Skip to main content

Advertisement

Log in

Bladder cancer angiogenesis and metastasis—translation from murine model to clinical trial

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

In the majority of cases, death from bladder cancer results from metastatic disease. Understanding the closely linked mechanisms of invasion, metastasis and angiogenesis in bladder cancer has allowed us to develop new therapeutic strategies that harbor the promise of decisive improvements in patient survival. The essential link between cell based experiments and the translation of novel agents into human patients with bladder cancer is the animal model. With emphasis on the orthotopic xenograft model, this review outlines some key mechanisms relevant to angiogenesis and the development of metastasis in bladder cancer. We highlight especially pathways related to MMP-9, IL-8, VEGF and EGFR. Most commonly, expression patterns of these markers in patients have correlated to disease progression and patient survival, which has led to laboratory investigations of these markers and eventually novel targeted therapies that are translated back into the clinic by means of clinical trials. Although imperfect in their translatability into clinical efficacy, animal models remain a critical tool in bladder cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J., & Thun, M. J. (2007). Cancer statistics, 2007. CA: a Cancer Journal for Clinicians, 57, 43–6.

    Article  Google Scholar 

  2. Spiess, P. E., & Czerniak, B. (2006). Dual-track pathway of bladder carcinogenesis: Practical implications. Archives of Pathology & Laboratory Medicine, 130, 844–52.

    CAS  Google Scholar 

  3. Wu, X. R. (2005). Urothelial tumorigenesis: A tale of divergent pathways. Nature Reviews Cancer, 5, 713–25.

    Article  PubMed  CAS  Google Scholar 

  4. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration (2005). Neoadjuvant chemotherapy in invasive bladder cancer: Update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. European Urology, 48, 202–05; discussion 205–06.

    Article  Google Scholar 

  5. Sonpavde, G., & Petrylak, D. P. (2006). Perioperative chemotherapy for bladder cancer. Critical Reviews in Oncology Hematology, 57, 133–44.

    Article  Google Scholar 

  6. Fidler, I. J. (1990). Critical factors in the biology of human cancer metastasis: Twenty-eighth G.H.A. Clowes memorial award lecture. Cancer Research, 50, 6130–138.

    PubMed  CAS  Google Scholar 

  7. Folkman, J. (1986). How is blood vessel growth regulated in normal and neoplastic tissue? G.H.A. Clowes memorial Award lecture. Cancer Research, 46, 467–73.

    PubMed  CAS  Google Scholar 

  8. Liotta, L. A., Steeg, P. S., & Stetler-Stevenson, W. G. (1991). Cancer metastasis and angiogenesis: an imbalance of positive and negative regulation. Cell, 64, 327–36.

    Article  PubMed  CAS  Google Scholar 

  9. Crew, J. P., O’Brien, T., Bradburn, M., Fuggle, S., Bicknell, R., Cranston, D., et al. (1997). Vascular endothelial growth factor is a predictor of relapse and stage progression in superficial bladder cancer. Cancer Research, 57, 5281–285.

    PubMed  CAS  Google Scholar 

  10. O’Brien, T., Cranston, D., Fuggle, S., Bicknell, R., Harris, A. L. (1995). Different angiogenic pathways characterize superficial and invasive bladder cancer. Cancer Research, 55, 510–13.

    PubMed  Google Scholar 

  11. Allen, L. E., & Maher, P. A. (1993). Expression of basic fibroblast growth factor and its receptor in an invasive bladder carcinoma cell line. Journal of Cellular Physiology, 155, 368–75.

    Article  PubMed  CAS  Google Scholar 

  12. Nguyen, M., Watanabe, H., Budson, A. E., Richie, J. P., & Folkman, J. (1993). Elevated levels of the angiogenic peptide basic fibroblast growth factor in urine of bladder cancer patients. Journal of the National Cancer Institute, 85, 241–42.

    Article  PubMed  CAS  Google Scholar 

  13. Inoue, K., Slaton, J. W., Kim, S. J., Perrotte, P., Eve, B. Y., Bar-Eli, M., et al. (2000). Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Research, 60, 2290–299.

    PubMed  CAS  Google Scholar 

  14. Folkman, J. (1983). Angiogenesis: Initiation and modulation. Symposium on Fundamental Cancer Research, 36, 201–08.

    PubMed  CAS  Google Scholar 

  15. Goddard, J. C., Sutton, C. D., Furness, P. N., O’Byrne, K. J., & Kockelbergh, R. C. (2003). Microvessel density at presentation predicts subsequent muscle invasion in superficial bladder cancer. Clinical Cancer Research, 9, 2583–586.

    PubMed  Google Scholar 

  16. Bochner, B. H., Cote, R. J., Weidner, N., Groshen, S., Chen, S. C., Skinner, D. G., et al. (1995). Angiogenesis in bladder cancer: relationship between microvessel density and tumor prognosis. Journal of the National Cancer Institute, 87, 1603–612.

    Article  PubMed  CAS  Google Scholar 

  17. Canoglu, A., Gogus, C., Beduk, Y., Orhan, D., Tulunay, O., & Baltaci, S. (2004). Microvessel density as a prognostic marker in bladder carcinoma: correlation with tumor grade, stage and prognosis. International Urology and Nephrology, 36, 401–05.

    Article  PubMed  Google Scholar 

  18. Dickinson, A. J., Fox, S. B., Persad, R. A., Hollyer, J., Sibley, G. N., & Harris, A. L. (1994). Quantification of angiogenesis as an independent predictor of prognosis in invasive bladder carcinomas. British Journal of Urology, 74, 762–66.

    Article  PubMed  CAS  Google Scholar 

  19. Dinney, C. P., Babkowski, R. C., Antelo, M., Perrotte, P., Liebert, M., Zhang, H. Z., et al. (1998). Relationship among cystectomy, microvessel density and prognosis in stage T1 transitional cell carcinoma of the bladder. Journal of Urology, 160, 1285–290.

    Article  PubMed  CAS  Google Scholar 

  20. Jaeger, T. M., Weidner, N., Chew, K., Moore, D. H., Kerschmann, R. L., Waldman, F. M., et al. (1995). Tumor angiogenesis correlates with lymph node metastases in invasive bladder cancer. Journal of Urology, 154, 69–1.

    Article  PubMed  CAS  Google Scholar 

  21. Fidler, I. J. (1986). Rationale and methods for the use of nude mice to study the biology and therapy of human cancer metastasis. Cancer and Metastasis Reviews, 5, 29–9.

    Article  PubMed  CAS  Google Scholar 

  22. Van Dyke, T., & Jacks, T. (2002). Cancer modeling in the modern era: progress and challenges. Cell, 108, 135–44.

    Article  PubMed  Google Scholar 

  23. Sabichi, A., Keyhani, A., Tanaka, N., Delacerda, J., Lee, I. L., Zou, C., et al. (2006). Characterization of a panel of cell lines derived from urothelial neoplasms: genetic alterations, growth in vivo and the relationship of adenoviral mediated gene transfer to coxsackie adenovirus receptor expression. Journal of Urology, 175, 1133–137.

    Article  PubMed  CAS  Google Scholar 

  24. Sanchez-Carbayo, M., Socci, N. D., Charytonowicz, E., Lu, M., Prystowsky, M., Childs, G., et al. (2002). Molecular profiling of bladder cancer using cDNA microarrays: Defining histogenesis and biological phenotypes. Cancer Research, 62, 6973–980.

    PubMed  CAS  Google Scholar 

  25. Lee, J. S., Chu, I. S., Mikaelyan, A., Calvisi, D. F., Heo, J., Reddy, J. K., et al. (2004). Application of comparative functional genomics to identify best-fit mouse models to study human cancer. Nature Genetics, 36, 1306–311.

    Article  PubMed  CAS  Google Scholar 

  26. Tan, M. H., & Chu, T. M. (1985). Characterization of the tumorigenic and metastatic properties of a human pancreatic tumor cell line (AsPC-1) implanted orthotopically into nude mice. Tumour Biology, 6, 89–8.

    PubMed  CAS  Google Scholar 

  27. Naito, S., von Eschenbach, A. C., Giavazzi, R., & Fidler, I. J. (1986). Growth and metastasis of tumor cells isolated from a human renal cell carcinoma implanted into different organs of nude mice. Cancer Research, 46, 4109–115.

    PubMed  CAS  Google Scholar 

  28. Shafie, S. M., & Liotta, L. A. (1980). Formation of metastasis by human breast carcinoma cells (MCF-7) in nude mice. Cancer Letters, 11, 81–7.

    Article  PubMed  CAS  Google Scholar 

  29. McLemore, T. L., Liu, M. C., Blacker, P. C., Gregg, M, Alley, M. C., Abbott, B. J., et al. (1987). Novel intrapulmonary model for orthotopic propagation of human lung cancers in athymic nude mice. Cancer Research, 47, 5132–140.

    PubMed  CAS  Google Scholar 

  30. Dinney, C. P., Fishbeck, R., Singh, R. K., Eve, B., Pathak, S., Brown, N., et al. (1995). Isolation and characterization of metastatic variants from human transitional cell carcinoma passaged by orthotopic implantation in athymic nude mice. Journal of Urology, 154, 1532–538.

    Article  PubMed  CAS  Google Scholar 

  31. Perrotte, P. J., Bielenberg, D. R., Eve, B. Y., & Dinney, C. P. (1997). Organ-specific angiogenesis and metastasis of human bladder carcinoma growing in athymic mice. Molecular Urology, 1, 299–07.

    Google Scholar 

  32. Tanaka, M., Gee, J. R., De La Cerda, J., Rosser, C. J., Zhou, J. H., Benedict, W. F., et al. (2003). Noninvasive detection of bladder cancer in an orthotopic murine model with green fluorescence protein cytology. Journal of Urology, 170, 975–78.

    Article  PubMed  Google Scholar 

  33. Sweeney, P., Karashima, T., Ishikura, H., Wiehle, S., Yamashita, M., Benedict, W. F., et al. (2003). Efficient therapeutic gene delivery after systemic administration of a novel polyethylenimine/DNA vector in an orthotopic bladder cancer model. Cancer Research, 63, 4017–020.

    PubMed  CAS  Google Scholar 

  34. Yamashita, M., Rosser, C. J., Zhou, J. H., Zhang, X. Q., Connor, R. J., Engler, H., et al. (2002). Syn3 provides high levels of intravesical adenoviral-mediated gene transfer for gene therapy of genetically altered urothelium and superficial bladder cancer. Cancer Gene Therapy, 9, 687–91.

    Article  PubMed  CAS  Google Scholar 

  35. Zhou, J. H., Rosser, C. J., Tanaka, M., Yang, M., Baranov, E., Hoffman, R. M., et al. (2002). Visualizing superficial human bladder cancer cell growth in vivo by green fluorescent protein expression. Cancer Gene Therapy, 9, 681–86.

    Article  PubMed  CAS  Google Scholar 

  36. Watanabe, T., Shinohara, N., Sazawa, A., Harabayashi, T., Ogiso, Y., Koyanagi, T., et al. (2000). An improved intravesical model using human bladder cancer cell lines to optimize gene and other therapies. Cancer Gene Therapy, 7, 1575–580.

    Article  PubMed  CAS  Google Scholar 

  37. Hadaschik, B. A., Black, P. C., Sea, J. C., Metwalli, A. R., Fazli, L., Dinney, C. P., et al. (2007). A validated mouse model for orthotopic bladder cancer using transurethral tumor inoculation and bioluminescence imaging. BJU International (in press).

  38. Okajima, E., Denda, A., Ozono, S., Takahama, M., Akai, H., Sasaki, Y., et al. (1998). Chemopreventive effects of nimesulide, a selective cyclooxygenase-2 inhibitor, on the development of rat urinary bladder carcinomas initiated by N-butyl-N-(4-hydroxybutyl)nitrosamine. Cancer Research, 58, 3028–031.

    PubMed  CAS  Google Scholar 

  39. Miyamoto, H., Yang, Z., Chen, Y. T., Ishiguro, H., Uemura, H., Kubota, Y., et al. (2007). Promotion of bladder cancer development and progression by androgen receptor signals. Journal of the National Cancer Institute, 99, 558–68.

    Article  PubMed  CAS  Google Scholar 

  40. Gunther, J. H., Jurczok, A., Wulf, T., Brandau, S., Deinert, I., Jocham, D., et al. (1999). Optimizing syngeneic orthotopic murine bladder cancer (MB49). Cancer Research, 59, 2834–837.

    PubMed  CAS  Google Scholar 

  41. Zhang, Z. T., Pak, J., Huang, H. Y., Shapiro, E., Sun, T. T., Pellicer, A., et al. (2001). Role of Ha-ras activation in superficial papillary pathway of urothelial tumor formation. Oncogene, 20, 1973–980.

    Article  PubMed  CAS  Google Scholar 

  42. Zhang, Z. T., Pak, J., Shapiro, E., Sun, T. T., & Wu, X. R. (1999). Urothelium-specific expression of an oncogene in transgenic mice induced the formation of carcinoma in situ and invasive transitional cell carcinoma. Cancer Research, 59, 3512–517.

    PubMed  CAS  Google Scholar 

  43. Mitra, A. P., Datar, R. H., & Cote, R. J. (2006). Molecular pathways in invasive bladder cancer: New insights into mechanisms, progression, and target identification. Journal of Clinical Oncology, 24, 5552–564.

    Article  PubMed  CAS  Google Scholar 

  44. Bex, A., Vooijs, M., Horenblas, S., & Berns, A. (2002). Controlling gene expression in the urothelium using transgenic mice with inducible bladder specific Cre-lox recombination. Journal of Urology, 168, 2641–644.

    Article  PubMed  CAS  Google Scholar 

  45. Talmadge, J. E., Singh, R. K., Fidler, I. J., & Raz, A. (2007). Murine models to evaluate novel and conventional therapeutic strategies for cancer. American Journal of Pathology, 170, 793–04.

    Article  PubMed  CAS  Google Scholar 

  46. Slaton, J. W., Millikan, R., Inoue, K., Karashima, T., Czerniak, B., Shen, Y., et al. (2004). Correlation of metastasis related gene expression and relapse-free survival in patients with locally advanced bladder cancer treated with cystectomy and chemotherapy. Journal of Urology, 171, 570–74.

    Article  PubMed  CAS  Google Scholar 

  47. Izawa, J. I., Slaton, J. W., Kedar, D., Karashima, T., Perrotte, P., Czerniak, B., et al. (2001). Differential expression of progression-related genes in the evolution of superficial to invasive transitional cell carcinoma of the bladder. Oncology Reports, 8, 9–5.

    PubMed  CAS  Google Scholar 

  48. Deryugina, E. I., & Quigley, J.P. (2006). Matrix metalloproteinases and tumor metastasis. Cancer and Metastasis Reviews, 25, 9–4.

    Article  PubMed  CAS  Google Scholar 

  49. Folkman, J., Watson, K., Ingber, D., & Hanahan, D. (1989). Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature, 339, 58–1.

    Article  PubMed  CAS  Google Scholar 

  50. Blood, C. H., & Zetter, B. R. (1990). Tumor interactions with the vasculature: angiogenesis and tumor metastasis. Biochimica et biophysica acta, 1032, 89–18.

    PubMed  CAS  Google Scholar 

  51. Liotta, L. A., Thorgeirsson, U. P., & Garbisa, S. (1982). Role of collagenases in tumor cell invasion. Cancer and Metastasis Reviews, 1, 277–88.

    Article  PubMed  CAS  Google Scholar 

  52. Karelina, T. V., Goldberg, G. I., & Eisen, A. Z. (1995). Matrix metalloproteinases in blood vessel development in human fetal skin and in cutaneous tumors. Journal of Investigative Dermatology, 105, 411–17.

    Article  PubMed  CAS  Google Scholar 

  53. McCawley, L. J., & Matrisian, L. M. (2001). Matrix metalloproteinases: they’re not just for matrix anymore! Current Opinion in Cell Biology, 13, 534–40.

    Article  PubMed  CAS  Google Scholar 

  54. Jodele, S., Blavier, L., Yoon, J. M., & DeClerck, Y. A. (2006). Modifying the soil to affect the seed: Role of stromal-derived matrix metalloproteinases in cancer progression. Cancer and Metastasis Reviews, 25, 35–3.

    Article  PubMed  CAS  Google Scholar 

  55. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103, 481–90.

    Article  PubMed  CAS  Google Scholar 

  56. Chaffer, C. L., Dopheide, B., McCulloch, D. R., Lee, A. B., Moseley, J. M., Thompson, E. W., et al. (2005). Upregulated MT1-MMP/TIMP-2 axis in the TSU-Pr1-B1/B2 model of metastatic progression in transitional cell carcinoma of the bladder. Clinical and Experimental Metastasis, 22, 115–25.

    Article  PubMed  CAS  Google Scholar 

  57. Kawamata, H., Kameyama, S., Kawai, K., Tanaka, Y., Nan, L., Barch, D. H., et al. (1995). Marked acceleration of the metastatic phenotype of a rat bladder carcinoma cell line by the expression of human gelatinase A. International Journal of Cancer, 63, 568–75.

    Article  CAS  Google Scholar 

  58. Itoh, T., Tanioka, M., Yoshida, H., Yoshioka, T., Nishimoto, H., & Itohara, S. (1998). Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Research, 58, 1048–051.

    PubMed  CAS  Google Scholar 

  59. Huang, S., Van Arsdall, M., Tedjarati, S., McCarty, M., Wu, W., Langley, R., et al. (2002). Contributions of stromal metalloproteinase-9 to angiogenesis and growth of human ovarian carcinoma in mice. Journal of the National Cancer Institute, 94, 1134–142.

    PubMed  CAS  Google Scholar 

  60. Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Research, 66, 259–66.

    Article  PubMed  CAS  Google Scholar 

  61. Elkin, M., Reich, R., Nagler, A., Aingorn, E., Pines, M., de-Groot, N., et al. (1999). Inhibition of matrix metalloproteinase-2 expression and bladder carcinoma metastasis by halofuginone. Clinical Cancer Research, 5, 1982–988.

    PubMed  CAS  Google Scholar 

  62. Davies, B., Waxman, J., Wasan, H., Abel, P., Williams, G., Krausz, T., et al. (1993). Levels of matrix metalloproteases in bladder cancer correlate with tumor grade and invasion. Cancer Research, 53, 5365–369.

    PubMed  CAS  Google Scholar 

  63. Moses, M. A., Wiederschain, D., Loughlin, K. R., Zurakowski, D., Lamb, C. C., & Freeman, M. R. (1998). Increased incidence of matrix metalloproteinases in urine of cancer patients. Cancer Research, 58, 1395–399.

    PubMed  CAS  Google Scholar 

  64. Bianco, F. J., Jr., Gervasi, D. C., Tiguert, R., Grignon, D. J., Pontes, J. E., Crissman, J. D., et al. (1998). Matrix metalloproteinase-9 expression in bladder washes from bladder cancer patients predicts pathological stage and grade. Clinical Cancer Research, 4, 3011–016.

    PubMed  Google Scholar 

  65. Sier, C. F., Casetta, G., Verheijen, J. H., Tizzani, A., Agape, V., Kos, J., et al. (2000). Enhanced urinary gelatinase activities (matrix metalloproteinases 2 and 9) are associated with early-stage bladder carcinoma: A comparison with clinically used tumor markers. Clinical Cancer Research, 6, 2333–340.

    PubMed  CAS  Google Scholar 

  66. Gerhards, S., Jung, K., Koenig, F., Daniltchenko, D., Hauptmann, S., Schnorr, D., et al. (2001). Excretion of matrix metalloproteinases 2 and 9 in urine is associated with a high stage and grade of bladder carcinoma. Urology, 57, 675–79.

    Article  PubMed  CAS  Google Scholar 

  67. Kawamura, K., Kamiya, N., Suyama, T., Shimbo, M., Oosumi, N., Suzuki, H., et al. (2004). In situ gelatinolytic activity correlates with tumor progression and prognosis in patients with bladder cancer. Journal of Urology, 172, 1480–484.

    Article  PubMed  CAS  Google Scholar 

  68. Grignon, D. J., Sakr, W., Toth, M., Ravery, V., Angulo, J., Shamsa, F., et al. (1996). High levels of tissue inhibitor of metalloproteinase-2 (TIMP-2) expression are associated with poor outcome in invasive bladder cancer. Cancer Research, 56, 1654–659.

    PubMed  CAS  Google Scholar 

  69. Kader, A. K., Liu, J., Shao, L., Dinney, C. P., Lin, J., Wang, Y., et al. (2007). Matrix metalloproteinase polymorphisms are associated with bladder cancer invasiveness. Clinical Cancer Research, 13, 2614–620.

    Article  PubMed  CAS  Google Scholar 

  70. Coussens, L. M., Fingleton, B., & Matrisian, L. M. (2002). Matrix metalloproteinase inhibitors and cancer: Trials and tribulations. Science, 295, 2387–392.

    Article  PubMed  CAS  Google Scholar 

  71. Matsushima, K., Morishita, K., Yoshimura, T., Lavu, S., Kobayashi, Y., Lew, W., et al. (1988). Molecular cloning of a human monocyte-derived neutrophil chemotactic factor (MDNCF) and the induction of MDNCF mRNA by interleukin 1 and tumor necrosis factor. Journal of Experimental Medicine, 167, 1883–893.

    Article  PubMed  CAS  Google Scholar 

  72. Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., DiPietro, L. A., Elner, V. M., et al. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science 258, 1798–801.

    Article  PubMed  CAS  Google Scholar 

  73. Luca, M., Huang, S., Gershenwald, J. E., Singh, R. K., Reich, R., & Bar-Eli, M. (1997). Expression of interleukin-8 by human melanoma cells up-regulates MMP-2 activity and increases tumor growth and metastasis. American Journal of Pathology, 151, 1105–113.

    PubMed  CAS  Google Scholar 

  74. Brew, R., Erikson, J. S., West, D. C., Kinsella, A. R., Slavin, J., & Christmas, S. E. (2000). Interleukin-8 as an autocrine growth factor for human colon carcinoma cells in vitro. Cytokine, 12, 78–5.

    Article  PubMed  CAS  Google Scholar 

  75. Yoshida, S., Ono, M., Shono, T., Izumi, H., Ishibashi, T., Suzuki, H., et al. (1997). Involvement of interleukin-8, vascular endothelial growth factor, and basic fibroblast growth factor in tumor necrosis factor alpha-dependent angiogenesis. Molecular and Cellular Biology, 17, 4015–023.

    PubMed  CAS  Google Scholar 

  76. Inoue, K., Wood, C. G., Slaton, J. W., Karashima, T., Sweeney, P., & Dinney, C. P. (2001). Adenoviral-mediated gene therapy of human bladder cancer with antisense interleukin-8. Oncology Reports, 8, 955–64.

    PubMed  CAS  Google Scholar 

  77. Yuan, A., Chen, J. J., Yao, P. L., & Yang, P. C. (2005). The role of interleukin-8 in cancer cells and microenvironment interaction. Frontiers in Bioscience, 10, 853–65.

    Article  PubMed  CAS  Google Scholar 

  78. Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., et al. (2002). Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology, 161, 125–34.

    PubMed  CAS  Google Scholar 

  79. Inoue, K., Slaton, J. W., Eve, B. Y., Kim, S. J., Perrotte, P., Balbay, M. D., et al. (2000). Interleukin 8 expression regulates tumorigenicity and metastases in androgen-independent prostate cancer. Clinical Cancer Research, 6, 2104–119.

    PubMed  CAS  Google Scholar 

  80. Mian, BM, Dinney, CP, Bermejo, CE, Sweeney, P, Tellez, C, Yang, XD et al. (2003). Fully human anti-interleukin 8 antibody inhibits tumor growth in orthotopic bladder cancer xenografts via down-regulation of matrix metalloproteases and nuclear factor-kappaB. Clinical Cancer Research, 9, 3167–175.

    PubMed  CAS  Google Scholar 

  81. Yang, C. C., Chu, K. C., & Yeh, W. M. (2004). The expression of vascular endothelial growth factor in transitional cell carcinoma of urinary bladder is correlated with cancer progression. Urologic Oncology, 22, 1–.

    PubMed  Google Scholar 

  82. Bernardini, S., Fauconnet, S., Chabannes, E., Henry, P. C., Adessi, G., & Bittard, H. (2001). Serum levels of vascular endothelial growth factor as a prognostic factor in bladder cancer. Journal of Urology, 166, 1275–279.

    Article  PubMed  CAS  Google Scholar 

  83. Wu, W., Shu, X., Hovsepyan, H., Mosteller, R. D., & Broek, D. (2003). VEGF receptor expression and signaling in human bladder tumors. Oncogene, 22, 3361–370.

    Article  PubMed  CAS  Google Scholar 

  84. Xia, G., Kumar, S. R., Hawes, D., Cai, J., Hassanieh, L., Groshen, S., et al. (2006). Expression and significance of vascular endothelial growth factor receptor 2 in bladder cancer. Journal of Urology, 175, 1245–252.

    Article  PubMed  CAS  Google Scholar 

  85. Inoue, K., Slaton, J. W., Davis, D. W., Hicklin, D. J., McConkey, D. J., Karashima, T., et al. (2000). Treatment of human metastatic transitional cell carcinoma of the bladder in a murine model with the anti-vascular endothelial growth factor receptor monoclonal antibody DC101 and paclitaxel. Clinical Cancer Research, 6, 2635–643.

    PubMed  CAS  Google Scholar 

  86. Davis, D. W., Inoue, K., Dinney, C. P., Hicklin, D. J., Abbruzzese, J. L., & McConkey, D. J. (2004). Regional effects of an antivascular endothelial growth factor receptor monoclonal antibody on receptor phosphorylation and apoptosis in human 253J B-V bladder cancer xenografts. Cancer Research, 64, 4601–610.

    Article  PubMed  CAS  Google Scholar 

  87. Posey, J. A., Ng, T. C., Yang, B., Khazaeli, M. B., Carpenter, M. D., Fox, F., et al. (2003). A phase I study of anti-kinase insert domain-containing receptor antibody, IMC-1C11, in patients with liver metastases from colorectal carcinoma. Clinical Cancer Research, 9, 1323–332.

    PubMed  CAS  Google Scholar 

  88. Mohamedali, K. A., Kedar, D., Sweeney, P., Kamat, A., Davis, D. W., Eve, B. Y., et al. (2005). The vascular-targeting fusion toxin VEGF121/rGel inhibits the growth of orthotopic human bladder carcinoma tumors. Neoplasia, 7, 912–20.

    Article  PubMed  CAS  Google Scholar 

  89. Mohamedali, K. A., Poblenz, A. T., Sikes, C. R., Navone, N. M., Thorpe, P. E., & Darnay, B. G. (2006). Inhibition of prostate tumor growth and bone remodeling by the vascular targeting agent VEGF121/rGel. Cancer Research, 66, 10919–0928.

    Article  PubMed  CAS  Google Scholar 

  90. Ran, S., Mohamedali, K. A., Luster, T. A., Thorpe, P. E., & Rosenblum, M. G. (2005). The vascular-ablative agent VEGF(121)/rGel inhibits pulmonary metastases of MDA-MB-231 breast tumors. Neoplasia, 7, 486–96.

    Article  PubMed  CAS  Google Scholar 

  91. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., et al. (2004). Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New England Journal of Medicine, 350, 2335–342.

    Article  PubMed  CAS  Google Scholar 

  92. Yang, J. C., Haworth, L., Sherry, R. M., Hwu, P., Schwartzentruber, D. J., Topalian, S. L., et al. (2003). A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. New England Journal of Medicine, 349, 427–34.

    Article  PubMed  CAS  Google Scholar 

  93. Sawhney, R., Bourgeois, D., & Chaudhary, U. B. (2006). Neo-adjuvant chemotherapy for muscle-invasive bladder cancer: A look ahead. Annals of Oncology, 17, 1360–369.

    Article  PubMed  CAS  Google Scholar 

  94. Kassouf, W., Dinney, C. P., Brown, G., McConkey, D. J., Diehl, A. J., Bar-Eli, M., et al. (2005). Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of Gefitinib in bladder cancer cells. Cancer Research, 65, 10524–0535.

    Article  PubMed  CAS  Google Scholar 

  95. Chow, N. H., Liu, H. S., Lee, E. I., Chang, C. J., Chan, S. H., Cheng, H. L., et al. (1997). Significance of urinary epidermal growth factor and its receptor expression in human bladder cancer. Anticancer Research, 17, 1293–296.

    PubMed  CAS  Google Scholar 

  96. Sriplakich, S., Jahnson, S., & Karlsson, M. G. (1999). Epidermal growth factor receptor expression: Predictive value for the outcome after cystectomy for bladder cancer? British Journal of Urology International International, 83, 498–03.

    CAS  Google Scholar 

  97. Mellon, K., Wright, C., Kelly, P., Horne, C. H., & Neal, D. E. (1995). Long-term outcome related to epidermal growth factor receptor status in bladder cancer. Journal of Urology, 153, 919–25.

    Article  PubMed  CAS  Google Scholar 

  98. Bue, P., Wester, K., Sjostrom, A., Holmberg, A., Nilsson, S., Carlsson, J., et al. (1998). Expression of epidermal growth factor receptor in urinary bladder cancer metastases. International Journal of Cancer, 76, 189–93.

    Article  CAS  Google Scholar 

  99. Cheng, J., Huang, H., Zhang, Z. T., Shapiro, E., Pellicer, A., Sun, T. T., et al. (2002). Overexpression of epidermal growth factor receptor in urothelium elicits urothelial hyperplasia and promotes bladder tumor growth. Cancer Research, 62, 4157–163.

    PubMed  CAS  Google Scholar 

  100. Shrader, M., Pino, M. S., Brown, G., Black, P., Adam, L., Bar-Eli, M., et al. (2007). Molecular correlates of gefitinib responsiveness in human bladder cancer cells. Molecular Cancer Therapeutics, 6, 277–85.

    Article  PubMed  CAS  Google Scholar 

  101. Kassouf, W., Luongo, T., Brown, G., Adam, L., & Dinney, C. P. (2006). Schedule dependent efficacy of gefitinib and docetaxel for bladder cancer. Journal of Urology, 176, 787–92.

    Article  PubMed  CAS  Google Scholar 

  102. Perrotte, P., Matsumoto, T., Inoue, K., Kuniyasu, H., Eve, B. Y., Hicklin, D. J., et al. (1999). Anti-epidermal growth factor receptor antibody C225 inhibits angiogenesis in human transitional cell carcinoma growing orthotopically in nude mice. Clinical Cancer Research, 5, 257–65.

    PubMed  CAS  Google Scholar 

  103. Petit, A. M., Rak, J., Hung, M. C., Rockwell, P., Goldstein, N., Fendly, B., et al. (1997). Neutralizing antibodies against epidermal growth factor and ErbB-2/neu receptor tyrosine kinases down-regulate vascular endothelial growth factor production by tumor cells in vitro and in vivo: Angiogenic implications for signal transduction therapy of solid tumors. American Journal of Pathology, 151, 1523–530.

    PubMed  CAS  Google Scholar 

  104. Inoue, K., Slaton, J. W., Perrotte, P., Davis, D. W., Bruns, C. J., Hicklin, D. J., et al. (2000). Paclitaxel enhances the effects of the anti-epidermal growth factor receptor monoclonal antibody ImClone C225 in mice with metastatic human bladder transitional cell carcinoma. Clinical Cancer Research, 6, 4874–884.

    PubMed  CAS  Google Scholar 

  105. Lynch, T. J., Bell, D. W., Sordella, R., Gurubhagavatula, S., Okimoto, R. A., Brannigan, B. W., et al. (2004). Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. New England Journal of Medicine, 350, 2129–139.

    Article  PubMed  CAS  Google Scholar 

  106. Blehm, K. N., Spiess, P. E., Bondaruk, J. E., Dujka, M. E., Villares, G. J., Zhao, Y. J., et al. (2006). Mutations within the kinase domain and truncations of the epidermal growth factor receptor are rare events in bladder cancer: Implications for therapy. Clinical Cancer Research, 12, 4671–677.

    Article  PubMed  CAS  Google Scholar 

  107. Thatcher, N., Chang, A., Parikh, P., Rodrigues Pereira, J., Ciuleanu, T., von Pawel, J., et al. (2005). Gefitinib plus best supportive care in previously treated patients with refractory advanced non-small-cell lung cancer: Results from a randomised, placebo-controlled, multicentre study (Iressa Survival Evaluation in Lung Cancer). Lancet, 366, 1527–537.

    Article  PubMed  CAS  Google Scholar 

  108. Esrig, D., Spruck, C. H., 3rd, Nichols, P. W., Chaiwun, B., Steven, K., Groshen, S., et al. (1993). p53 nuclear protein accumulation correlates with mutations in the p53 gene, tumor grade, and stage in bladder cancer. American Journal of Pathology, 143, 1389–397.

    PubMed  CAS  Google Scholar 

  109. Bochner, B. H., Esrig, D., Groshen, S., Dickinson, M., Weidner, N., Nichols, P. W., et al. (1997). Relationship of tumor angiogenesis and nuclear p53 accumulation in invasive bladder cancer. Clinical Cancer Research, 3, 1615–622.

    PubMed  CAS  Google Scholar 

  110. Malats, N., Bustos, A., Nascimento, C. M., Fernandez, F., Rivas, M., Puente, D., et al. (2005). P53 as a prognostic marker for bladder cancer: A meta-analysis and review. Lancet Oncology, 6, 678–86.

    Article  PubMed  CAS  Google Scholar 

  111. Imao, T., Koshida, K., Endo, Y., Uchibayashi, T., Sasaki, T., & Namiki, M. (1999). Dominant role of E-cadherin in the progression of bladder cancer. Journal of Urology, 161, 692–98.

    Article  PubMed  CAS  Google Scholar 

  112. Inoue, K., Slaton, J. W., Karashima, T., Yoshikawa, C., Shuin, T., Sweeney, P., & et al. (2000). The prognostic value of angiogenesis factor expression for predicting recurrence and metastasis of bladder cancer after neoadjuvant chemotherapy and radical cystectomy. Clinical Cancer Research, 6, 4866–873.

    PubMed  CAS  Google Scholar 

  113. Wakatsuki, S., Watanabe, R., Saito, K., Saito, T., Katagiri, A., Sato, S., et al. (1996). Loss of human E-cadherin (ECD) correlated with invasiveness of transitional cell cancer in the renal pelvis, ureter and urinary bladder. Cancer Letters, 103, 11–7.

    Article  PubMed  CAS  Google Scholar 

  114. Syrigos, K. N., Krausz, T., Waxman, J., Pandha, H., Rowlinson-Busza, G., Verne, J., et al. (1995). E-cadherin expression in bladder cancer using formalin-fixed, paraffin-embedded tissues: correlation with histopathological grade, tumour stage and survival. International Journal of Cancer, 64, 367–70.

    Article  CAS  Google Scholar 

  115. Kim, J. H., Tuziak, T., Hu, L., Wang, Z., Bondaruk, J., Kim, M., et al. (2005). Alterations in transcription clusters underlie development of bladder cancer along papillary and nonpapillary pathways. Laboratory Investigation, 85, 532–49.

    Article  PubMed  CAS  Google Scholar 

  116. Havaleshko, D. M., Cho, H., Conaway, M., Owens, C. R., Hampton, G., Lee, J. K., et al. (2007). Prediction of drug combination chemosensitivity in human bladder cancer. Molecular Cancer Therapeutics, 6, 578–86.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin P. N. Dinney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Black, P.C., Dinney, C.P.N. Bladder cancer angiogenesis and metastasis—translation from murine model to clinical trial. Cancer Metastasis Rev 26, 623–634 (2007). https://doi.org/10.1007/s10555-007-9084-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9084-9

Keywords

Navigation