Skip to main content

Advertisement

Log in

Pro-angiogenic cytokines and their role in tumor angiogenesis

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The development of solid tumors depends upon an adequate supply of blood. This can be achieved by way of co-option of preexisting blood vessels and by the induction of angiogenesis. During the past 30 years, tumor angiogenesis had been found to play a crucial role in the progression of solid tumors. Tumor angiogenesis was found to be induced by a variety of pro-angiogenic cytokines of which the best characterized is vascular endothelial growth factor (VEGF). Indeed, the first FDA approved anti-angiogenic drug for the treatment of cancer is AvastinTM, a neutralizing antibdy directed against VEGF. This review focuses on cytokines which have been reported to induce tumor angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent. Journal of the National Cancer Institute, 82, 4–7.

    PubMed  CAS  Google Scholar 

  2. Udagawa, T., Fernandez, A., Achilles, E. G., Folkman, J., & D’Amato, R. J. (2002) Persistence of microscopic human cancers in mice: alterations in the angiogenic balance accompanies loss of tumor dormancy. FASEB Journal, 16, 1361–1370.

    PubMed  CAS  Google Scholar 

  3. Cao, Y. H., O’Reilly, M. S., Marshall, B., Flynn, E., Ji, R. W., & Folkman, J. (1998). Expression of angiostatin cDNA in a murine fibrosarcoma suppresses primary tumor growth and produces long-term dormancy of metastases. Journal of Clinical Investigation, 101, 1055–1063.

    PubMed  CAS  Google Scholar 

  4. Hanahan, D., & Folkman, J. (1996). Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86, 353–364.

    PubMed  CAS  Google Scholar 

  5. Pepper, M. S., Tille, J. C., Nisato, R., & Skobe, M. (2003). Lymphangiogenesis and tumor metastasis. Cell & Tissue Research, 314, 167–177.

    Google Scholar 

  6. Stacker, S. A., Baldwin, M. E., & Achen, M. G. (2002). The role of tumor lymphangiogenesis in metastatic spread. FASEB Journal, 16, 922–934.

    PubMed  CAS  Google Scholar 

  7. Alitalo, K., & Carmeliet, P. (2002). Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell, 1, 219–227.

    PubMed  CAS  Google Scholar 

  8. Neufeld, G., Cohen, T., Gengrinovitch, S., & Poltorak, Z. (1999). Vascular endothelial growth factor (VEGF) and its receptors. FASEB Journal, 13, 9–22.

    PubMed  CAS  Google Scholar 

  9. Shweiki, D., Itin, A., Soffer, D., & Keshet, E. (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359, 843–845.

    PubMed  CAS  Google Scholar 

  10. Adamis, A. P., Miller, J. W., Bernal, M. T., Damico, D. J., Folkman, J., Yeo, T. K., et al. (1994). Increased vascular endothelial growth factor levels in the vitreous of eyes with proliferative diabetic retinopathy. American Journal of Ophthalmology, 118, 445–450.

    PubMed  CAS  Google Scholar 

  11. Aiello, L. P., Avery, R. L., Arrigg, P. G., Keyt, B. A., Jampel, H. D., Shah, S. T., et al. (1994). Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders. New England Journal of Medicine, 331, 1480–1487.

    PubMed  CAS  Google Scholar 

  12. Detmar, M., Brown, L. F., Claffey, K. P., Yee, K. T., Kocher, O., Jackman, R. W., et al. (1994). Overexpression of vascular permeability factor/vascular endothelial growth factor and its receptors in psoriasis. Journal of Experimental Medicine, 180, 1141–1146.

    PubMed  CAS  Google Scholar 

  13. Senger, D. R., Galli, S. J., Dvorak, A. M., Perruzzi, C. A., Harvey, V. S., & Dvorak, H. F. (1983). Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science, 219, 983–985.

    PubMed  CAS  Google Scholar 

  14. Kim, K. J., Li, B., Winer, J., Armanini, M., Gillett, N., Phillips, H. S., et al. (1993). Inhibition of vascular endothelial growth factor induced angiogenesis suppresses tumour growth in vivo. Nature, 362, 841–844.

    PubMed  CAS  Google Scholar 

  15. Millauer, B., Shawver, L. K., Plate, K. H., Risau, W., & Ullrich, A. (1994). Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature, 367, 576–579.

    PubMed  CAS  Google Scholar 

  16. Ferrara, N., Carvermoore, K., Chen, H., Dowd, M., Lu, L., Oshea, K. S., et al. (1996). Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature, 380, 439–442.

    PubMed  CAS  Google Scholar 

  17. Carmeliet, P., Ferreira, V., Breier, G., Pollefeyt, S., Kieckens, L., Gertsenstein, M., et al. (1996). Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature, 380, 435–439.

    PubMed  CAS  Google Scholar 

  18. Clauss, M., Gerlach, M., Gerlach, H., Brett, J., Wang, F., Familletti, P. C., et al. (1990). Vascular permeability factor: a tumor-derived polypeptide that induces endothelial cell and monocyte procoagulant activity, and promotes monocyte migration. Journal of Experimental Medicine, 172, 1535–1545.

    PubMed  CAS  Google Scholar 

  19. Keck, P. J., Hauser, S. D., Krivi, G., Sanzo, K., Warren, T., Feder, J., et al. (1989). Vascular permeability factor, an endothelial cell mitogen related to PDGF. Science, 246, 1309–1312.

    PubMed  CAS  Google Scholar 

  20. Jaakkola, P., Mole, D. R., Tian, Y. M., Wilson, M. I., Gielbert, J., Gaskell, S. J., et al. (2001). Targeting of HIF-alpha to the von Hippel–Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 292, 468–472.

    PubMed  CAS  Google Scholar 

  21. Ivan, M., Kondo, K., Yang, H., Kim, W., Valiando, J., Ohh, M., et al. (2001). HIFalpha targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science, 292, 464–468.

    PubMed  CAS  Google Scholar 

  22. Pugh, C. W., & Ratcliffe, P. J. (2003). Regulation of angiogenesis by hypoxia: role of the HIF system. Natural Medicines, 9, 677–684.

    CAS  Google Scholar 

  23. Rak, J., Mitsuhashi, Y., Bayko, L., Filmus, J., Shirasawa, S., Sasazuki, T., et al. (1995). Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Research, 55, 4575–4580.

    PubMed  CAS  Google Scholar 

  24. Shibuya, M. (2003). Vascular endothelial growth factor receptor-2: its unique signaling and specific ligand, VEGF-E. Cancer Sci., 94, 751–756.

    PubMed  CAS  Google Scholar 

  25. Shibuya, M. (2001). Structure and dual function of vascular endothelial growth factor receptor-1 (Flt-1). International Journal of Biochemistry & Cell Biology, 33, 409–420.

    CAS  Google Scholar 

  26. Li, Y., Wang, M. N., Li, H., King, K. D., Bassi, R., Sun, H., et al. (2002). Active immunization against the vascular endothelial growth factor receptor flk1 inhibits tumor angiogenesis and metastasis. Journal of Experimental Medicine, 195, 1575–1584.

    PubMed  CAS  Google Scholar 

  27. Luttun, A., Tjwa, M., Moons, L., Wu, Y., Angelillo-Scherrer, A., Liao, F., et al. (2002). Revascularization of ischemic tissues by PlGF treatment, and inhibition of tumor angiogenesis, arthritis and atherosclerosis by anti-Flt1. Natural Medicines, 8, 831–840.

    CAS  Google Scholar 

  28. Prewett, M., Huber, J., Li, Y., Santiago, A., O’Connor, W., King, K., et al. (1999). Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Research, 59, 5209–5218.

    PubMed  CAS  Google Scholar 

  29. Shalaby, F., Rossant, J., Yamaguchi, T. P., Gertsenstein, M., Wu, X. F., Breitman, M. L., et al. (1995). Failure of blood-island formation and vasculogenesis in Flk-1- deficient mice. Nature, 376, 62–66.

    PubMed  CAS  Google Scholar 

  30. Fong, G. H., Klingensmith, J., Wood, C. R., Rossant, J., & Breitman, M. L. (1996). Regulation of flt-1 expression during mouse embryogenesis suggests a role in the establishment of vascular endothelium. Developmental Dynamics, 207, 1–10.

    PubMed  CAS  Google Scholar 

  31. Fong, G. H., Rossant, J., Gertsenstein, M., & Breitman, M. L. (1995). Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature, 376, 66–70.

    PubMed  CAS  Google Scholar 

  32. Hiratsuka, S., Minowa, O., Kuno, J., Noda, T., & Shibuya, M. (1998). Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proceedings of the National Academy of Sciences of the United States of America, 95, 9349–9354.

    PubMed  CAS  Google Scholar 

  33. Gitay-Goren, H., Cohen, T., Tessler, S., Soker, S., Gengrinovitch, S., Rockwell, P., et al. (1996). Selective binding of VEGF121 to one of the three VEGF receptors of vascular endothelial cells. Journal of Biological Chemistry, 271, 5519–5523.

    PubMed  CAS  Google Scholar 

  34. Soker, S., Takashima, S., Miao, H. Q., Neufeld, G., & Klagsbrun, M. (1998). Neuropilin-1 is expressed by endothelial and tumor cells as an isoform specific receptor for vascular endothelial growth factor. Cell, 92, 735–745.

    PubMed  CAS  Google Scholar 

  35. Gluzman-Poltorak, Z., Cohen, T., Herzog, Y., & Neufeld, G. (2000). Neuropilin-2 and neuropilin-1 are receptors for 165-amino acid long form of vascular endothelial growth factor (VEGF) and of placenta growth factor-2, but only neuropilin-2 functions as a receptor for the 145 amino acid form of VEGF. Journal of Biological Chemistry, 275, 18040–18045.

    PubMed  CAS  Google Scholar 

  36. Kolodkin, A. L., Levengood, D. V., Rowe, E. G., Tai, Y. T., Giger, R. J., & Ginty, D. D. (1997). Neuropilin is a semaphorin III receptor. Cell, 90, 753–762.

    PubMed  CAS  Google Scholar 

  37. He, Z., & Tessier-Lavigne, M. (1997). Neuropilin is a receptor for the axonal chemorepellent semaphorin III. Cell, 90, 739–751.

    PubMed  CAS  Google Scholar 

  38. Miao, H. Q., Soker, S., Feiner, L., Alonso, J. L., Raper, J. A., & Klagsbrun, M. (1999). Neuropilin-1 mediates collapsin-1/semaphorin iII inhibition of endothelial cell motility. Functional competition of collapsin-1 and vascular endothelial growth factor-165. Journal of Cell Biology, 146, 233–242.

    PubMed  CAS  Google Scholar 

  39. Kawasaki, T., Kitsukawa, T., Bekku, Y., Matsuda, Y., Sanbo, M., Yagi, T., et al. (1999). A requirement for neuropilin-1 in embryonic vessel formation. Development, 126, 4895–4902.

    PubMed  CAS  Google Scholar 

  40. Shen, J., Samul, R., Zimmer, J., Liu, H., Liang, X., Hackett, S., et al. (2004). Deficiency of neuropilin 2 suppresses VEGF-induced retinal neovascularization. Molecular Medicine, 10, 12–18.

    PubMed  CAS  Google Scholar 

  41. Takashima, S., Kitakaze, M., Asakura, M., Asanuma, H., Sanada, S., Tashiro, F., et al. (2002). Targeting of both mouse neuropilin-1 and neuropilin-2 genes severely impairs developmental yolk sac and embryonic angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 99, 3657–3662.

    PubMed  CAS  Google Scholar 

  42. Kessler, O., Shraga-Heled, N., Lange, T., Gutmann-Raviv, N., Sabo, E., Baruch, L., et al. (2004). Semaphorin-3F is an inhibitor of tumor angiogenesis. Cancer Research, 64, 1008–1015.

    PubMed  CAS  Google Scholar 

  43. Bielenberg, D. R., Hida, Y., Shimizu, A., Kaipainen, A., Kreuter, M., Kim, C. C., et al. (2004). Semaphorin 3F, a chemorepulsant for endothelial cells, induces a poorly vascularized, encapsulated, nonmetastatic tumor phenotype. Journal of Clinical Investigation, 114, 1260–1271.

    PubMed  CAS  Google Scholar 

  44. Willett, C. G., Boucher, Y., Di Tomaso, E., Duda, D. G., Munn, L. L., Tong, R. T., et al. (2004). Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Natural Medicines, 10, 145–147.

    CAS  Google Scholar 

  45. Hurwitz, H. I., Fehrenbacher, L., Hainsworth, J. D., Heim, W., Berlin, J., Holmgren, E., et al. (2005). Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. Journal of Clinical Oncology, 20(23), 3502–3508.

    Google Scholar 

  46. Maglione, D., Guerriero, V., Viglietto, G., Delli-Bovi, P., & Persico, M. G. (1991). Isolation of a human placenta cDNA coding for a protein related to the vascular permeability factor. Proceedings of the National Academy of Sciences of the United States of America, 88, 9267–9271.

    PubMed  CAS  Google Scholar 

  47. Park, J. E., Chen, H. H., Winer, J., Houck, K. A., & Ferrara, N. (1994). Placenta growth factor—potentiation of vascular endothelial growth factor bioactivity, in vitro and in vivo, and high affinity binding to Flt-1 but not to Flk- 1/KDR. Journal of Biological Chemistry, 269, 25646–25654.

    PubMed  CAS  Google Scholar 

  48. Clauss, M., Weich, H., Breier, G., Knies, U., Roeckl, W., Waltenberger, J., et al. (1996). The vascular endothelial growth factor receptor Flt-1 mediates biological activities—implications for a functional role of placenta growth factor in monocyte activation and chemotaxis. Journal of Biological Chemistry, 271, 17629–17634.

    PubMed  CAS  Google Scholar 

  49. Hauser, S., & Weich, H. A. (1993). A heparin-binding form of placenta growth factor (PlGF-2) is expressed in human umbilical vein endothelial cells and in placenta. Growth Factors, 9, 259–268.

    Article  PubMed  CAS  Google Scholar 

  50. Migdal, M., Huppertz, B., Tessler, S., Comforti, A., Shibuya, M., Reich, R., et al. (1998). Neuropilin-1 is a placenta growth factor-2 receptor. Journal of Biological Chemistry, 273, 22272–22278.

    PubMed  CAS  Google Scholar 

  51. Cao, Y. H., Chen, H., Zhou, L., Chiang, M. K., Anandapte, B., Weatherbee, J. A., et al. (1996). Heterodimers of placenta growth factor vascular endothelial growth factor—endothelial activity, tumor cell expression, and high affinity binding to Flk-1/KDR. Journal of Biological Chemistry, 271, 3154–3162.

    PubMed  CAS  Google Scholar 

  52. Eriksson, A., Cao, R., Pawliuk, R., Berg, S. M., Tsang, M., Zhou, D., et al. (2002). Placenta growth factor-1 antagonizes VEGF-induced angiogenesis and tumor growth by the formation of functionally inactive PlGF-1/VEGF heterodimers. Cancer Cell, 1, 99–108.

    PubMed  CAS  Google Scholar 

  53. Pipp, F., Heil, M., Issbrucker, K., Ziegelhoeffer, T., Martin, S., Van Den, H. J., et al. (2003). VEGFR-1-selective VEGF homologue PlGF is arteriogenic. Evidence for a monocyte-mediated mechanism. Circulation Research, 92, 378–385.

    PubMed  CAS  Google Scholar 

  54. Takahashi, A., Sasaki, H., Kim, S. J., Tobisu, K., Kakizoe, T., Tsukamoto, T., et al. (1994). Markedly increased amounts of messenger RNAs for vascular endothelial growth factor and placenta growth factor in renal cell carcinoma associated with angiogenesis. Cancer Research, 54, 4233–4237.

    PubMed  CAS  Google Scholar 

  55. Adini, A., Kornaga, T., Firoozbakht, F., & Benjamin, L. E. (2002). Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Research, 62, 2749–2752.

    PubMed  CAS  Google Scholar 

  56. Taylor, A. P., Rodriguez, M., Adams, K., Goldenberg, D. M., & Blumenthal, R. D. (2003). Altered tumor vessel maturation and proliferation in placenta growth factor-producing tumors: potential relationship to post-therapy tumor angiogenesis and recurrence. International Journal of Cancer, 105, 158–164.

    CAS  Google Scholar 

  57. Olofsson, B., Pajusola, K., Kaipainen, A., Voneuler, G., Joukov, V., Saksela, O., et al. (1996). Vascular endothelial growth factor B, a novel growth factor for endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 93, 2576–2581.

    PubMed  CAS  Google Scholar 

  58. Olofsson, B., Korpelainen, E., Pepper, M. S., Mandriota, S. J., Aase, K., Kumar, V., et al. (1998). Vascular endothelial growth factor B (VEGF-B) binds to VEGF receptor-1 and regulates plasminogen activator activity in endothelial cells. Proceedings of the National Academy of Sciences of the United States of America, 95, 11709–11714.

    PubMed  CAS  Google Scholar 

  59. Makinen, T., Olofsson, B., Karpanen, T., Hellman, U., Soker, S., Klagsbrun, M., et al. (1999). Differential binding of vascular endothelial growth factor B splice and proteolytic isoforms to neuropilin-1. Journal of Biological Chemistry, 274, 21217–21222.

    PubMed  CAS  Google Scholar 

  60. Mould, A. W., Tonks, I. D., Cahill, M. M., Pettit, A. R., Thomas, R., Hayward, N. K., et al. (2003). Vegfb gene knockout mice display reduced pathology and synovial angiogenesis in both antigen-induced and collagen-induced models of arthritis. Arthritis and Rheumatism, 48, 2660–2669.

    PubMed  CAS  Google Scholar 

  61. Joukov, V., Pajusola, K., Kaipainen, A., Chilov, D., Lahtinen, I., Kukk, E., et al. (1996). A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO Journal, 15, 290–298.

    PubMed  CAS  Google Scholar 

  62. Yamada, Y., Nezu, J. O., Shimane, M., & Hirata, Y. (1997). Molecular cloning of a novel vascular endothelial growth factor, VEGF-D. Genomics, 42, 483–488.

    PubMed  CAS  Google Scholar 

  63. Achen, M. G., Jeltsch, M., Kukk, E., Makinen, T., Vitali, A., Wilks, A. F., et al. (1998). Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proceedings of the National Academy of Sciences of the United States of America, 95, 548–553.

    PubMed  CAS  Google Scholar 

  64. Cao, Y. H., Linden, P., Farnebo, J., Cao, R. H., Eriksson, A., Kumar, V., et al. (1998) Vascular endothelial growth factor C induces angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 95, 14389–14394.

    PubMed  CAS  Google Scholar 

  65. Hamada, K., Oike, Y., Takakura, N., Ito, Y., Jussila, L., Dumont, D. J., et al. (2000). VEGF-C signaling pathways through VEGFR-2 and VEGFR-3 in vasculoangiogenesis and hematopoiesis. Blood, 96, 3793–3800.

    PubMed  CAS  Google Scholar 

  66. Marconcini, L., Marchio, S., Morbidelli, L., Cartocci, E., Albini, A., Ziche, M., et al. (1999). c-fos-induced growth factor/vascular endothelial growth factor D induces angiogenesis in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America, 96, 9671–9676.

    PubMed  CAS  Google Scholar 

  67. Rissanen, T. T., Markkanen, J. E., Gruchala, M., Heikura, T., Puranen, A., Kettunen, M. I., et al. (2003). VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circulation Research, 92, 1098–1106.

    PubMed  CAS  Google Scholar 

  68. Partanen, T. A., Alitalo, K., & Miettinen, M. (1999). Lack of lymphatic vascular specificity of vascular endothelial growth factor receptor 3 in 185 vascular tumors. Cancer, 86, 2406–2412.

    PubMed  CAS  Google Scholar 

  69. Skobe, M., Hamberg, L. M., Hawighorst, T., Schirner, M., Wolf, G. L., Alitalo, K., et al. (2001). Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. American Journal of Pathology, 159, 893–903.

    PubMed  CAS  Google Scholar 

  70. Veikkola, T., Jussila, L., Makinen, T., Karpanen, T., Jeltsch, M., Petrova, T. V., et al. (2001). Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO Journal, 20, 1223–1231.

    PubMed  CAS  Google Scholar 

  71. Mandriota, S. J., Jussila, L., Jeltsch, M., Compagni, A., Baetens, D., Prevo, R., et al. (2001). Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO Journal, 20, 672–682.

    PubMed  CAS  Google Scholar 

  72. Stacker, S. A., Caesar, C., Baldwin, M. E., Thornton, G. E., Williams, R. A., Prevo, R., et al. (2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Natural Medicines, 7, 186–191.

    CAS  Google Scholar 

  73. Karpanen, T., Egeblad, M., Karkkainen, M. J., Kubo, H., Yla-Herttuala, S., Jaattela, M., et al. (2001). Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Research, 61, 1786–1790.

    PubMed  CAS  Google Scholar 

  74. Nagy, J. A., Vasile, E., Feng, D., Sundberg, C., Brown, L. F., Detmar, M. J., et al. (2002). Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. Journal of Experimental Medicine, 196, 1497–1506.

    PubMed  CAS  Google Scholar 

  75. Hirakawa, S., Kodama, S., Kunstfeld, R., Kajiya, K., Brown, L. F., & Detmar, M. (2005). VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. Journal of Experimental Medicine, 201, 1089–1099.

    PubMed  CAS  Google Scholar 

  76. Trusolino, L., & Comoglio, P. M. (2002). Scatter-factor and semaphorin receptors: cell signalling for invasive growth. Nature reviews. Cancer, 2, 289–300.

    PubMed  CAS  Google Scholar 

  77. Bussolino, F., Di Renzo, M. F., Ziche, M., Bocchietto, E., Olivero, M., Naldini, L., et al. (1992). Hepatocyte growth factor is a potent angiogenic factor which stimulates endothelial cell motility and growth. Journal of Cell Biology, 119, 629–641.

    PubMed  CAS  Google Scholar 

  78. Grant, D. S., Kleinman, H. K., Goldberg, I. D., Bhargava, M. M., Nickoloff, B. J., Kinsella, J. L., et al. (1993). Scatter factor induces blood vessel formation in vivo. Proceedings of the National Academy of Sciences of the United States of America, 90, 1937–1941.

    PubMed  CAS  Google Scholar 

  79. Naldini, L., Weidner, K. M., Vigna, E., Gaudino, G., Bardelli, A., Ponzetto, C., et al. (1991). Scatter factor and hepatocyte growth factor are indistinguishable ligands for the MET receptor. EMBO Journal, 10, 2867–2878.

    PubMed  CAS  Google Scholar 

  80. Ding, S., Merkulova-Rainon, T., Han, Z. C., & Tobelem, G. (2003). HGF receptor up-regulation contributes to the angiogenic phenotype of human endothelial cells and promotes angiogenesis in vitro. Blood, 101, 4816–4822.

    PubMed  CAS  Google Scholar 

  81. Michieli, P., Mazzone, M., Basilico, C., Cavassa, S., Sottile, A., Naldini, L., et al. (2004). Targeting the tumor and its microenvironment by a dual-function decoy Met receptor. Cancer Cell, 6, 61–73.

    PubMed  CAS  Google Scholar 

  82. Zhang, Y. W., Su, Y., Volpert, O. V., & Vande Woude, G. F. (2003). Hepatocyte growth factor/scatter factor mediates angiogenesis through positive VEGF and negative thrombospondin 1 regulation. Proceedings of the National Academy of Sciences of the United States of America, 100, 12718–12723.

    PubMed  CAS  Google Scholar 

  83. Saucier, C., Khoury, H., Lai, K. M., Peschard, P., Dankort, D., Naujokas, M. A., et al. (2004). The Shc adaptor protein is critical for VEGF induction by Met/HGF and ErbB2 receptors and for early onset of tumor angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 101, 2345–2350.

    PubMed  CAS  Google Scholar 

  84. Van Belle, E., Witzenbichler, B., Chen, D. H., Silver, M., Chang, L., Schwall, R., et al. (1998). Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor—the case for paracrine amplification of angiogenesis. Circulation, 97, 381–390.

    PubMed  Google Scholar 

  85. Xin, X., Yang, S., Ingle, G., Zlot, C., Rangell, L., Kowalski, J., et al. (2001). Hepatocyte growth factor enhances vascular endothelial growth factor-induced angiogenesis in vitro and in vivo. American Journal of Pathology, 158, 1111–1120.

    PubMed  CAS  Google Scholar 

  86. Goodman, C. S., Kolodkin, A. L., Luo, Y., Pueschel, A. W., & Raper, J. A. (1999). Unified nomenclature for the semaphorins collapsins. Cell, 97, 551–552.

    Google Scholar 

  87. Tamagnone, L., Artigiani, S., Chen, H., He, Z., Ming, G. I., Song, H., et al. (1999). Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell, 99, 71–80.

    PubMed  CAS  Google Scholar 

  88. Giordano, S., Corso, S., Conrotto, P., Artigiani, S., Gilestro, G., Barberis, D., et al. (2002). The semaphorin 4D receptor controls invasive growth by coupling with Met. Nature Cell Biology, 4, 720–724.

    PubMed  CAS  Google Scholar 

  89. Neufeld, G., Shraga-Heled, N., Lange, T., Guttmann-Raviv, N., Herzog, Y., & Kessler, O. (2005). Semaphorins in cancer. Frontiers in Bioscience, 10, 751–760.

    PubMed  Google Scholar 

  90. Rothberg, J. M., Jacobs, J. R., Goodman, C. S., & Artavanis-Tsakonas, S. (1990). slit: an extracellular protein necessary for development of midline glia and commissural axon pathways contains both EGF and LRR domains. Genes & Development, 4, 2169–2187.

    CAS  Google Scholar 

  91. Kidd, T., Brose, K., Mitchell, K. J., Fetter, R. D., Tessier-Lavigne, M., Goodman, C. S., et al. (1998). Roundabout controls axon crossing of the CNS midline and defines a novel subfamily of evolutionarily conserved guidance receptors. Cell, 92, 205–215.

    PubMed  CAS  Google Scholar 

  92. Kidd, T., Russell, C., Goodman, C. S., & Tear, G. (1998). Dosage-sensitive and complementary functions of roundabout and commissureless control axon crossing of the CNS midline. Neuron, 20, 25–33.

    PubMed  CAS  Google Scholar 

  93. Huminiecki, L., Gorn, M., Suchting, S., Poulsom, R., & Bicknell, R. (2002). Magic roundabout is a new member of the roundabout receptor family that is endothelial specific and expressed at sites of active angiogenesis. Genomics, 79, 547–552.

    PubMed  CAS  Google Scholar 

  94. Bedell, V. M., Yeo, S. Y., Park, K. W., Chung, J., Seth, P., Shivalingappa, V., et al. (2005). roundabout4 is essential for angiogenesis in vivo. Proceedings of the National Academy of Sciences of the United States of America, 102, 6373–6378.

    PubMed  CAS  Google Scholar 

  95. Suchting, S., Heal, P., Tahtis, K., Stewart, L. M., & Bicknell, R. (2004) Soluble Robo4 receptor inhibits in vivo angiogenesis and endothelial cell migration. FASEB Journal.

  96. Park, K. W., Morrison, C. M., Sorensen, L. K., Jones, C. A., Rao, Y., Chien, C. B., et al. (2003). Robo4 is a vascular-specific receptor that inhibits endothelial migration. Developments in Biologicals, 261, 251–267.

    Article  CAS  Google Scholar 

  97. Brose, K, & Tessier-Lavigne, M. (2000). Slit proteins: key regulators of axon guidance, axonal branching, and cell migration. Current Opinion in Neurobiology, 10, 95–102.

    PubMed  CAS  Google Scholar 

  98. Wang, B., Xiao, Y., Ding, B. B., Zhang, N., Yuan, X., Gui, L., et al. (2003). Induction of tumor angiogenesis by Slit–Robo signaling and inhibition of cancer growth by blocking Robo activity. Cancer Cell, 4, 19–29.

    PubMed  Google Scholar 

  99. Dallol, A., Krex, D., Hesson, L., Eng, C., Maher, E. R., & Latif, F. (2003). Frequent epigenetic inactivation of the SLIT2 gene in gliomas. Oncogene, 22, 4611–4616.

    PubMed  CAS  Google Scholar 

  100. Dallol, A., Morton, D., Maher, E. R., & Latif, F. (2003). SLIT2 axon guidance molecule is frequently inactivated in colorectal cancer and suppresses growth of colorectal carcinoma cells. Cancer Research, 63, 1054–1058.

    PubMed  CAS  Google Scholar 

  101. Klein, R. (2004). Eph/ephrin signaling in morphogenesis, neural development and plasticity. Current Opinion in Cell Biology, 16, 580–589.

    PubMed  CAS  Google Scholar 

  102. Palmer, A., Zimmer, M., Erdmann, K. S., Eulenburg, V., Porthin, A., Heumann, R., et al. (2002). EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Molecular Cell, 9, 725–737.

    PubMed  CAS  Google Scholar 

  103. Torres, R., Firestein, B. L., Dong, H., Staudinger, J., Olson, E. N., Huganir, R. L., et al. (1998). PDZ proteins bind, cluster, and synaptically colocalize with Eph receptors and their ephrin ligands. Neuron, 21, 1453–1463.

    PubMed  CAS  Google Scholar 

  104. Bruckner, K., Pablo, L. J., Scheiffele, P., Herb, A., Seeburg, P. H., & Klein, R. (1999). EphrinB ligands recruit GRIP family PDZ adaptor proteins into raft membrane microdomains. Neuron, 22, 511–524.

    PubMed  CAS  Google Scholar 

  105. Wang, H. U., Chen, Z. F., & Anderson, D. J. (1998). Molecular distinction and angiogenic interaction between embryonic arteries and veins revealed by ephrin-B2 and its receptor Eph-B4. Cell, 93, 741–753.

    PubMed  CAS  Google Scholar 

  106. Gerety, S. S., Wang, H. U., Chen, Z. F., & Anderson, D. J. (1999). Symmetrical mutant phenotypes of the receptor EphB4 and its specific transmembrane ligand ephrin-B2 in cardiovascular development. Molecular Cell, 4, 403–414.

    PubMed  CAS  Google Scholar 

  107. Fuller, T., Korff, T., Kilian, A., Dandekar, G., & Augustin, H. G. (2003). Forward EphB4 signaling in endothelial cells controls cellular repulsion and segregation from ephrinB2 positive cells. J. Cell Sci. Pt.

  108. Zhang, X. Q., Takakura, N., Oike, Y., Inada, T., Gale, N. W., Yancopoulos, G. D., et al. (2001). Stromal cells expressing ephrin-B2 promote the growth and sprouting of ephrin-B2(+) endothelial cells. Blood, 98, 1028–1037.

    PubMed  CAS  Google Scholar 

  109. Adams, R. H., Wilkinson, G. A., Weiss, C., Diella, F., Gale, N. W., Deutsch, U., et al. (1999). Roles of ephrinB ligands and EphB receptors in cardiovascular development: demarcation of arterial/venous domains, vascular morphogenesis, and sprouting angiogenesis. Genes & Development, 13, 295–306.

    CAS  Google Scholar 

  110. Makinen, T., Adams, R. H., Bailey, J., Lu, Q., Ziemiecki, A., Alitalo, K., et al. (2005). PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes & Development, 19, 397–410.

    Google Scholar 

  111. Surawska, H., Ma, P. C., & Salgia, R. (2004). The role of ephrins and Eph receptors in cancer. Cytokine & Growth Factor Reviews, 15, 419–433.

    CAS  Google Scholar 

  112. Cheng, N., Brantley, D., Fang, W. B., Liu, H., Fanslow, W., Cerretti, D. P., et al. (2003). Inhibition of VEGF-dependent multistage carcinogenesis by soluble EphA receptors. Neoplasia, 5, 445–456.

    PubMed  CAS  Google Scholar 

  113. Brantley, D. M., Cheng, N., Thompson, E. J., Lin, Q., Brekken, R. A., Thorpe, P. E., et al. (2002). Soluble Eph A receptors inhibit tumor angiogenesis and progression in vivo. Oncogene, 21, 7011–7026.

    PubMed  CAS  Google Scholar 

  114. Martiny-Baron, G., Korff, T., Schaffner, F., Esser, N., Eggstein, S., Marme, D., et al. (2004). Inhibition of tumor growth and angiogenesis by soluble EphB4. Neoplasia, 6, 248–257.

    PubMed  CAS  Google Scholar 

  115. Dinarello, C. A. (2002). The IL-1 family and inflammatory diseases. Clinical and Experimental Rheumatology, 20, S1–S13.

    PubMed  CAS  Google Scholar 

  116. Apte, R. N., & Voronov, E. (2002). Interleukin-1—a major pleiotropic cytokine in tumor–host interactions. Seminars in Cancer Biology, 12, 277–290.

    PubMed  CAS  Google Scholar 

  117. Li, J., Perrella, M. A., Tsai, J. C., Yet, S. F., Hsieh, C. M., Yoshizumi, M., et al. (1995). Induction of vascular endothelial growth factor gene expression by interleukin-1 beta in rat aortic smooth muscle cells. Journal of Biological Chemistry, 270, 308–312.

    PubMed  CAS  Google Scholar 

  118. El Awad, B., Kreft, B., Wolber, E. M., Hellwig-Buergel, T., Metzen, E., Fandrey, J., et al. (2000). Hypoxia and interleukin-1beta stimulate vascular endothelial growth factor production in human proximal tubular cells. Kidney International, 58, 43–50.

    PubMed  Google Scholar 

  119. Salven, P., Hattori, K., Heissig, B., & Rafii, S. (2002). Interleukin-1alpha promotes angiogenesis in vivo via VEGFR-2 pathway by inducing inflammatory cell VEGF synthesis and secretion. FASEB Journal, 16, 1471–1473.

    PubMed  CAS  Google Scholar 

  120. Valter, M. M., Wiestler, O. D., & Pietsche, T. (1999). Differential control of VEGF synthesis and secretion in human glioma cells by IL-1 and EGF. International Journal of Developmental Neuroscience, 17, 565–577.

    PubMed  CAS  Google Scholar 

  121. Fan, F., Stoeltzing, O., Liu, W., Mccarty, M. F., Jung, Y. D., Reinmuth, N., et al. (2004). Interleukin-1beta regulates angiopoietin-1 expression in human endothelial cells. Cancer Research, 64, 3186–3190.

    PubMed  CAS  Google Scholar 

  122. Voronov, E., Shouval, D. S., Krelin, Y., Cagnano, E., Benharroch, D., Iwakura, Y., et al. (2003). IL-1 is required for tumor invasiveness and angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 100, 2645–2650.

    PubMed  CAS  Google Scholar 

  123. Bar, D., Apte, R. N., Voronov, E., Dinarello, C. A., Cohen, S. (2004). A continuous delivery system of IL-1 receptor antagonist reduces angiogenesis and inhibits tumor development. FASEB Journal, 18, 161–163.

    PubMed  CAS  Google Scholar 

  124. Motro, B., Itin, A., Sachs, L., & Keshet, E. (1990). Pattern of interleukin 6 gene expression in vivo suggests a role for this cytokine in angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 87, 3092–3096.

    PubMed  CAS  Google Scholar 

  125. Loeffler, S., Fayard, B., Weis, J., & Weissenberger, J. (2005). Interleukin-6 induces transcriptional activation of vascular endothelial growth factor (VEGF) in astrocytes in vivo and regulates VEGF promoter activity in glioblastoma cells via direct interaction between STAT3 and Sp1. International Journal of Cancer, 115, 202–213.

    CAS  Google Scholar 

  126. Cohen, T., Nahari, D., Cerem-Weiss, L., Neufeld, G., & Levi, B.-Z. (1996). Interleukin-6 induces the expression of vascular endothelial growth factor (VEGF). Journal of Biological Chemistry, 271, 736–741.

    PubMed  CAS  Google Scholar 

  127. Wei, L. H., Kuo, M. L., Chen, C. A., Cheng, W. F., Cheng, S. P., Hsieh, F. J., et al. (2001). Interleukin-6 in cervical cancer: the relationship with vascular endothelial growth factor. Gynecologic Oncology, 82, 49–56.

    PubMed  CAS  Google Scholar 

  128. Salgado, R., Vermeulen, P. B., Benoy, I., Weytjens, R., Huget, P., Van Marck, E., et al. (1999). Platelet number and interleukin-6 correlate with VEGF but not with bFGF serum levels of advanced cancer patients. British Journal of Cancer, 80, 892–897.

    PubMed  CAS  Google Scholar 

  129. Su, J. L., Lai, K. P., Chen, C. A., Yang, C. Y., Chen, P. S., Chang, C. C., et al. (2005). A novel peptide specifically binding to interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth. Cancer Research, 65, 4827–4835.

    PubMed  CAS  Google Scholar 

  130. Strieter, R. M., Kunkel, S. L., Elner, V. M., Martonyi, C. L., Koch, A. E., Polverini, P. J., et al. (1992). Interleukin-8—a corneal factor that induces neovascularization. American Journal of Pathology, 141, 1279–1284.

    PubMed  CAS  Google Scholar 

  131. Koch, A. E., Polverini, P. J., Kunkel, S. L., Harlow, L. A., Dipietro, L. A., Elner, V. M., et al. (1992). Interleukin-8 as a macrophage-derived mediator of angiogenesis. Science, 258, 1798–1801.

    PubMed  CAS  Google Scholar 

  132. Desbaillets, I., Diserens, A. C., de Tribolet, N., Hamou, M. F., & Van Meir, E. G. (1999). Regulation of interleukin-8 expression by reduced oxygen pressure in human glioblastoma. Oncogene, 18, 1447–1456.

    PubMed  CAS  Google Scholar 

  133. Schraufstatter, I. U., Chung, J., & Burger, M. (2001). IL-8 activates endothelial cell CXCR1 and CXCR2 through Rho and Rac signaling pathways. American Journal of Physiology. Lung Cellular and Molecular Physiology, 280, L1094–L1103.

    PubMed  CAS  Google Scholar 

  134. Li, A., Dubey, S., Varney, M. L., & Singh, R. K. (2002). Interleukin-8-induced proliferation, survival, and MMP production in CXCR1 and CXCR2 expressing human umbilical vein endothelial cells. Microvascular Research, 64, 476–481.

    PubMed  CAS  Google Scholar 

  135. Li, A., Dubey, S., Varney, M. L., Dave, B. J., & Singh, R. K. (2003). IL-8 directly enhanced endothelial cell survival, proliferation, and matrix metalloproteinases production and regulated angiogenesis. Journal of Immunology, 170, 3369–3376.

    CAS  Google Scholar 

  136. Inoue, K., Slaton, J. W., Kim, S. J., Perrotte, P., Eve, B. Y., Bar-Eli, M., et al. (2000). Interleukin 8 expression regulates tumorigenicity and metastasis in human bladder cancer. Cancer Research, 60, 2290–2299.

    PubMed  CAS  Google Scholar 

  137. Brat, D. J., Bellail, A. C., & Van Meir, E. G. (2005). The role of interleukin-8 and its receptors in gliomagenesis and tumoral angiogenesis. Neurooncology, 7, 122–133.

    CAS  Google Scholar 

  138. Xie, K. (2001). Interleukin-8 and human cancer biology. Cytokine & Growth Factor Reviews, 12, 375–391.

    CAS  Google Scholar 

  139. Tashiro, K., Tada, H., Heilker, R., Shirozu, M., Nakano, T., & Honjo, T. (1993). Signal sequence trap: a cloning strategy for secreted proteins and type I membrane proteins. Science, 261, 600–603.

    PubMed  CAS  Google Scholar 

  140. Kim, C. H., & Broxmeyer, H. E. (1998). In vitro behavior of hematopoietic progenitor cells under the influence of chemoattractants: stromal cell-derived factor-1, steel factor, and the bone marrow environment. Blood, 91, 100–110.

    PubMed  CAS  Google Scholar 

  141. Nagasawa, T., Nakajima, T., Tachibana, K., Iizasa, H., Bleul, C. C., Yoshie, O., et al. (1996). Molecular cloning and characterization of a murine pre-B-cell growth-stimulating factor/stromal cell-derived factor 1 receptor, a murine homolog of the human immunodeficiency virus 1 entry coreceptor fusin. Proceedings of the National Academy of Sciences of the United States of America, 93, 14726–14729.

    PubMed  CAS  Google Scholar 

  142. Danielson, K. G., Martinez-Hernandez, A., Hassell, J. R., & Iozzo, R. V. (1992). Establishment of a cell line from the EHS tumor: biosynthesis of basement membrane constituents and characterization of a hybrid proteoglycan containing heparan and chondroitin sulfate chains. Matrix, 12, 22–35.

    PubMed  CAS  Google Scholar 

  143. Lyden, D., Hattori, K., Dias, S., Costa, C., Blaikie, P., Butros, L., et al. (2001). Impaired recruitment of bone-marrow-derived endothelial and hematopoietic precursor cells blocks tumor angiogenesis and growth. Natural Medicines, 7, 1194–1201.

    CAS  Google Scholar 

  144. Peichev, M., Naiyer, A. J., Pereira, D., Zhu, Z., Lane, W. J., Williams, M., et al. (2000). Expression of VEGFR-2 and AC133 by circulating human CD34(+) cells identifies a population of functional endothelial precursors. Blood, 95, 952–958.

    PubMed  CAS  Google Scholar 

  145. Moore, M. A., Hattori, K., Heissig, B., Shieh, J. H., Dias, S., Crystal, R. G., et al. (2001). Mobilization of endothelial and hematopoietic stem and progenitor cells by adenovector-mediated elevation of serum levels of SDF-1, VEGF, and angiopoietin-1. Annals of the New York Academy of Sciences, 938, 36–45; discussion 45–7.: 36–45.

    Google Scholar 

  146. Salvucci, O., Yao, L., Villalba, S., Sajewicz, A., Pittaluga, S., & Tosato, G. (2002). Regulation of endothelial cell branching morphogenesis by endogenous chemokine stromal-derived factor-1. Blood, 99, 2703–2711.

    PubMed  CAS  Google Scholar 

  147. Kryczek, I., Lange, A., Mottram, P., Alvarez, X., Cheng, P., Hogan, M., et al. (2005). CXCL12 and vascular endothelial growth factor synergistically induce neoangiogenesis in human ovarian cancers. Cancer Research, 65, 465–472.

    PubMed  CAS  Google Scholar 

  148. Orimo, A., Gupta, P. B., Sgroi, D. C., Arenzana-Seisdedos, F., Delaunay, T., Naeem, R., et al. (2005). Stromal fibroblasts present in invasive human breast carcinomas promote tumor growth and angiogenesis through elevated SDF-1/CXCL12 secretion. Cell, 121, 335–348.

    PubMed  CAS  Google Scholar 

  149. Lee, B. C., Lee, T. H., Avraham, S., & Avraham, H. K. (2004). Involvement of the chemokine receptor CXCR4 and its ligand stromal cell-derived factor 1alpha in breast cancer cell migration through human brain microvascular endothelial cells. Mol. Cancer Res., 2, 327–338.

    PubMed  CAS  Google Scholar 

  150. Porcile, C., Bajetto, A., Barbieri, F., Barbero, S., Bonavia, R., Biglieri, M., et al. (2005). Stromal cell-derived factor-1alpha (SDF-1alpha/CXCL12) stimulates ovarian cancer cell growth through the EGF receptor transactivation. Experimental Cell Research.

  151. Arya, M., Patel, H. R., McGurk, C., Tatoud, R., Klocker, H., Masters, J., et al. (2004). The importance of the CXCL12–CXCR4 chemokine ligand–receptor interaction in prostate cancer metastasis. Journal of Experimental Therapeutics & Oncology, 4, 291–303.

    CAS  Google Scholar 

  152. Scala, S., Ottaiano, A., Ascierto, P. A., Cavalli, M., Simeone, E., Giuliano, P., et al. (2005). Expression of CXCR4 predicts poor prognosis in patients with malignant melanoma. Clinical Cancer Research, 11, 1835–1841.

    PubMed  CAS  Google Scholar 

  153. Fujisawa, N., Hayashi, S., Kurdowska, A., Carr, F. K., & Miller, E. J. (1999). Inhibition of GROalpha-induced human endothelial cell proliferation by the alpha-chemokine inhibitor antileukinate. Cytokine, 11, 231–238.

    PubMed  CAS  Google Scholar 

  154. Shintani, S., Ishikawa, T., Nonaka, T., Li, C., Nakashiro, K., Wong, D. T., et al. (2004). Growth-regulated oncogene-1 expression is associated with angiogenesis and lymph node metastasis in human oral cancer. Oncology, 66, 316–322.

    PubMed  CAS  Google Scholar 

  155. Lane, B. R., Liu, J., Bock, P. J., Schols, D., Coffey, M. J., Strieter, R. M., et al. (2002). Interleukin-8 and growth-regulated oncogene alpha mediate angiogenesis in Kaposi’s sarcoma. Journal of Virology, 76, 11570–11583.

    PubMed  CAS  Google Scholar 

  156. Davis, S., Aldrich, T. H., Jones, P. F., Acheson, A., Compton, D. L., Jain, V., et al. (1996). Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell, 87, 1161–1169.

    PubMed  CAS  Google Scholar 

  157. Maisonpierre, P. C., Suri, C., Jones, P. F., Bartunkova, S., Wiegand, S. J., Radziejewski, C., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science, 277, 55–60.

    PubMed  CAS  Google Scholar 

  158. Sundberg, C., Kowanetz, M., Brown, L. F., Detmar, M., & Dvorak, H. F. (2002). Stable expression of angiopoietin-1 and other markers by cultured pericytes: phenotypic similarities to a subpopulation of cells in maturing vessels during later stages of angiogenesis in vivo. Laboratory Investigation, 82, 387–401.

    PubMed  CAS  Google Scholar 

  159. Scharpfenecker, M., Fiedler, U., Reiss, Y., & Augustin, H. G. (2005). The Tie-2 ligand angiopoietin-2 destabilizes quiescent endothelium through an internal autocrine loop mechanism. Journal of Cell Science, 118, 771–780.

    PubMed  CAS  Google Scholar 

  160. Fiedler, U., Scharpfenecker, M., Koidl, S., Hegen, A., Grunow, V., Schmidt, J. M., et al. (2004). The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon stimulation from endothelial cell Weibel–Palade bodies. Blood, 103, 4150–4156.

    PubMed  CAS  Google Scholar 

  161. Suri, C., Jones, P. F., Patan, S., Bartunkova, S., Maisonpierre, P. C., Davis, S., et al. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell, 87, 1171–1180.

    PubMed  CAS  Google Scholar 

  162. Suri, C., Mcclain, J., Thurston, G., McDonald, D. M., Zhou, H., Oldmixon, E. H., et al. (1998). Increased vascularization in mice overexpressing angiopoietin-1. Science, 282, 468–471.

    PubMed  CAS  Google Scholar 

  163. Witzenbichler, B., Maisonpierre, P. C., Jones, P., Yancopoulos, G. D., & Isner, J. M. (1998). Chemotactic properties of angiopoietin-1 and -2, ligands for the endothelial-specific receptor tyrosine kinase Tie2. Journal of Biological Chemistry, 273, 18514–18521.

    PubMed  CAS  Google Scholar 

  164. Hayes, A. J., Huang, W. Q., Mallah, J., Yang, D. J., Lippman, M. E., & Li, L. Y. (1999). Angiopoietin-1 and its receptor Tie-2 participate in the regulation of capillary-like tubule formation and survival of endothelial cells. Microvascular Research, 58, 224–237.

    PubMed  CAS  Google Scholar 

  165. Koblizek, T. I., Weiss, C., Yancopoulos, G. D., Deutsch, U., & Risau, W. (1998). Angiopoietin-1 induces sprouting angiogenesis in vitro. Current Biology, 8, 529–532.

    PubMed  CAS  Google Scholar 

  166. Zhu, W. H., MacIntyre, A., & Nicosia, R. F. (2002). Regulation of angiogenesis by vascular endothelial growth factor and angiopoietin-1 in the rat aorta model: distinct temporal patterns of intracellular signaling correlate with induction of angiogenic sprouting. American Journal of Pathology, 161, 823–830.

    PubMed  CAS  Google Scholar 

  167. Pichiule, P., Chavez, J. C., & Lamanna, J. C. (2003). Hypoxic regulation of angiopoietin-2 expression in endothelial cells. Journal of Biological Chemistry, 279, 12171–12180.

    PubMed  Google Scholar 

  168. Visconti, R. P., Richardson, C. D., & Sato, T. N. (2002). Orchestration of angiogenesis and arteriovenous contribution by angiopoietins and vascular endothelial growth factor (VEGF). Proceedings of the National Academy of Sciences of the United States of America, 99, 8219–8224.

    PubMed  CAS  Google Scholar 

  169. Vajkoczy, P., Farhadi, M., Gaumann, A., Heidenreich, R., Erber, R., Wunder, A., et al. (2002). Microtumor growth initiates angiogenic sprouting with simultaneous expression of VEGF, VEGF receptor-2, and angiopoietin-2. Journal of Clinical Investigation, 109, 777–785.

    PubMed  CAS  Google Scholar 

  170. Acker, T., Beck, H., & Plate, K. H. (2001). Cell type specific expression of vascular endothelial growth factor and angiopoietin-1 and -2 suggests an important role of astrocytes in cerebellar vascularization. Mechanisms of Development, 108, 45–57.

    PubMed  CAS  Google Scholar 

  171. Lobov, I. B., Brooks, P. C., & Lang, R. A. (2002). Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proceedings of the National Academy of Sciences of the United States of America, 99, 11205–11210.

    PubMed  CAS  Google Scholar 

  172. Gale, N. W., Thurston, G., Hackett, S. F., Renard, R., Wang, Q., Mcclain, J., et al. (2002). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by angiopoietin-1. Dev. Cell, 3, 411–423.

    PubMed  CAS  Google Scholar 

  173. Sugimachi, K., Tanaka, S., Taguchi, K., Aishima, S., Shimada, M., & Tsuneyoshi, M. (2003). Angiopoietin switching regulates angiogenesis and progression of human hepatocellular carcinoma. Journal of Clinical Pathology, 56, 854–860.

    PubMed  CAS  Google Scholar 

  174. Etoh, T., Inoue, H., Tanaka, S., Barnard, G. F., Kitano, S., & Mori, M. (2001). Angiopoietin-2 is related to tumor angiogenesis in gastric carcinoma: possible in vivo regulation via induction of proteases. Cancer Research, 61, 2145–2153.

    PubMed  CAS  Google Scholar 

  175. Eggert, A., Ikegaki, N., Kwiatkowski, J., Zhao, H., Brodeur, G. M., & Himelstein, B. P. (2000). High-level expression of angiogenic factors is associated with advanced tumor stage in human neuroblastomas. Clinical Cancer Research, 6, 1900–1908.

    PubMed  CAS  Google Scholar 

  176. Bunone, G., Vigneri, P., Mariani, L., Buto, S., Collini, P., Pilotti, S., et al. (1999). Expression of angiogenesis stimulators and inhibitors in human thyroid tumors and correlation with clinical pathological features. American Journal of Pathology, 155, 1967–1976.

    PubMed  CAS  Google Scholar 

  177. Oliner, J., Min, H. S., Leal, J., Yu, D. Y., Rao, S., You, E., et al. (2004). Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell, 6, 507–516.

    PubMed  CAS  Google Scholar 

  178. Ahmad, S. A., Liu, W., Jung, Y. D., Fan, F., Wilson, M., Reinmuth, N., et al. (2001). The effects of angiopoietin-1 and -2 on tumor growth and angiogenesis in human colon cancer. Cancer Research, 61, 1255–1259.

    PubMed  CAS  Google Scholar 

  179. Stoeltzing, O., Ahmad, S. A., Liu, W., Mccarty, M. F., Wey, J. S., Parikh, A. A., et al. (2003). Angiopoietin-1 inhibits vascular permeability, angiogenesis, and growth of hepatic colon cancer tumors. Cancer Research, 63, 3370–3377.

    PubMed  CAS  Google Scholar 

  180. Machein, M. R., Knedla, A., Knoth, R., Wagner, S., Neuschl, E., & Plate, K. H. (2004). Angiopoietin-1 promotes tumor angiogenesis in a rat glioma model. American Journal of Pathology, 165, 1557–1570.

    PubMed  CAS  Google Scholar 

  181. Zadeh, G., Koushan, K., Pillo, L., Shannon, P., & Guha, A. (2004). Role of Ang1 and its interaction with VEGF-A in astrocytomas. Journal of Neuropathology and Experimental Neurology, 63, 978–989.

    PubMed  CAS  Google Scholar 

  182. Kim, I., Kwak, H. J., Ahn, J. E., So, J. N., Liu, M. Z., Koh, K. N., et al. (1999). Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3. FEBS Letters, 443, 353–356.

    PubMed  CAS  Google Scholar 

  183. Valenzuela, D. M., Griffiths, J. A., Rojas, J., Aldrich, T. H., Jones, P. F., Zhou, H., et al. (1999). Angiopoietins 3 and 4: diverging gene counterparts in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 96, 1904–1909.

    PubMed  CAS  Google Scholar 

  184. Lee, H. J., Cho, C. H., Hwang, S. J., Choi, H. H., Kim, K. T., Ahn, S. Y., et al. (2004). Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB Journal, 18, 1200–1208.

    PubMed  CAS  Google Scholar 

  185. Xu, Y., Liu, Y. J., & Yu, Q. (2004). Angiopoietin-3 inhibits pulmonary metastasis by inhibiting tumor angiogenesis. Cancer Research, 64, 6119–6126.

    PubMed  CAS  Google Scholar 

  186. Itoh, N., & Ornitz, D. M. (2004). Evolution of the Fgf and Fgfr gene families. Trends in Genetics, 20, 563–569.

    PubMed  CAS  Google Scholar 

  187. Pellegrini, L. (2001). Role of heparan sulfate in fibroblast growth factor signalling: a structural view. Curr. Opin. Struct. Biol., 11, 629–634.

    PubMed  CAS  Google Scholar 

  188. Gospodarowicz, D. (1976). Humoral control of cell proliferation: the role of fibroblast growth factor in regeneration, angiogenesis, wound healing, and neoplastic growth. Progress in Clinical and Biological Research, 9, 1–19.

    PubMed  CAS  Google Scholar 

  189. Lobb, R. R., Alderman, E. M., & Fett, J. W. (1985). Induction of angiogenesis by bovine brain derived class 1 heparin-binding growth factor. Biochemistry, 24, 4969–4973.

    PubMed  CAS  Google Scholar 

  190. Akhtar, N., Dickerson, E. B., & Auerbach, R. (2002). The sponge/Matrigel angiogenesis assay. Angiogenesis, 5, 75–80.

    PubMed  CAS  Google Scholar 

  191. Gospodarowicz, D., Brown, K. D., Birdwell, C. R., & Zetter, B. R. (1978). Control of proliferation of human vascular endothelial cells. Characterization of the response of human umbilical vein endothelial cells to fibroblast growth factor, epidermal growth factor, and thrombin. Journal of Cell Biology, 77, 774–788.

    PubMed  CAS  Google Scholar 

  192. Bohlen, P., Esch, F., Baird, A., & Gospodarowicz, D. (1985). Acidic fibroblast growth factor (FGF) from bovine brain: amino-terminal sequence and comparison with basic FGF. EMBO Journal, 4, 1951–1956.

    PubMed  CAS  Google Scholar 

  193. Costa, M., Danesi, R., Agen, C., Dipaolo, A., Basolo, F., Delbianchi, S., et al. (1994). MCF-10A cells infected with the INT-2 oncogene induce angiogenesis in the chick chorioallantoic membrane and in the rat mesentery. Cancer Research, 54, 9–11.

    PubMed  CAS  Google Scholar 

  194. Dell’Era, P., Belleri, M., Stabile, H., Massardi, M. L., Ribatti, D., & Presta, M. (2001) Paracrine and autocrine effects of fibroblast growth factor-4 in endothelial cells. Oncogene, 20, 2655–2663.

    PubMed  CAS  Google Scholar 

  195. Yoshida, T., Ishimaru, K., Sakamoto, H., Yokota, J., Hirohashi, S., Igarashi, K., et al. (1994). Angiogenic activity of the recombinant hst-1 protein. Cancer Letter, 83, 261–268.

    CAS  Google Scholar 

  196. Florkiewicz, R. Z., Majack, R. A., Buechler, R. D., & Florkiewicz, E. (1995). Quantitative export of FGF-2 occurs through an alternative, energy-dependent, non-ER/golgi pathway. Journal of Cellular Physiology, 162, 388–399.

    PubMed  CAS  Google Scholar 

  197. Landriscina, M., Bagala, C., Mandinova, A., Soldi, R., Micucci, I., Bellum, S., et al. (2001). Copper induces the assembly of a multiprotein aggregate implicated in the release of fibroblast growth factor 1 in response to stress. Journal of Biological Chemistry, 276, 25549–25557.

    PubMed  CAS  Google Scholar 

  198. Zhou, M., Sutliff, R. L., Paul, R. J., Lorenz, J. N., Hoying, J. B., Haudenschild, C. C., et al. (1998). Fibroblast growth factor 2 control of vascular tone. Natural Medicines, 4, 201–207.

    CAS  Google Scholar 

  199. Tobe, T., Ortega, S., Luna, J. D., Ozaki, H., Okamoto, N., Derevjanik, N. L., et al. (1998). Targeted disruption of the FGF2 gene does not prevent choroidal neovascularization in a murine model. American Journal of Pathology, 153, 1641–1646.

    PubMed  CAS  Google Scholar 

  200. Ozaki, H., Okamoto, N., Ortega, S., Chang, M., Ozaki, K., Sadda, S., et al. (1998). Basic fibroblast growth factor is neither necessary nor sufficient for the development of retinal neovascularization. American Journal of Pathology, 153, 757–765.

    PubMed  CAS  Google Scholar 

  201. Fulgham, D. L., Widhalm, S. R., Martin, S., & Coffin, J. D. (1999). FGF-2 dependent angiogenesis is a latent phenotype in basic fibroblast growth factor transgenic mice. Endothelium, 6, 185–195.

    PubMed  CAS  Google Scholar 

  202. Moscatelli, D., Presta, M., Joseph Silverstein, J., & Rifkin, D. B. (1986). Both normal and tumor cells produce basic fibroblast growth factor. Journal of Cellular Physiology, 129, 273–276.

    PubMed  CAS  Google Scholar 

  203. Presta, M., Moscatelli, D., Joseph Silverstein, J., & Rifkin, D. B. (1986). Purification from a human hepatoma cell line of a basic fibroblast growth factor-like molecule that stimulates capillary endothelial cell plasminogen activator production, DNA synthesis, and migration. Molecular and Cellular Biology, 6, 4060–4066.

    PubMed  CAS  Google Scholar 

  204. Schweigerer, L., Neufeld, G., Mergia, A., Abraham, J. A., Fiddes, J. C., & Gospodarowicz, D. (1987). Basic fibroblast growth factor in human rhabdomyosarcoma cells: implications for the proliferation and neovascularization of myoblast-derived tumors. Proceedings of the National Academy of Sciences of the United States of America, 84, 842–846.

    PubMed  CAS  Google Scholar 

  205. Neufeld, G., Mitchell, R., Ponte, P., & Gospodarowicz, D. (1988). Expression of human basic fibroblast growth factor cDNA in baby hamster kidney-derived cells results in autonomous cell growth. Journal of Cell Biology, 106, 1385–1394.

    PubMed  CAS  Google Scholar 

  206. Rogelj, S., Weinberg, R. A., Fanning, P., & Klagsbrun, M. (1988). Basic fibroblast growth factor fused to a signal peptide transforms cells. Nature, 331, 173–175.

    PubMed  CAS  Google Scholar 

  207. Wang, Y., & Becker, D. (1997). Antisense targeting of basic fibroblast growth factor and fibroblast growth factor receptor-1 in human melanomas blocks intratumoral angiogenesis and tumor growth. Natural Medicines, 3, 887–893.

    CAS  Google Scholar 

  208. Baird, A., Mormede, P., & Bohlen, P. (1986). Immunoreactive fibroblast growth factor (FGF) in a transplantable chondrosarcoma: inhibition of tumor growth by antibodies to FGF. Journal of Cellular Biochemistry, 30, 79–85.

    PubMed  CAS  Google Scholar 

  209. Hori, A., Sasada, R., Matsutani, E., Naito, K., Sakura, Y., Fujita, T., et al. (1991). Suppression of solid tumor growth by immunoneutralizing monoclonal antibody against human basic fibroblast growth factor. Cancer Research, 51, 6180–6184.

    PubMed  CAS  Google Scholar 

  210. Compagni, A., Wilgenbus, P., Impagnatiello, M. A., Cotton, M., & Christofori, G. (2000). Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Research, 60, 7163–7169.

    PubMed  CAS  Google Scholar 

  211. Presta, M., Dell’Era, P., Mitola, S., Moroni, E., Ronca, R., & Rusnati, M. (2005). Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine & Growth Factor Reviews, 16, 159–178.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gera Neufeld.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neufeld, G., Kessler, O. Pro-angiogenic cytokines and their role in tumor angiogenesis. Cancer Metastasis Rev 25, 373–385 (2006). https://doi.org/10.1007/s10555-006-9011-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-9011-5

Keywords

Navigation