Skip to main content

Advertisement

Log in

Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The evolutionarily selected tissue-protecting mechanisms are likely to be triggered by an event of universal significance for all surrounding cells. Such an event could be damage to blood vessels, which would result in local tissue hypoxia. It is now recognized that tissue hypoxia can initiate the tissue-protecting mechanism mediated by at least two different biochemical pathways. The central message of this review is that tumor cells are protected from immune damage in hypoxic and immunosuppressive tumor microenvironments due to the inactivation of anti-tumor T cells by the combined action of these two hypoxia-driven mechanisms. Firstly, tumor hypoxia-produced extracellular adenosine inhibits anti-tumor T cells via their Gs-protein-coupled and cAMP-elevating A2A and A2B adenosine receptors (A2AR/A2BR). Levels of extracellular adenosine are increased in tumor microenvironments due to the changes in activities of enzymes involved in adenosine metabolism. Secondly, TCR-activated and/or tumor hypoxia-exposed anti-tumor T cells may be inhibited in tumor microenvironments by Hypoxia-inducible Factor 1α (HIF-1α) Hence, HIF-1α activity in T cells may contribute to the tumor-protecting immunosuppressive effects of tumor hypoxia. Here, we summarize the data that support the view that protection of hypoxic cancerous tissues from anti-tumor T cells is mediated by the same mechanism that protects normal tissues from the excessive collateral damage by overactive immune cells during acute inflammation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rosenberg, H. F., & Gallin, J. I. (1999). Inflammation. In W. E. Paul (Ed.), Fundamental immunology (pp. 1051–1062). Philadelphia: Lippincott-Raven.

    Google Scholar 

  2. Holloway, A. F., Rao, S., & Shannon, M. F. (2002). Regulation of cytokine gene transcription in the immune system. Molecular Immunology, 38, 567–80.

    Article  PubMed  CAS  Google Scholar 

  3. Sitkovsky, M. V., & Ohta, A. (2005). The ‘danger’ sensors that STOP the immune response: The A2 adenosine receptors? Trends in Immunology, 26, 299–304.

    Article  PubMed  CAS  Google Scholar 

  4. Ohta, A., & Sitkovsky, M. (2001). Role of G-protein-coupled adenosine receptors in downregulation of inflammation and protection from tissue damage. Nature, 414, 916–920.

    Article  PubMed  CAS  Google Scholar 

  5. Lukashev, D., Ohta, A., Apasov, S., Chen, J. F., & Sitkovsky, M. (2004). Cutting edge: Physiologic attenuation of proinflammatory transcription by the Gs protein-coupled A2A adenosine receptor in vivo. Journal of Immunology, 173, 21–24.

    CAS  Google Scholar 

  6. Linden, J. (2001). Molecular approach to adenosine receptors: Receptor-mediated mechanisms of tissue protection. Annual Review of Pharmacology and Toxicology, 41, 775–787.

    Article  PubMed  CAS  Google Scholar 

  7. Sitkovsky, M. V., Lukashev, D., Apasov, S., Kojima, H., Koshiba, M., Caldwell, C., et al. (2004). Thiel M: Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annual Review of Immunology, 22, 657–682.

    Article  PubMed  CAS  Google Scholar 

  8. Sattin, A., Rall, T. W. (1970). The effect of adenosine and adenine nucleotides on the cyclic adenosine 3', 5'-phosphate content of guinea pig cerebral cortex slices. Molecular Pharmacology, 6, 13–23.

    PubMed  CAS  Google Scholar 

  9. Fredholm, B. B., Ijzerman, A. P., Jacobson, K. A., Klotz, K.-N., Linden, J. (2001). International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacological Reviews, 53, 527–5522.

    PubMed  CAS  Google Scholar 

  10. Fredholm, B. B., Battig, K., Holmen, J., Nehlig, A., Zvartau, E. E. (1999). Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacological Reviews, 51, 83–133.

    PubMed  CAS  Google Scholar 

  11. Lukashev, D. E., Smith, P. T., Caldwell, C. C., Ohta, A., Apasov, S. G., Sitkovsky, M. V. (2003). Analysis of A2a receptor-deficient mice reveals no significant compensatory increases in the expression of A2b, A1, and A3 adenosine receptors in lymphoid organs. Biochemical Pharmacology, 65, 2081–2090.

    Article  PubMed  CAS  Google Scholar 

  12. Chambers, C. A., Kuhns, M. S., Egen, J. G., & Allison, J. P. (2001). CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annual Review of Immunology, 19, 565–594.

    Article  PubMed  CAS  Google Scholar 

  13. Koshiba, M., Kojima, H., Huang, S., Apasov, S., & Sitkovsky, M. V. (1997). Memory of extracellular adenosine/A2a purinergic receptor-mediated signalling in murine T cells. Journal of Biological Chemistry, 272, 25881–25889.

    Article  PubMed  CAS  Google Scholar 

  14. Koshiba, M., Rosin, D. L., Hayashi, N., Linden, J., & Sitkovsky, M. V. (1999). Patterns of A2A extracellular adenosine receptor expression in different functional subsets of human peripheral T cells. Flow cytometry studies with anti-A2A receptor monoclonal antibodies. Molecular Pharmacology, 55, 614–624.

    PubMed  CAS  Google Scholar 

  15. Huang, S., Koshiba, M., Apasov, S., & Sitkovsky, M. (1997). Role of A2a adenosine receptor-mediated signaling in inhibition of T cell activation and expansion. Blood, 90, 1600–1610.

    PubMed  CAS  Google Scholar 

  16. Takayama, H., & Sitkovsky, M. V. (1988). Potential use of antagonists of cAMP-dependent protein kinase to block inhibition and modulate T-cell receptor-triggered activation of cytotoxic T-lymphocytes. Journal of Pharmaceutical Sciences, 78, 8–10.

    Article  Google Scholar 

  17. Sugiyama, H., Chen, P., Hunter, M., Taffs, R., & Sitkovsky, M. (1992). The dual role of the cAMP-dependent protein kinase C alpha subunit in T-cell receptor-triggered T-lymphocytes effector functions. Journal of Biological Chemistry, 267, 25256–25263.

    PubMed  CAS  Google Scholar 

  18. Torgersen, K. M., Vang, T., Abrahamsen, H., Yaqub, S., & Tasken, K. (2002). Molecular mechanisms for protein kinase A-mediated modulation of immune function. Cell Signal, 14, 1–9.

    Article  PubMed  CAS  Google Scholar 

  19. Sun, H., Gutierrez, P., Jackson, M. J., Kundu, N., & Fulton, A. M. (2000). Essential role of nitric oxide and interferon-gamma for tumor immunotherapy with interleukin-10. Journal of Immunotherapy, 23, 208–214.

    Article  PubMed  CAS  Google Scholar 

  20. Poehlein, C. H., Hu, H. M., Yamada, J., Assmann, I., Alvord, W. G., Urba, W. J., et al. (2003). TNF plays an essential role in tumor regression after adoptive transfer of perforin/IFN-gamma double knockout effector T cells. Journal of Immunology, 170, 2004–2013.

    CAS  Google Scholar 

  21. Shankaran, V., Ikeda, H., Bruce, A. T., White, J. M., Swanson, P. E., & Old, L. J., et al. (2001). IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature, 410, 1107–1111.

    Article  PubMed  CAS  Google Scholar 

  22. Naito, Y., Saito, K., Shiiba, K., Ohuchi, A., Saigenji, K., & Nagura, H., et al. (1998). CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Research, 58, 3491–3494.

    PubMed  CAS  Google Scholar 

  23. Schumacher, K., Haensch, W., Roefzaad, C., & Schlag, P. M. (2001). Prognostic significance of activated CD8(+) T cell infiltrations within esophageal carcinomas. Cancer Research, 61, 3932–3936.

    PubMed  CAS  Google Scholar 

  24. Zhang, L., Conejo-Garcia, J. R., Katsaros, D., Gimotty, P. A., Massobrio, M., Regnani, G., et al. (2003). Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. New England Journal of Medicine, 348, 203–213.

    Article  PubMed  CAS  Google Scholar 

  25. Nagorsen, D., Scheibenbogen, C., Marincola, F., Letsch, A., & Keilholz, U. (2003). Natural T cell immunity against cancer. Clinical Cancer Research, 9, 4296–4303.

    PubMed  CAS  Google Scholar 

  26. Rosenberg, S. A. (2001). Progress in the development of immunotherapy for the treatment of patients with cancer. Journal of Internal Medicine, 250, 462–475.

    Article  PubMed  CAS  Google Scholar 

  27. Melief, C. J., Van Der Burg, S. H., Toes, R. E., Ossendorp, F., & Offringa, R. (2002). Effective therapeutic anticancer vaccines based on precision guiding of cytolytic T lymphocytes. Immunological Reviews, 188, 177–182.

    Article  PubMed  CAS  Google Scholar 

  28. Hurwitz, A. A., Yanover, P., Markowitz, M., Allison, J. P., & Kwon, E. D. (2003). Prostate cancer: Advances in immunotherapy. Bio Drugs, 17, 131–138.

    CAS  Google Scholar 

  29. Ribas, A., Butterfield, L. H., Glaspy, J. A., & Economou, J. S. (2003). Current developments in cancer vaccines and cellular immunotherapy. Journal of Clinical Oncology, 21, 2415–2432.

    Article  PubMed  CAS  Google Scholar 

  30. Wang, X. Y., Kazim, L., Repasky, E. A., & Subjeck, J. R. (2003). Immunization with tumor-derived ER chaperone grp170 elicits tumor-specific CD8+ T-cell responses and reduces pulmonary metastatic disease. International Journal of Cancer, 105, 226–231.

    Article  CAS  Google Scholar 

  31. Morgan, R. A., Dudley, M. E., Wunderlich, J. R., Hughes, M. S., Yang, J. C., & Sherry, R. M., et al. (2006). Cancer regression in patients after transfer of genetically engineered lymphocytes. Science, 314, 126–129.

    Article  PubMed  CAS  Google Scholar 

  32. Gattinoni, L., Powell, D. J., Jr., Rosenberg, S. A., & Restifo, N. P. (2006). Adoptive immunotherapy for cancer: building on success. Nature Reviews. Immunology, 6, 383–393.

    Article  PubMed  CAS  Google Scholar 

  33. Chouhury, A., Mosolits, S., Kokhaei, P., Hansson, L., Palma, M., & Mellstedt, H. (2006). Clinical results of vaccine therapy for cancer: Learning from history for improving the future. Advances in Cancer Research, 95, 147–202.

    Article  PubMed  CAS  Google Scholar 

  34. Hodi, F. S. (2006). Dranoff G, combinatorial cancer immunotherapy. Advances in Immunology, 90, 341–368.

    PubMed  CAS  Google Scholar 

  35. Elia, L., Aurisicchio, L., Fcciabene, A., Giannetti, P., Ciliberto, G., La Monica, N., et al. (2007). CD4(+)CD25(+) regulatory T-cell-inactivation in combination with adenovirus vaccines enhances T-cell responses and protects mice from tumor challenge. Cancer Gene Therapy, 201–210.

  36. Borges, V. F., Kufe, D., & Avigan, D. E. (2002). Update on cancer vaccines. Current Opinion in Gastroenterology, 18, 723–731.

    Article  PubMed  CAS  Google Scholar 

  37. Woan, K., & Reddy, V. (2007). Potential therapeutic role of natural killer cells in cancer. Expert Opin Biol Ther, 7, 17–29.

    Article  PubMed  CAS  Google Scholar 

  38. van der Vliet, H. J., Balk, S. P., & Exley, M. A. (2006). Natural killer T cell-based cancer immunotherapy. Clinical Cancer Research, 12, 5921–5923.

    Article  PubMed  Google Scholar 

  39. Rabinovich, G. A., Gabrilovich, D., Sotomayor, E. M. (2007). Immunosuppressive strategies that are mediated by tumor cells. Annual Review of Immunology, 25, 267–296.

    Article  PubMed  CAS  Google Scholar 

  40. Leen, A. M., Rooney, C. M., & Foster, A. E. (2007). Improving T cell therapy for cancer. Annual Review of Immunology, 25, 243–265.

    Article  PubMed  CAS  Google Scholar 

  41. Frumento, G., Piazza, T., Di Carlo, E., & Ferrini, S. (2006). Targeting tumor-related immunosuppression for cancer immunotherapy. Endocr Metab Immune Disord Drug Targets, 6, 233–237.

    PubMed  Google Scholar 

  42. Harlin, H., Kuna, T. V., Peterson, A. C., Meng, Y., & Gajewski, T. F. (2006). Tumor progression despite massive influx of activated CD8(+) T cells in a patient with malignant melanoma ascites. Cancer Immunology and Immunotherapy, 55, 1185–1197.

    Article  PubMed  CAS  Google Scholar 

  43. Marincola, F. M., Jaffee, E. M., Hicklin, D. J., & Ferrone, S. (2000). Escape of human solid tumors from T-cell recognition: Molecular mechanisms and functional significance. Advances in Immunology, 74, 181–273.

    CAS  Google Scholar 

  44. Hellstrom, I., Hellstrom, K. E., Pierce, G. E., & Yang, J. P. (1968). Cellular and humoral immunity to different types of human neoplasms. Nature, 220, 1352–1354.

    Article  PubMed  CAS  Google Scholar 

  45. Hanson, H. L., Donermeyer, D. L., Ikeda, H., White, J. M., Shankaran, V., Old, L. J., et al. (2000). Eradication of established tumors by CD8+ T cell adoptive immunotherapy. Immunity, 13, 265–276.

    Article  PubMed  CAS  Google Scholar 

  46. Peng, L., Kjaergaard, J., Plautz, G. E., Awad, M., Drazba, J. A., Shu, S., et al. (2002). Tumor-induced L-selectinhigh suppressor T cells mediate potent effector T cell blockade and cause failure of otherwise curative adoptive immunotherapy. Journal of Immunology, 169, 4811–4821.

    Google Scholar 

  47. Kobie, J. J., Wu, R. S., Kurt, R. A., Lou, S., Adelman, M. K., Whitesell, L. J., et al. (2003). Transforming growth factor beta inhibits the antigen-presenting functions and antitumor activity of dendritic cell vaccines. Cancer Research, 63, 1860–1864.

    PubMed  CAS  Google Scholar 

  48. Lappas, C. M., Rieger, J. M., & Linden, J. (2005). A2A adenosine receptor induction inhibits IFN-gamma production in murine CD4+ T cells. Journal of Immunology, 174, 1073–1080.

    CAS  Google Scholar 

  49. Ohta, A., Gorelik, E., Prasad, S. J., Ronchese, F., Lukashev, D., Wong, M. K., et al. (2006). A2A adenosine receptor protects tumors from antitumor T cells. Proceedings of the National Academy of Sciences of the United States of America, 103, 13132–13137.

    Article  PubMed  CAS  Google Scholar 

  50. Sitkovsky, M. V. (2003). Use of the A(2A) adenosine receptor as a physiological immunosuppressor and to engineer inflammation in vivo. Biochemical Pharmacology, 65, 493–501.

    Article  PubMed  CAS  Google Scholar 

  51. Thiel, M., Chouker, A., Ohta, A., Jackson, E., Caldwell, C., Smith, P., et al. (2005). Oxygenation inhibits the physiological tissue-protecting mechanism and thereby exacerbates acute inflammatory lung injury. PLoS Biol, 3, e174.

    Article  CAS  Google Scholar 

  52. Sitkovsky, M., & Lukashev, D. (2005). Regulation of immune cells by local-tissue oxygen tension: HIF1alpha and adenosine receptors. Nature Reviews Immunology, 5, 712–721.

    Article  PubMed  CAS  Google Scholar 

  53. Arnold, F., West, D., & Kumar, S. (1987). Wound healing: The effect of macrophage and tumour derived angiogenesis factors on skin graft vascularization. British Journal of Experimental Pathology, 68, 569–574.

    PubMed  CAS  Google Scholar 

  54. Simmen, H. P., Battaglia, H., Giovanoli, P., & Blaser, J. (1994). Analysis of pH, pO2 and pCO2 in drainage fluid allows for rapid detection of infectious complications during the follow-up period after abdominal surgery. Infection, 22, 386–389.

    Article  PubMed  CAS  Google Scholar 

  55. Eltzschig, H. K., Thompson, L. F., Karhausen, J., Cotta, R. J., Ibla, J. C., Robson, S. C., et al. (2004). Endogenous adenosine produced during hypoxia attenuates neutrophil accumulation: Coordination by extracellular nucleotide metabolism. Blood, 104, 3986–3992.

    Article  PubMed  CAS  Google Scholar 

  56. Helmlinger, G., Yuan, F., Dellian, M., & Jain, R. K. (1997). Interstitial pH and pO2 gradients in solid tumors in vivo: High-resolution measurements reveal a lack of correlation. Nat Med, 3, 177–182.

    Article  PubMed  CAS  Google Scholar 

  57. Vaupel, P., Kalinowski, F., & Okunieff, P. (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: A review. Cancer Research, 49, 6449–6465.

    PubMed  CAS  Google Scholar 

  58. Vaupel, P., Thews, O., & Hoeckel, M. (2001). Treatment resistance of solid tumors: Role of hypoxia and anemia. Medical Oncology, 18, 243–259.

    Article  PubMed  CAS  Google Scholar 

  59. Harris, A. L. (2002). Hypoxia—a key regulatory factor in tumour growth. Nature Reviews. Cancer, 2, 38–47.

    Article  PubMed  CAS  Google Scholar 

  60. Gorlach, A. (2005). Control of adenosine transport by hypoxia. Circulation Research, 97, 1–3.

    Article  PubMed  CAS  Google Scholar 

  61. Arch, J. R., & Newsholme, E. A. (1978). Activities and some properties of 5'-nucleotidase, adenosine kinase and adenosine deaminase in tissues from vertebrates and invertebrates in relation to the control of the concentration and the physiological role of adenosine. Biochemical Journal, 174, 965–977.

    Google Scholar 

  62. Lukashev, D., Ohta, A., & Sitkovsky, M. (2004). Targeting hypoxia-A(2A) adenosine receptor-mediated mechanisms of tissue protection. Drug Discovery Today, 9, 403–409.

    Article  PubMed  CAS  Google Scholar 

  63. Griffith, D. A., & Jarvis, S. M. (1996). Nucleoside and nucleobase transport systems of mammalian cells. Biochimica and Biophysica Acta, 1286, 153–181.

    CAS  Google Scholar 

  64. Casanello, P., Torres, A., Sanhueza, F., Gonzalez, M., Farias, M., Gallardo, V., et al. (2005). Equilibrative nucleoside transporter 1 expression is downregulated by hypoxia in human umbilical vein endothelium. Circulation Research, 97, 16–24.

    Article  PubMed  CAS  Google Scholar 

  65. Zimmermann, H., & Braun, N. (1999). Ecto-nucleotidases-molecular structures, catalytic properties, and functional roles in the nervous system. Progress in Brain Research, 120, 371–385.

    PubMed  CAS  Google Scholar 

  66. Cristalli, G., Costanzi, S., Lambertucci, C., Lupidi, G., Vittori, S., Volpini, R., et al. (2001). Adenosine deaminase: Functional implications and different classes of inhibitors. Medical Research Reviews, 21, 105–128.

    Article  CAS  Google Scholar 

  67. Decking, U. K., Schlieper, G., Kroll, K., & Schrader, J. (1997). Hypoxia-induced inhibition of adenosine kinase potentiates cardiac adenosine release. Circulation Research, 81, 154–164.

    Google Scholar 

  68. Kaczmarek, E., Koziak, K., Sevigny, J., Siegel, J. B., Anrather, J., Beaudoin, A. R., et al. (1996). Identification and characterization of CD39/vascular ATP diphosphohydrolase. Journal of Biological Chemistry, 271, 33116–33122.

    Article  PubMed  CAS  Google Scholar 

  69. Robson, S. C., Wu, Y., Sun, X., Knosalla, C., Dwyer, K., & Enjyoji, K. (2005). Ectonucleotidases of CD39 family modulate vascular inflammation and thrombosis in transplantation. Seminars in Thrombosis and Hemostasis, 31, 217–233.

    Article  PubMed  CAS  Google Scholar 

  70. Kaczmarek, E., Erb, L., Koziak, K., Jarzyna, R., Wink, M. R., Guckelberger, O., et al. (2005). Modulation of endothelial cell migration by extracellular nucleotides: Involvement of focal adhesion kinase and phosphatidylinositol 3-kinase-mediated pathways. Thrombosis and Haemostasis, 93, 735–742.

    PubMed  CAS  Google Scholar 

  71. Dzhandzhugazyan, K. N., Kirkin, A. F., thor Straten, P., & Zeuthen, J. (1998). Ecto-ATP diphosphohydrolase/CD39 is overexpressed in differentiated human melanomas. FEBS Letters, 430, 227–230.

    Article  PubMed  CAS  Google Scholar 

  72. Kobayashi, S., Zimmermann, H., & Millhorn, D. E. (2000). Chronic hypoxia enhances adenosine release in rat PC12 cells by altering adenosine metabolism and membrane transport. Journal of Neurochemistry, 74, 621–632.

    Article  PubMed  CAS  Google Scholar 

  73. Synnestvedt, K., Furuta, G. T., Comerford, K. M., Louis, N., Karhausen, J., Eltzschig, H. K., et al. (2002). Ecto-5'-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. Journal of Clinical Investigation, 110, 993–1002.

    Article  PubMed  CAS  Google Scholar 

  74. Caldwell, C. C., Kojima, H., Lukashev, D., Armstrong, J., Farber, M., Apasov, S. G., et al. (2001). Differential effects of physiologically relevant hypoxic conditions on T lymphocyte development and effector functions. Journal of Immunology, 167, 6140–6149.

    CAS  Google Scholar 

  75. Babior, B. M., Kipnes, R. S., & Curnutte, J. T. (1973). Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent. Journal of Clinical Investigation, 52, 741–744.

    PubMed  CAS  Google Scholar 

  76. Nathan, C. F., Mercer-Smith, J. A., DeSantis, N. M., & Palladino, M. A. (1982). Role of oxygen in T cell-mediated cytolysis. Journal of Immunology, 129, 2164–2171.

    CAS  Google Scholar 

  77. McKeehan, W. L. (1982). Glycolysis, glutaminolysis and cell proliferation. Cell Biol Int Rep, 6, 635–650.

    Article  PubMed  CAS  Google Scholar 

  78. Levene, P. A., & Meyer, G. M. (1912) The action of leukocytes on glucose. Journal of Biological Chemistry, 11, 361–370.

    Google Scholar 

  79. Borregaard, N., & Herlin, T. (1982). Energy metabolism of human neutrophils during phagocytosis. Journal of Clinical Investigation, 70, 550–557.

    Article  PubMed  CAS  Google Scholar 

  80. Rathmell, J. C., Vander Heiden, M. G., Harris, M. H., Frauwirth, K. A., & Thompson, C. B. (2000). In the absence of extrinsic signals, nutrient utilization by lymphocytes is insufficient to maintain either cell size or viability. Molecular Cell, 6, 683–692.

    Article  PubMed  CAS  Google Scholar 

  81. Semenza, G. L. (1999). Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Annual Review of Cell and Developmental Biology, 15, 551–578.

    Article  PubMed  CAS  Google Scholar 

  82. Semenza, G. L. (2002). HIF-1 and tumor progression: Pathophysiology and therapeutics. Trends in Molecular Medicine, 8, S62–S67.

    Article  PubMed  CAS  Google Scholar 

  83. Semenza, G. L. (2003). Targeting HIF-1 for cancer therapy. Nature Reviews Cancer, 3, 721–732.

    Article  PubMed  CAS  Google Scholar 

  84. Semenza, G. L. (2001). HIF-1, O(2), and the 3 PHDs: How animal cells signal hypoxia to the nucleus. Cell, 107, 1–3.

    Article  PubMed  CAS  Google Scholar 

  85. Lukashev, D. E., Caldwell, C. C., Ohta, A., Chen, P., & Sitkovsky, M. V. (2001). Differential regulation of two alternatively spliced isoforms of hypoxia-inducible factor-1 alpha in activated T lymphocytes. Journal of Biological Chemistry, 276, 48754–48763.

    Article  PubMed  CAS  Google Scholar 

  86. Thornton, R. D., Lane, P., Borghaei, R. C., Pease, E. A., Caro, J., & Mochan, E. (2000). Interleukin 1 induces hypoxia-inducible factor 1 in human gingival and synovial fibroblasts. Biochemical Journal, 350, 307–312.

    Article  PubMed  CAS  Google Scholar 

  87. Nakamura, H., Makino, Y., Okamoto, K., Poellinger, L., Ohnuma, K., Morimoto, C., et al. (2005). TCR engagement increases hypoxia-inducible factor-1 alpha protein synthesis via rapamycin-sensitive pathway under hypoxic conditions in human peripheral T cells. Journal of Immunology, 174, 7592–7599.

    CAS  Google Scholar 

  88. Iyer, N. V., Kotch, L. E., Agani, F., Leung, S. W., Laughner, E., Wenger, R. H., et al. (1998). Cellular and developmental control of O2 homestasis by hypoxia-inducible factor 1a. Genes & Development, 12, 149–162.

    CAS  Google Scholar 

  89. Cramer, T., Yamzanishi, Y., Clausen, B. E., Forster, I., Pawlinski, R., Mackman, N., et al. (2003). HIF-1alpha is essential for myeloid cell-mediated inflammation. Cell, 112, 645–657.

    Article  PubMed  CAS  Google Scholar 

  90. Kojima, H., Gu, H., Nomura, S., Caldwell, C. C., Kobata, T., Carmeliet, P., et al. (2002). Abnormal B lymphocyte development and autoimmunity in hypoxia-inducible factor 1alpha -deficient chimeric mice. Proceedings of the National Academy of Sciences of the United States of America, 99, 2170–2174.

    Article  PubMed  CAS  Google Scholar 

  91. Lukashev, D., Klebanov, B., Kojima, H., Grinberg, A., Ohta, A., Berenfeld, L., et al. (2006). Cutting edge: Hypoxia-inducible factor 1alpha and its activation-inducible short isoform I.1 negatively regulate functions of CD4+ and CD8+ T lymphocytes. Journal of Immunology, 177, 4962–4965.

    CAS  Google Scholar 

  92. Neumann, A. K., Yang, J., Biju, M. P., Joseph, S. K., Johnson, R. S., Haase, V. H., et al. (2005). Hypoxia inducible factor 1 alpha regulates T cell receptor signal transduction. Proceedings of the National Academy of Sciences of the United States of America, 102, 17071–17076.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sitkovsky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lukashev, D., Ohta, A. & Sitkovsky, M. Hypoxia-dependent anti-inflammatory pathways in protection of cancerous tissues. Cancer Metastasis Rev 26, 273–279 (2007). https://doi.org/10.1007/s10555-007-9054-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-007-9054-2

Keywords

Navigation