Skip to main content

Advertisement

Log in

Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Metastasis, the spread of invasive carcinoma to sites distant from the primary tumor, is responsible for the majority of cancer-related deaths (Weigelt, B., Peterse, J. L., & van ’t Veer, L. J. (2005). Breast cancer metastasis: Markers and models. Nature Reviews. Cancer, 5, 591–602). Despite progress in other areas of cancer therapeutics, the complexities of this process remain poorly understood. Consequently, there are few successful treatments that directly target this stage of carcinogenesis. Particularly enigmatic is the tissue-specificity of different tumor types observed in metastatic spread. One example is the predilection of colon cancer to spread to liver whereas breast, prostate, and lung carcinomas have a particular affinity to target and proliferate in bone. In 1889, Stephen Paget observed that circulating tumour cells would only “seed” where there was “congenial soil”. Since then, attention has focused on explaining the dynamic adhesive and migratory capabilities intrinsic to tumor cells. Meanwhile, the earliest changes occurring within distant tissues that prime the “soil” to receive incoming cancer cells have largely been neglected. Recent work characterizing the importance of bone marrow-derived hematopoietic progenitor cells (HPC) in initiating these early changes has opened new avenues for cancer research and chemotherapeutic targeting (Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827). This review discusses the inextricable relationship between bone stromal components, metastasizing cells, and bone marrow-derived hematopoietic cells, and their roles in carcinogenesis and metastasis. Understanding these dynamics may help explain the tissue-specific tropism seen in metastasis. Moreover, exploring the earliest events promoting circulating cancer cells to engraft and establish at secondary sites may expose new targets for diagnostic and therapeutic strategies and reduce the morbidity and mortality from metastatic disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Weigelt, B., Peterse, J. L., & van ’t Veer, L. J. (2005). Breast cancer metastasis: Markers and models. Nature Reviews. Cancer, 5, 591–602.

    Article  PubMed  CAS  Google Scholar 

  2. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438, 820–827.

    Article  PubMed  CAS  Google Scholar 

  3. Chambers, A. F., Groom, A. C., & MacDonald, I. C. (2002). Dissemination and growth of cancer cells in metastatic sites. Nature Reviews. Cancer, 2, 563–572.

    Article  PubMed  CAS  Google Scholar 

  4. Fidler, I. J. (1970). Metastasis: Quantitative analysis of distribution and fate of tumor embolilabeled with 125 I-5-iodo-2’-deoxyuridine. Journal of the National Cancer Institute, 45, 773–782.

    PubMed  CAS  Google Scholar 

  5. Fidler, I. J., & Nicolson, G. L. (1977). Fate of recirculating B16 melanoma metastatic variant cells in parabiotic syngeneic recipients. Journal of the National Cancer Institute, 58, 1867–1872.

    PubMed  CAS  Google Scholar 

  6. Liotta, L. A., Vembu, D., Saini, R. K., & Boone, C. (1978). In vivo monitoring of the death rate of artificial murine pulmonary micrometastases. Cancer Research, 38, 1231–1236.

    PubMed  CAS  Google Scholar 

  7. Varani, J., Lovett, E. J., Elgebaly, S., Lundy, J., & Ward, P. A. (1980). In vitro and in vivo adherence of tumor cell variants correlated with tumor formation. American Journal of Pathology, 101, 345–352.

    PubMed  CAS  Google Scholar 

  8. Mehlen, P., & Puisieux, A. (2006). Metastasis: a question of life or death. Nature Reviews. Cancer, 6, 449–458.

    Article  PubMed  CAS  Google Scholar 

  9. van de Vijver, M. J., He, Y. D., van’t Veer, L. J., Dai, H., Hart, A. A., Voskuil, D. W., et al. (2002). A gene-expression signature as a predictor of survival in breast cancer. New England Journal of Medicine, 347, 1999–2009.

    Article  PubMed  Google Scholar 

  10. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.

    Article  PubMed  CAS  Google Scholar 

  11. Kang, Y. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3, 537–549.

    Article  PubMed  CAS  Google Scholar 

  12. Lord, B. (1997). Biology of the hematopoietic stem cell. In C. S. Potten (Ed.), Stem cells (pp. 401–422). London: Academic.

    Google Scholar 

  13. Nilsson, S. K., Johnston, H. M., & Coverdale, J. A. (2001). Spatial localization of transplanted hemopoietic stem cells: Inferences for the localization of stem cell niches. Blood, 97, 2293–2299.

    Article  PubMed  CAS  Google Scholar 

  14. Taichman, R. S., & Emerson, S. G. (1998). The role of osteoblasts in the hematopoietic microenvironment. Stem Cells, 16, 7–15.

    Article  PubMed  CAS  Google Scholar 

  15. Jin, D. K., Shido, K., Kopp, H. G., Petit, I., Shmelkov, S. V., Young, L. M., et al. (2006). Cytokine-mediated deployment of SDF-1 induces revascularization through recruitment of CXCR4(+) hemangiocytes. Nature Medicine, 12, 557–567.

    Article  PubMed  CAS  Google Scholar 

  16. Uchida, S., Sakai, A., Kudo, H., Otomo, H., Watanuki, M., Tanaka, M., et al. (2003). Vascular endothelial growth factor is expressed along with its receptors during the healing process of bone and bone marrow after drill-hole injury in rats. Bone, 32, 491–501.

    Article  PubMed  CAS  Google Scholar 

  17. Ratajczak, M. Z., Ratajczak, J., Machalinski, B., Majka, M., Marlicz, W., Carter, A., et al. (1998). Role of vascular endothelial growth factor (VEGF) and placenta-derived growth factor (PlGF) in regulating human haemopoietic cell growth. British Journal of Haematology, 103, 969–979.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    Article  PubMed  CAS  Google Scholar 

  19. Gerber, H., Vu, T. H., Ryan, A. M., Kowalski, J., Werb, Z., & Ferrara, N. (1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Medicine, 5, 623–628.

    Article  PubMed  CAS  Google Scholar 

  20. Hall, C. L., Kang, S., MacDougald, O. A., & Keller, E. T. (2006). Role of Wnts in prostate cancer bone metastases. Journal of Cellular Biochemistry, 97, 661–672.

    Article  PubMed  CAS  Google Scholar 

  21. Kitagawa, Y. K., Dai, J., Zhang, J., Keller, J. M., Nor, J., Yao, Z., et al. (2005). Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Research, 65, 109921–109929.

    Article  CAS  Google Scholar 

  22. Fiedler, J., Leucht, F., Waltenberger, J., Dehio, C., & Brenner, R. E. (2005). VEGF-A and PlGF stimulate chemotactic migration of human mesenchymal progenitor cells. Biochemical and Biophysical Research Communications, 334, 561–568.

    Article  PubMed  CAS  Google Scholar 

  23. List, A. F., Glinsmann-Gibson, B., Stadheim, C., Meuillet, E. J., Bellamy, W., & Powis, G. (2004). Vascular endothelial growth factor receptor-1 and receptor-2 initiate a phosphatidylinositide 3-kinase-dependent clonogenic response in acute myeloid leukemia cells. Experimental Hematology, 32, 526–535.

    Article  PubMed  CAS  Google Scholar 

  24. Fragoso, R., Pereira, T., Wu, Y., Zhu, Z., Cabecadas, J., & Dias, S. (2006). VEGFR-1 (FLT-1) activation modulates acute lymphoblastic leukemia localization and survival within the bone marrow, determining the onset of extramedullary disease. Blood, 107, 1608–1616.

    Article  PubMed  CAS  Google Scholar 

  25. Li, B., Sharpe, E. E., Maupin, A. B., Teleron, A. A., Pyle, A. L., Carmeliet, P., et al. (2006). VEGF and PlGF promote adult vasculogenesis by enhancing EPC recruitment and vessel formation at the site of tumor neovascularization. FASEB Journal, 20, 1495–1497.

    Article  PubMed  CAS  Google Scholar 

  26. Lyden, D., Young, A. Z., Zagzag, D., Yan, W., Gerald, W., O’Reilly, R., et al. (1999). Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature, 401, 670–677.

    Article  PubMed  CAS  Google Scholar 

  27. Mendes, S. C., Robin, C., & Dzierzak, E. (2005). Mesenchymal progenitor cells localize within hematopoietic sites throughout ontogeny. Development, 132, 1127–1136.

    Article  PubMed  CAS  Google Scholar 

  28. Christofori, G. (2006). New signals from the invasive front. Nature, 441, 444–450.

    Article  PubMed  CAS  Google Scholar 

  29. Jin, H., Aiyer, A., Su, J., Borgstrom, P., Stupack, D., Friedlander, M., et al. (2006). A homing mechanism for bone marrow-derived progenitor cell recruitment to the neovasculature. Journal of Clinical Investigation, 116, 652–662.

    Article  PubMed  CAS  Google Scholar 

  30. Song, S., Ewald, A. J., Stallcup, W., Werb, Z., & Bergers, G. (2005). PDGFRbeta+ perivascular progenitor cells in tumours regulate pericyte differentiation and vascular survival. Nature Cell Biology, 7, 870–879.

    Article  PubMed  CAS  Google Scholar 

  31. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420, 860–867.

    Article  PubMed  CAS  Google Scholar 

  32. Avecilla, S. T., Hattori, K., Heissig, B., Tejada, R., Liao, F., Shido, K., et al. (2004). Chemokine-mediated interaction of hematopoietic progenitors with the bone marrow vascular niche is required for thrombopoiesis. Nature Medicine, 10, 64–71.

    Article  PubMed  CAS  Google Scholar 

  33. Kalluri, R., & Zeisberg, M. (2006). Fibroblasts in cancer. Nature Reviews. Cancer, 6, 392–401.

    Article  PubMed  CAS  Google Scholar 

  34. Olaso, E., Salado, C., Egilegor, E., Gutierrez, V., Santisteban, A., Sancho-Bru, P., et al. (2003). Proangiogenic role of tumor-activated hepatic stellate cells in experimental melanoma metastasis. Hepatology, 37, 674–685.

    Article  PubMed  CAS  Google Scholar 

  35. Olaso, E., Santisteban, A., Bidaurrazaga, J., Gressner, A. M., Rosenbaum, J., & Vidal-Vanaclocha, F. (1997). Tumor-dependent activation of rodent hepatic stellate cells during experimental melanoma metastasis. Hepatology, 26, 634–642.

    Article  PubMed  CAS  Google Scholar 

  36. Grum-Schwensen, B., Klingelhofer, J., Berg, C. H., El-Naaman, C., Grigorian, M., Lukanidin, E., et al. (2005). Suppression of tumor development and metastasis formation in mice lacking the S100A4(mts1) gene. Cancer Research, 65, 3772–3780.

    Article  PubMed  CAS  Google Scholar 

  37. Chang, H. Y., Sneddon, J. B., Alizadeh, A. A., Sood, R., West, R. B., Montgomery, K., et al. (2004). Gene expression signature of fibroblast serum response predicts human cancer progression: similarities between tumors and wounds. PLoS Biology, 2, E7.

    Article  PubMed  CAS  Google Scholar 

  38. Ge, Y., Zhan, F., Barlogie, B., Epstein, J., Shaughnessy, J., Jr., & Yaccoby, S. (2006). Fibroblast activation protein (FAP) is upregulated in myelomatous bone and supports myeloma cell survival. British Journal of Haematology, 133, 83–92.

    Article  PubMed  CAS  Google Scholar 

  39. Kelly, T. (2005). Fibroblast activation protein-alpha and dipeptidyl peptidase IV (CD26): Cell-surface proteases that activate cell signaling and are potential targets for cancer therapy. Drug Resistance Updates, 8, 51–58.

    Article  PubMed  CAS  Google Scholar 

  40. Huhtala, P., Humphries, M. J., McCarthy, J. B., Tremble, P. M., Werb, Z., & Damsky, C. H. (1995). Cooperative signaling by alpha 5 beta 1 and alpha 4 beta 1 integrins regulates metalloproteinase gene expression in fibroblasts adhering to fibronectin. Journal of Cell Biology, 129, 867–879.

    Article  PubMed  CAS  Google Scholar 

  41. Yakubenko, V. P., Lobb, R. R., Plow, E. F., & Ugarova, T. P. (2000). Differential induction of gelatinase B (MMP-9) and gelatinase A (MMP-2) in T lymphocytes upon alpha(4)beta(1)-mediated adhesion to VCAM-1 and the CS-1 peptide of fibronectin. Experimental Cell Research, 260, 73–84.

    Article  PubMed  CAS  Google Scholar 

  42. Naumov, G. N., Akslen, L. A., & Folkman, J. (2006). Role of angiogenesis in human tumor dormancy: Animal models of the angiogenic switch. Cell Cycle, Aug. 15, 2006, epub ahead of print.

  43. Wu, Y., Hooper, A. T., Zhong, Z., Witte, L., Bohlen, P., Rafii, S., et al. (2006). The vascular endothelial growth factor receptor (VEGFR-1) supports growth and survival of human breast carcinoma. International Journal of Cancer, 119, 1519–1529.

    Article  CAS  Google Scholar 

  44. Yang, A. D., Camp, E. R., Fan, F., Shen, L., Gray, M. J., Liu, W., et al. (2006). Vascular endothelial growth factor receptor-1 activation mediates epithelial to mesenchymal transition in human pancreatic carcinoma cells. Cancer Research, 66, 46–51.

    Article  PubMed  CAS  Google Scholar 

  45. Nagasawa, T., Hirota, S., Tachibana, K., Takakura, N., Nishikawa, S., Kitamura, Y., et al. (1996). Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature, 382, 635–638.

    Article  PubMed  CAS  Google Scholar 

  46. Ara, T., Tokoyoda, K., Sugiyama, T., Egawa, T., Kawabata, K., & Nagasawa, T. (2003). Long-term hematopoietic stem cells require stromal cell-derived factor-1 for colonizing bone marrow during ontogeny. Immunity, 19, 257–267.

    Article  PubMed  CAS  Google Scholar 

  47. Dar, A., Goichberg, P., Shinder, V., Kalinkovich, A., Kollet, O., Netzer, N., et al. (2005). Chemokine receptor CXCR4-dependent internalization and resecretion of functional chemokine SDF-1 by bone marrow endothelial and stromal cells. Nature Immunology, 6, 1038–1046.

    Article  PubMed  CAS  Google Scholar 

  48. Muller, A., Homey, B., Soto, H., Ge, N., Catron, D., Buchanan, M. E., et al. (2001). Involvement of chemokine receptors in breast cancer metastasis. Nature, 410, 50–56.

    Article  PubMed  CAS  Google Scholar 

  49. Kaifi, J. T., Yekebas, E. F., Schurr, P., Obonyo, D., Wachowiak, R., Busch, P., et al. (2005). Tumor-cell homing to lymph nodes and bone marrow and CXCR4 expression in esophageal cancer. Journal of the National Cancer Institute, 97, 1840–1847.

    Article  PubMed  CAS  Google Scholar 

  50. Geminder, H., Sagi-Assif, O., Goldberg, L., Meshel, T., Rechavi, G., Witz, I. P., et al. (2001). A possible role for CXCR4 and its ligand, the CXC chemokine stromal cell-derived factor-1, in the development of bone marrow metastases in neuroblastoma. Journal of Immunology, 167, 4747–4757.

    CAS  Google Scholar 

  51. Sun, Y. X., Wang, J., Shelburne, C. E., Lopatin, D. E., Chinnaiyan, A. M., Rubin, M. A., et al. (2003). Expression of CXCR4 and CXCL12 (SDF-1) in human prostate cancers (PCa) in vivo. Journal of Cellular Biochemistry, 89, 462–473.

    Article  PubMed  CAS  Google Scholar 

  52. Porcile, C., Bajetto, A., Barbero, S., Pirani, P., & Schettini, G. (2004). CXCR4 activation induces epidermal growth factor receptor transactivation in an ovarian cancer cell line. Annals of the New York Academy of Sciences, 1030, 162–169.

    Article  PubMed  CAS  Google Scholar 

  53. Sun, Y. X., Schneider, A., Jung, Y., Wang, J., Dai, J., Wang, J., et al. (2005). Skeletal localization and neutralization of the SDF-1(CXCL12)/CXCR4 axis blocks prostate cancer metastasis and growth in osseous sites in vivo. Journal of Bone and Mineral Research, 20, 318–329.

    Article  PubMed  CAS  Google Scholar 

  54. Nakamura, E.S., Koizumi, K., Kobayashi, M., Saitoh, Y., Arita, Y., Nakayama, T., et al. (2006). RANKL-induced CCL22/macrophage-derived chemokine produced from osteoclasts potentially promotes the bone metastasis of lung cancer expressing its receptor CCR4. Clinical & Experimental Metastasis, July 5, 2006, epub ahead of print.

  55. Moore, M. A. (2001). The role of chemoattraction in cancer metastases. BioEssays, 23, 674–676.

    Article  PubMed  CAS  Google Scholar 

  56. Sipkins, D. A., Wei, X., Wu, J. W., Runnels, J. M., Cote, D., Means, T. K., et al. (2005). In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature, 435, 969–973.

    Article  PubMed  CAS  Google Scholar 

  57. Asou, Y., Rittling, S. R., Yoshitake, H., Tsuji, K., Shinomiya, K., Nifuji, A., et al. (2001). Osteopontin facilitates angiogenesis, accumulation of osteoclasts, and resorption in ectopic bone. Endocrinology, 142, 1325–1332.

    Article  PubMed  CAS  Google Scholar 

  58. Ek-Rylander, B., Flores, M., Wendel, M., Heinegard, D., & Andersson, G. (1994). Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate-resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. Journal of Biological Chemistry, 269, 14853–14856.

    PubMed  CAS  Google Scholar 

  59. Nilsson, S. K., Johnston, H. M., Whitty, G. A., Williams, B., Webb, R. J., Denhardt, D. T., et al. (2005). Osteopontin, a key component of the hematopoietic stem cell niche and regulator of primitive hematopoietic progenitor cells. Blood, 106, 1232–1239.

    Article  PubMed  CAS  Google Scholar 

  60. Wai, P. Y., & Kuo, P. C. (2004). The role of osteopontin in tumor metastasis. Journal of Surgical Research, 121, 228–241.

    Article  PubMed  CAS  Google Scholar 

  61. Kang, Y., Chen, C. R., & Massague, J. (2003). A self-enabling TGFbeta response coupled to stress signaling: Smad engages stress response factor ATF3 for Id1 repression in epithelial cells. Molecular Cell, 11, 915–926.

    Article  PubMed  CAS  Google Scholar 

  62. Tuck, A. B., Hota, C., Wilson, S. M., & Chambers, A. F. (2003). Osteopontin-induced migration of human mammary epithelial cells involves activation of EGF receptor and multiple signal transduction pathways. Oncogene, 22, 1198–1205.

    Article  PubMed  CAS  Google Scholar 

  63. Braun, S., Pantel, K., Muller, P., Janni, W., Hepp, F., Kentenich, C. R., et al. (2000). Cytokeratin-positive cells in the bone marrow and survival of patients with stage I, II, or III breast cancer. New England Journal of Medicine, 342, 525–533.

    Article  PubMed  CAS  Google Scholar 

  64. Macadam, R., Sarela, A., Wilson, J., MacLennan, K., & Guillou, P. (2003). Bone marrow micrometastases predict early post-operative recurrence following surgical resection of oesophageal and gastric carcinoma. European Journal of Surgical Oncology, 29, 450–454.

    Article  PubMed  Google Scholar 

  65. Pierga, J. Y., Bonneton, C., Vincent-Salomon, A., de Cremoux, P., Nos, C., Blin, N., et al. (2004). Clinical significance of immunocytochemical detection of tumor cells using digital microscopy in peripheral blood and bone marrow of breast cancer patients. Clinical Cancer Research, 10, 1392–1400.

    Article  PubMed  CAS  Google Scholar 

  66. Nicola, M. H., Bizon, R., Machado, J. J., Sollero, T., Rodarte, R. S., Nobre, J. S., et al. (2003). Breast cancer micrometastases: Different interactions of carcinoma cells with normal and cancer patients’ bone marrow stromata. Clinical & Experimental Metastasis, 20, 471–479.

    Article  Google Scholar 

  67. Aldridge, S. E., Lennard, T. W., Williams, J. R., & Birch, M. A. (2005). Vascular endothelial growth factor acts as an osteolytic factor in breast cancer metastases to bone. British Journal of Cancer, 92, 1531–1537.

    Article  PubMed  CAS  Google Scholar 

  68. Kitagawa, Y., Dai, J., Zhang, J., Keller, J. M., Nor, J., Yao, Z., et al. (2005). Vascular endothelial growth factor contributes to prostate cancer-mediated osteoblastic activity. Cancer Research, 65, 10921–10929.

    Article  PubMed  CAS  Google Scholar 

  69. Niida, S., Kondo, T., Hiratsuka, S., Hayashi, S., Amizuka, N., Noda, T., et al. (2005). VEGF receptor 1 signaling is essential for osteoclast development and bone marrow formation in colony-stimulating factor 1-deficient mice. Proceedings of the National Academy of Sciences of the United States of America, 102, 14016–14021.

    Article  PubMed  CAS  Google Scholar 

  70. Boyle, W. J., Simonet, W. S., & Lacey, D. L. (2003). Osteoclast differentiation and activation. Nature, 423, 337–342.

    Article  PubMed  CAS  Google Scholar 

  71. Kollet, O., Dar, A., Shivtiel, S., Kalinkovich, A., Lapid, K., Sztainberg, Y., et al. (2006). Osteoclasts degrade endosteal components and promote mobilization of hematopoietic progenitor cells. Nature Medicine, 12, 657–664.

    Article  PubMed  CAS  Google Scholar 

  72. Jones, D. H., Nakashima, T., Sanchez, O. H., Kozieradzki, I., Komarova, S. V., Sarosi, I., et al. (2006). Regulation of cancer cell migration and bone metastasis by RANKL. Nature, 440, 692–696.

    Article  PubMed  CAS  Google Scholar 

  73. Kucia, M., Reca, R., Miekus, K., Wanzeck, J., Wojakowski, W., Janowska-Wieczorek, A., et al. (2005). Trafficking of normal stem cells and metastasis of cancer stem cells involve similar mechanisms: pivotal role of the SDF-1-CXCR4 axis. Stem Cells, 23, 879–894.

    Article  PubMed  CAS  Google Scholar 

  74. Hauschka, P. V., Mavrakos, A. E., Iafrati, M. D., Doleman, S. E., & Klagsbrun, M. (1986). Growth factors in bone matrix. Isolation of multiple types by affinity chromatography on heparin–Sepharose. Journal of Biological Chemistry, 261, 12665–12674.

    PubMed  CAS  Google Scholar 

  75. Scadden, D. T. (2006). The stem-cell niche as an entity of action. Nature, 441, 1075–1079.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Lyden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaplan, R.N., Psaila, B. & Lyden, D. Bone marrow cells in the ‘pre-metastatic niche’: within bone and beyond. Cancer Metastasis Rev 25, 521–529 (2006). https://doi.org/10.1007/s10555-006-9036-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9036-9

Keywords

Navigation