al. Cardioprotective effect of morphine and a blocker of glycogen synthase kinase 3β, SB216763 [3-(2, 4-dichlorophenyl)-4(1-methyl-1H-indol-3-yl)-1H-pyrrole-2, 5-dione], via inhibition of the mitochondrial permeability transition pore. J Pharmacol Exp Ther. 2008;326:252–8.

    Article  CAS  PubMed  Google Scholar 

  100. Juhaszova M, Zorov DB, Kim S-H, et al. Glycogen synthase kinase-3β mediates convergence of protection signaling to inhibit the mitochondrial permeability transition pore. J Clin Invest. 2004;113:1535–49.

    CAS  PubMed  Google Scholar 

  101. Garlid KD, Costa ADT, Quinlan CL, et al. Cardioprotective signaling to mitochondria. J Mol Cell Cardiol. 2009;46:858–66.

    Article  CAS  PubMed  Google Scholar 

  102. Gross ER, Hsu AK, Gross GJ. GSK3β inhibition and KATP channel opening mediate acute opioid-induced cardioprotection at reperfusion. Basic Res Cardiol. 2007;102:341–9.

    Article  CAS  PubMed  Google Scholar 

  103. Nishino Y, Webb IG, Davidson SM, et al. Glycogen synthase kinase-3 inactivation is not required for ischemic preconditioning or postconditioning in the mouse. Circ Res. 2008;103:307–14.

    Article  CAS  PubMed  Google Scholar 

  104. Skyschally A, van Caster P, Boengler K, et al. Ischemic postconditioning in pigs: no causal role for RISK activation. Circ Res. 2009;104:15–8.

    Article  CAS  PubMed  Google Scholar 

  105. Xi J, McIntosh R, Shen X, et al. Adenosine A2A and A2B receptors work in concert to induce a strong protection against reperfusion injury in rat hearts. J Mol Cell Cardiol. 2009;47:684–90.

    Article  CAS  PubMed  Google Scholar 

  106. Vinten-Johansen J, Thourani VH, Ronson RS, et al. Broad-spectrum cardioprotection with adenosine. Ann Thorac Surg. 1999;68:1942–8.

    Article  CAS  PubMed  Google Scholar 

  107. Kin H, Zatta AJ, Lofye MT, et al. Postconditioning reduces infarct size via adenosine receptor activation by endogenous adenosine. Cardiovasc Res. 2005;67:124–33.

    Article  CAS  PubMed  Google Scholar 

  108. Gomez L, Li B, Mewton N, et al. Inhibition of mitochondrial permeability transition pore opening: translation to patients. Cardiovasc Res. 2009;83:226–33.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Downey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, X., Cohen, M.V. & Downey, J.M. Mechanism of Cardioprotection by Early Ischemic Preconditioning. Cardiovasc Drugs Ther 24, 225–234 (2010). https://doi.org/10.1007/s10557-010-6236-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-010-6236-x

Key words

Navigation