Skip to main content

Advertisement

Log in

Targeting growth factors and angiogenesis; using small molecules in malignancy

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Targeted biologic therapy for cancer has evolved from the laboratory to active clinical protocols and applied clinical practice in selected patients. Major targets include epidermal growth factor, and vascular endothelial growth factor receptors which are commonly expressed in gastro-intestinal cancers head & neck and lung cancers, and to some degree breast and gynecologic malignancy. Down stream signal transduction pathway inhibition of B-raf and N-ras mutations are examined in melanoma. New approaches involving re-packaging of chemotherapeutic agents are being exemplified in the nanoparticle formulation of prclitaxel which provides increased access to endothelial and tumor cells with potential enhanced therapeutic efficacy compared to the conventional version solubilized in a cremophor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mendelsohn J, Baselga J: The EGF receptor family as targets for cancer therapy. Oncogene 19(56): 6550–6565, 2000

    Article  PubMed  CAS  Google Scholar 

  2. Ang KK, Berkey BA, Tu X, et al.: Impact of epidermal growth factor receptor expression on survival and pattern of relapse in patients with advanced head and neck carcinoma. Cancer Res 62(24): 7350–7356, 2002

    PubMed  CAS  Google Scholar 

  3. Baselga J, Arteaga CL: Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23(11): 2445–2459, 2005

    Article  PubMed  CAS  Google Scholar 

  4. Fukuoka M, Yano S, Giaccone G, Tamura T, Nakagawa K, Douillard JY, Nishiwaki Y, Vansteenkiste J, Kudoh S, Rischin D, Eek R, Horai T, Noda K, Takata I, Smit E, Averbuch S, Macleod A, Feyereislova A, Dong RP, Baselga J: Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol 21(12): 2237–2246, 2003

    Article  PubMed  CAS  Google Scholar 

  5. Kris MG, Natale RB, Herbst RS, Lynch TJ Jr, Prager D, Belani CP, Schiller JH, Kelly K, Spiridonidis H, Sandler A, Albain KS, Cella D, Wolf MK, Averbuch SD, Ochs JJ, Kay AC: Efficacy of gefitinib, an inhibitor of the epidermal growth factor receptor tyrosine kinase, in symptomatic patients with non-small cell lung cancer: A randomized trial. Jama 290(16): 2149–2158, 2003

    Article  CAS  Google Scholar 

  6. Perez-Soler R, Chachoua A, Hammond LA, Rowinsky EK, Huberman M, Karp D, Rigas J, Clark GM, Santabarbara P, Bonomi P.: Determinants of tumor response and survival with erlotinib in patients with non-small-cell lung cancer. J Clin Oncol 22(16): 3238–3247, 2004

    Article  PubMed  CAS  Google Scholar 

  7. Shepherd FA, Pereira J, Ciuleanu TE, et al.: A randomized placebo-controlled trial of erlotinib in patients with advanced non-small cell lung cancer (NSCLC) following failure of 1st line or 2nd line chemotherapy. A National Cancer Institute of Canada Clinical Trials Group (NCIC CTG) trial. Journal of Clinical Oncology 22(14S): A7022, 2004

    Google Scholar 

  8. Thatcher N, Chang A, Parikh P, Pemberton K, Archer V: Results of a phase III placebo-controlled study (ISEL) of gefitinib (IRESSA) plus best supportive care (BSC) in patients with advanced non-small-cell lung cancer (NSCLC) who had received 1 or 2 prior chemotherapy regimens. Proc Amer Assoc Cancer Res 46: Abstract LB-6, 2005

  9. Giaccone G, Herbst RS, Manegold C, Scagliotti G, Rosell R, Miller V, Natale RB, Schiller JH, Von Pawel J, Pluzanska A, Gatzemeier U, Grous J, Ochs JS, Averbuch SD, Wolf MK, Rennie P, Fandi A, Johnson DH.: Gefitinib in combination with gemcitabine and cisplatin in advanced non-small-cell lung cancer: A phase III trial-INTACT 1. J Clin Oncol 22(5): 777–784, 2004

    Article  PubMed  CAS  Google Scholar 

  10. Herbst RS, Giaccone G, Schiller JH, Natale RB, Miller V, Manegold C, Scagliotti G, Rosell R, Oliff I, Reeves JA, Wolf MK, Krebs AD, Averbuch SD, Ochs JS, Grous J, Fandi A, Johnson DH: Gefitinib in combination with paclitaxel and carboplatin in advanced non-small-cell lung cancer: A phase III trial-INTACT 2. J Clin Oncol 22(5): 785–794, 2004

    Article  PubMed  CAS  Google Scholar 

  11. Lilenbaum R, Bonomi P, Ansari R, et al.: A phase II trial of cetuximab as therapy for recurrent non-small cell lung cancer (NSCLC): Final results. Proc Am Soc Clin Oncol A7036, 2005

  12. Rosell R, Daniel C, Ramlau R, et al.: Randomized phase II study of cetuximab in combination with cisplatin (C) and vinorelbine (V) vs. CV alone in the first-line treatment of patients (pts) with epidermal growth factor receptor (EGFR)-expressing advanced non-small-cell lung cancer (NSCLC). Proc Am Soc Clin Oncol A7012, 2004

  13. Bonner JA, Giralt J, Harari PM, et al.: Cetuximab prolongs survival in patients with locoregionally advanced squamous cell carcinoma of head and neck: A phase III study of high dose radiation therapy with or without cetuximab. Proc Am Soc Clin Oncol 22(14S): A5507, 2004

    Google Scholar 

  14. Burtness BA, Li Y, Flood W, Mattar BI, Forastiere AA: Phase III trial comparing cisplatin (C) + placebo (P) to C + anti-epidermal growth factor antibody (EGF-R) C225 in patients (pts) with metastatic/recurrent head & neck cancer (HNC). Proc Am Soc Clin Oncol 21: A901, 2002

    Google Scholar 

  15. Trigo J, Hitt R, Koralewski P, et al.: Cetuximab monotherapy is active in patients (pts) with platinum-refractory recurrent/metastatic squamous cell carcinoma of the head and neck (SCCHN): Results of a phase II study. Proc Am Soc Clin Oncol 22(14S): A5502, 2004

    Google Scholar 

  16. Cohen EE, Rosen F, Stadler WM, Recant W, Stenson K, Huo D, Vokes EE: Phase II trial of ZD1839 in recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 21(10): 1980–1987, 2003

    Article  PubMed  CAS  Google Scholar 

  17. Soulieres D, Senzer NN, Vokes EE, Hidalgo M, Agarwala SS, Siu LL: Multicenter phase II study of erlotinib, an oral epidermal growth factor receptor tyrosine kinase inhibitor, in patients with recurrent or metastatic squamous cell cancer of the head and neck. J Clin Oncol 22(1): 77–85, 2004

    Article  PubMed  CAS  Google Scholar 

  18. Kane MA, Cohen E, List M, et al.: Phase II study of 250 mg gefitinib in advanced squamous cell carcinoma of the head and neck (SCCHN). Proc Am Soc Clin Oncol A5586, 2004

  19. Moore MJ, Goldstein D, Hamm J, et al.: Erlotinib plus gemcitabine compared to gemcitabine alone in patients with advanced pancreatic cancer. A phase III trial of the National Cancer Institute of Canada Clinical Trials Group [NCIC-CTG]. Proc Am Soc Clin Oncol A1, 2005

  20. Saltz LB, Meropol NJ, Loehrer PJ, Sr., Needle MN, Kopit J, Mayer RJ: Phase II trial of cetuximab in patients with refractory colorectal cancer that expresses the epidermal growth factor receptor. J Clin Oncol 22(7): 1201–1208, 2004

    Article  PubMed  CAS  Google Scholar 

  21. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiberg H, Santoro A, Bets D, Mueser M, Harstrick A, Verslype C, Chau I, Van Cutsem E: Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med 351(4): 337–345, 2004

    Article  PubMed  CAS  Google Scholar 

  22. Chung KY, Shia J, Kemeny NE, Shah M, Schwartz GK, Tse A, Hamilton A, Pan D, Schrag D, Schwartz L, Klimstra DS, Fridman D, Kelsen DP, Saltz LB: Cetuximab shows activity in colorectal cancer patients with tumors that do not express the epidermal growth factor receptor by immunohistochemistry. J Clin Oncol 23(9): 1803–1810, 2005

    Article  PubMed  CAS  Google Scholar 

  23. Keilholz U, Arnold D, Niederle N, et al.: Erlotinib as 2nd and 3rd line monotherapy in patients with metastatic colorectal cancer. Results of a multicenter two-cohort phase II trial. Proc Am Soc Clin Oncol A3575, 2005

  24. Janne PA, Engelman JA, Johnson BE: Epidermal growth factor receptor mutations in non-small-cell lung cancer: Implications for treatment and tumor biology. J Clin Oncol 23(14): 3227–3234, 2005

    Article  PubMed  CAS  Google Scholar 

  25. Cappuzzo F, Hirsch FR, Rossi E, Bartolini S, Ceresoli GL, Bemis L, Haney J, Witta S, Danenberg K, Domenichini I, Ludovini V, Magrini E, Gregorc V, Doglioni C, Sidoni A, Tonato M, Franklin WA, Crino L, Bunn PA Jr, Varella-Garcia M: Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst 97(9): 643–655, 2005

    PubMed  CAS  Google Scholar 

  26. Moroni M, Veronese S, Benvenuti S, Marrapese G, Sartore-Bianchi A, Di Nicolantonio F, Gambacorta M, Siena S, Bardelli A: Gene copy number for epidermal growth factor receptor (EGFR) and clinical response to antiEGFR treatment in colorectal cancer: A cohort study. Lancet Oncol 6(5): 279–286, 2005

    Article  PubMed  CAS  Google Scholar 

  27. Pao W, Wang TY, Riely GJ, Miller VA, Pan Q, Ladanyi M, Zakowski MF, Heelan RT, Kris MG, Varmus HE: KRAS Mutations and Primary Resistance of Lung Adenocarcinomas to Gefitinib or Erlotinib. PLoS Med 2(1): e17, 2005

    Article  PubMed  CAS  Google Scholar 

  28. Cappuzzo F, Magrini E, Ceresoli GL, Bartolini S, Rossi E, Ludovini V, Gregorc V, Ligorio C, Cancellieri A, Damiani S, Spreafico A, Paties CT, Lombardo L, Calandri C, Bellezza G, Tonato M, Crino L: Akt phosphorylation and gefitinib efficacy in patients with advanced non-small-cell lung cancer. J Natl Cancer Inst 96(15): 1133–1141, 2004

    Article  PubMed  CAS  Google Scholar 

  29. Saltz L, Kies M, Abbruzzese JL, Azarnia N, Needle M: The presence and intensity of the cetuximab-induced acne-like rash predicts increased survival in studies across multiple malignancies. Proc Am Soc Clin Oncol 22: A817, 2003

    Google Scholar 

  30. Amador ML, Oppenheimer D, Perea S, Maitra A, Cusati G, Iacobuzio-Donahue C, Baker SD, Ashfaq R, Takimoto C, Forastiere A, Hidalgo M: An epidermal growth factor receptor intron 1 polymorphism mediates response to epidermal growth factor receptor inhibitors. Cancer Res 64(24): 9139–9143, 2004

    Article  PubMed  CAS  Google Scholar 

  31. Karkkainen MJ, Petrova TV: Vascular endothelial growth factor receptors in the regulation of angiogenesis and lymphangiogenesis. Oncogene 19: 5598–5605, 2000

    Article  PubMed  CAS  Google Scholar 

  32. Dvork HF: Rous-Whipple Award Lecture: How tumors make bad blood vessels and stroma. Am J Pathol 162: 1747–1757, 2003

    Google Scholar 

  33. Carmeliet P, Ferreira V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C, Declercq C, Pawling J, Moons L, Collen D, Risau W, Nagy A: Abnormal blood vessel development and lethality in embryos lacking a single VEGF allele. Nature 380: 535–439, 1996

    Article  Google Scholar 

  34. Hicklin DJ, Ellis LM: Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J Clin Oncol In press

  35. Tsuzuk Y, Fukumura D, Oosthuyse B, Koike C, Carmeliet P, Jain RK: VEGF modulation by targeting HIF-1a→HRE→VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Res 60: 6248–6252, 2000

    Google Scholar 

  36. Ferrara N, Gerber HP, Lecouter J: The biology of VEGF and its receptors. Nat Med 9: 669–676, 2003

    Article  PubMed  CAS  Google Scholar 

  37. Willett CG, Boucher Y, di Tomaso E, Duda DG, Munn LL, Tong RT, Chung DC, Sahani DV, Kalva SP, Kozin SV, Mino M, Cohen KS, Scadden DT, Hartford AC, Fischman AJ, Clark JW, Ryan DP, Zhu AX, Blaszkowsky LS, Chen HX, Shellito PC, Lauwers GY, Jain RK: Direct evidence that the VEGF-specific antibody bevacizumab has anti vascular effects in human rectal cancer. Nat Med 10: 145–147, 2004

    Article  PubMed  CAS  Google Scholar 

  38. Hillan KJ, Koeppen HKW, Tobin P, et al.: The role of VEGF expression in response to bevacizumab plus capecitabine in metastatic breast cancer (MBC). Proc Am Soc Clin Oncol 22: 191. Abstract 766, 2003

    Google Scholar 

  39. Hurwitz H, Fehrenbacher L, Novotny W, Cartwright T, Hainsworth J, Heim W, Berlin J, Baron A, Griffing S, Holmgren E, Ferrara N, Fyfe G, Rogers B, Ross R, Kabbinavar F: Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350: 2335–2342, 2004

    Article  PubMed  CAS  Google Scholar 

  40. Kabbinavar FF, Hambleton J, Mass RD, Hurwitz HI, Bergsland E, Sarkar S: Combined analysis of efficacy: The addition of bevacizumab to fluorouracil/leucovorin improves survival for patients with metastatic colorectal cancer. J Clin Oncol. 23: 3706–3712, 2005

    Article  PubMed  CAS  Google Scholar 

  41. Giantonio BJ, Catalano PJ, Meropol NH, et al.: High dose bevacizumab improves survival when combined with FOLFOX in previously treated advanced colorectal cancer: Results from the Eastern Cooperative Oncology Group (ECOG) study E3200. Proc Am Soc Clin Onc. Presentation and Abstract 169A, 2005

  42. Saltz LB, Lenz H, Hochster H, et al.: Randomized phase II trial of cetuximab/bevacizumab/irinotecan (CBI) versus cetuximab/bevacizumab (CB) in irinotecan-refractory colorectal cancer [clarification to data given by LB Saltz, personal communication, July 27, 2005]. Proc Am Soc Clin Onc Abstract 3508, 2005

  43. Kabbinavar F: ASCO, 2005

  44. Johnson DH, Fehrenbacher L, Novotny WF, Herbst RS, Nemunaitis JJ, Jablons DM, Langer CJ, DeVore RF 3rd, Gaudreault J, Damico LA, Holmgren E, Kabbinavar F: Randomized phase II trial comparing bevacizumab plus carboplatin and paclitaxel with carboplatin and paclitaxel alone in previous untreated locally advanced or metastatic non-small-cell lung cancer. J Clin Oncol 22: 2184–2191, 2004

    Article  PubMed  CAS  Google Scholar 

  45. Sandler AB, Gray R, Brahmer J, et al.: Randomized phase II/III trial of paclitaxel plus carboplatin with or without bevacizumab in patients with advanced non-squamous non-small cell lung cancer (NSCLC): An Eastern Cooperative Oncology Group (ECOG) trial-E 4599. Proc Am Soc Clin Onc Presentation and Abstract LBA4, 2005

  46. Sandler AB: Personal communication. June 20, 2005

  47. Holash J, Davis S, Papadopoulos N, Croll SD, Ho L, Russell M, Boland P, Leidich R, Hylton D, Burova E, Ioffe E, Huang T, Radziejewski C, Bailey K, Fandl JP, Daly T, Wiegand SJ, Yancopoulos GD, Rudge JS: VEGF-Trap: A VEGF blocker with potent antitumor effects. Proc Natl Acad Sci USA 99: 11393–11398, 2002

    Article  PubMed  CAS  Google Scholar 

  48. Dupont J, Schwartz J, Koutcher J, et al.: Phase I and pharmacokinetic study of VEGF trap administered subcutaneously to patients with advanced solid malignancies. Proc Am Soc Clin Onc Abstract 3009, 2004

  49. Dupont J, Rothenberg ML, Spriggs DR, et al.: Safety and pharmacokinetics if intravenous VEGF Trap in a phase I clinical trial of patients with advanced solid tumors. Proc Am Soc Clin Onc Abstract 3029, 2005

  50. Huang J, Frischer JS, Serur A, Kadenhe A, Yokoi A, McCrudden KW, New T, O'Toole K, Zabski S, Rudge JS, Holash J, Yancopoulos GD, Yamashiro DJ, Kandel JJ: Regression of established tumors and metastases by potent vascular endothelial growth factor blockade. Proc Natl Acad Sci USA 100: 7785–7790, 2003

    Article  PubMed  CAS  Google Scholar 

  51. Wood JM, Bold G, Buchdunger E, Cozens R, Ferrari S, Frei J, Hofmann F, Mestan J, Mett H, O'Reilly T, Persohn E, Rosel J, Schnell C, Stover D, Theuer A, Towbin H, Wenger F, Woods- Cook K, Menrad A, Siemeister G, Schirner M, Thierauch KH, Schneider MR, Drevs J, Martiny-Baron G, Totzke F: PTK/ZK 222584, a novel and potent inhibitor of vascular endothelial growth factor receptor tyrosine kinases, impairs vascular endothelial growth factor-induced responses and tumor growth after oral administration. Cancer Res 60: 2178–2189, 2000

    PubMed  CAS  Google Scholar 

  52. Heinrich MC, Blanke CD, Druker BJ, Corless CL: Inhibition of KIT tyrosine kinase activity: A novel molecular approach to the treatment of KIT tyrosine kinase activity: A novel molecular approach to the treatment of KIT-positive malignancies. J Clin Oncol 20: 1692–1703, 2002

    Article  PubMed  CAS  Google Scholar 

  53. Rini B, Rixe O, Bukowski R, et al.: AG-013736, a multi-target tyrosine kinase receptor inhibitor, demonstrates antitumor activity in a phase 2 study of cytokine-refractory, metastatic renal cell cancer (RCC). Proc Am Soc Clin Onc Presentation and Abstract 4509, 2005

  54. Hecht JR, Trarbach T, Jaeger E, et al.: A randomized, double-blind, placebo-controlled, phase III study in patients with metastatic adenocarcinoma of the colon or rectum receiving first-line chemotherapy with oxaliplatin/5-fluorouracil-leukovorin and PTK787/ZK 222584 or placebo (CONFIRM-1). Proc Am Soc Clin Onc Abstract LBA3. Presentation and Abstract LBA3, 2005

  55. Ryan AJ, Wedge SR: ZD6474-a novel inhibitor of VEGFR and EGFR tyrosine kinase activity. Br J Cancer 92 Suppl 1: S6–13, 2005

    Article  PubMed  CAS  Google Scholar 

  56. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res 64: 7099–7109, 2004

    Article  PubMed  CAS  Google Scholar 

  57. Mendel DB, Laird AD, Xin X, Louie SG, Christensen JG, Li G, Schreck RE, Abrams TJ, Ngai TJ, Lee LB, Murray LJ, Carver J, Chan E, Moss KG, Haznedar JO, Sukbuntherng J, Blake RA, Sun L, Tang C, Miller T, Shirazian S, McMahon G, Cherrington JM: In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: Determination of a pharmacokinetic/pharmacodynamic relationship. Clin Cancer Res 9: 327–337, 2003

    PubMed  CAS  Google Scholar 

  58. Motzer RJ, Rini BI, Michaelson BG, et al.: Phase 2 trials of SU11248 show antitumor activity in second-line therapy for patients with metastatic renal cell carcinoma (RCC). Proc Am Soc Clin Onc Presentation and Abstract 4508, 2005

  59. Davies Hl, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W, Davis N, Dicks E, Ewing R, Floyd Y, Gray K, Hall S, Hawes R, Hughes J, Kosmidou V, Menzies A, Mould C, Parker A, Stevens C, Watt S, Hooper S, Wilson R, Jayatilake H, Gusterson BA, Cooper C, Shipley J, Hargrave D, Pritchard-Jones K, Maitland N, Chenevix-Trench G, Riggins GJ, Bigner DD, Palmieri G, Cossu A, Flanagan A, Nicholson A, Ho JW, Leung SY, Yuen ST, Weber BL, Seigler HF, Darrow TL, Paterson H, Marais R, Marshall CJ, Wooster R, Stratton MR, Futreal PA: Mutations of the BRAF gene in human cancer. Nature 417: 949–954, 2002

    Article  PubMed  CAS  Google Scholar 

  60. Daniotti M, Oggionni M, Ranzani T, Vallacchi V, Campi V, Di Stasi D, Torre GD, Perrone F, Luoni C, Suardi S, Frattini M, Pilotti S, Anichini A, Tragni G, Parmiani G, Pierotti MA, Rodolfo M: BRAF alterations are associated with complex mutational profiles in malignant melanoma. Oncogene. 23: 5968–5977, 2004

    Article  PubMed  CAS  Google Scholar 

  61. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM, Moses TY, Hostetter G, Wagner U, Kakareka J, Salem G, Pohida T, Heenan P, Duray P, Kallioniemi O, Hayward NK, Trent JM, Meltzer PS: High frequency of BRAF mutations in nevi. Nat Genet 33: 19–20, 2003

    Article  PubMed  CAS  Google Scholar 

  62. Demunter A, Stash M, Degreef H, De Wolf-Peeters C, van den Oord JJ: Analysis of N- and K-ras mutations in the distinctive tumor progression phases of melanoma. J Invest Dermatol 117: 1483–1489, 2001

    Article  PubMed  CAS  Google Scholar 

  63. Gorden A, Osman I, Gai W, He D, Huang W, Davidson A, Houghton AN, Busam K, Polsky D: Analysis of BRAF and N-RAS mutations in metastatic melanoma tissues. Cancer Res 63: 3955–3957, 2003

    PubMed  CAS  Google Scholar 

  64. Rodolfo M, Daniotti M, Vallacchi V: Genetic progression of metastatic melanoma. Cancer Lett 214: 133–147, 2004

    Article  PubMed  CAS  Google Scholar 

  65. Garnett & Morais, Cancer Cell 2004

  66. Kumar R, Angelini S, Snellman E, Hemminki K: BRAF mutations are common somatic events in melanocytic nevi. J Invest Dermatol 122: 342–348, 2004

    Article  PubMed  CAS  Google Scholar 

  67. Yazdi AS, Palmedo G, Flaig MJ, Puchta U, Reckwerth A, Rutten A, Mentzel T, Hugel H, Hantschke M, Schmid-Wendtner MH, Kutzner H, Sander CA: Mutations of the BRAF gene in benign and malignant melanocytic lesions. J Invest Dermatol 121: 1160–1162, 2003

    Article  PubMed  CAS  Google Scholar 

  68. Cohen Y, Goldenberg-Cohen N, Parrella P, Chowers I, Merbs SL, Pe'er J, Sidransky D: Lack of BRAF mutation in primary uveal melanoma. Invest Ophthalmol Vis Sci 44: 2876–2878, 2003

    Article  PubMed  Google Scholar 

  69. Edwards, RH, Ward MR, Wu H, Medina CA, Brose MS, Volpe P, Nussen-Lee S, Haupt HM, Martin AM, Herlyn M, Lessin SR, Weber BL: Absence of BRAF mutations in UV-protected mucosal melanomas. J Med Genet 41: 270–272, 2004

    Article  PubMed  CAS  Google Scholar 

  70. Lyons JF, Wilhelm S, Hibner B, Bollag G: Discovery of a novel Raf kinase inhibitor. Endocr Relat Cancer 8: 219–225, 2001

    Article  PubMed  CAS  Google Scholar 

  71. Wilhelm SM, Carter C, Tang L, Wilkie D, McNabola A, Rong H, Chen C, Zhang X, Vincent P, McHugh M, Cao Y, Shujath J, Gawlak S, Eveleigh D, Rowley B, Liu L, Adnane L, Lynch M, Auclair D, Taylor I, Gedrich R, Voznesensky A, Riedl B, Post LE, Bollag G, Trail PA: BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the RAF/MEK/ERK pathway and receptor tyrosine kinases involved in tumor progression and angio-genesis. Cancer Res 64: 7099–7109, 2004

    Article  PubMed  CAS  Google Scholar 

  72. Strumberg D, et al.: Results of phase I pharmacokinetic and pharmacodynamic studies of the Raf kinase inhibitor BAY 43-9006 in patients with solid tumors. Int J Clin Pharmacol Ther 41: 620–621, 2002

    Google Scholar 

  73. Ratain MJ, et al.: Preliminary antitumor activity of BAY 43-9006 in metastatic renal cell carcinoma and other advanced refractory solid tumors in a phase II randomized discontinuation trial (RDT) [abstract]. ASCO Annual Meeting Proceedings. J Clin Oncol 22(Suppl.): 4501, June 5–8, 2004

    Google Scholar 

  74. Ahmad T, et al.: BAY 43-9006 in patients with advanced melanoma: The Royal Marsden Experience [abstract]. 2004 ASCO Annual Meeting Proceedings. June 5–8, J Clin Oncol 22(Suppl.): 7506, 2004

    Google Scholar 

  75. Flaherty KT, et al.: Phase I/II trial of Bay 43-9006, carboplatin (C) and paclitaxel (P) demonstrates preliminary antitumor activity in the expansion cohort of patients with metastatic melanoma [abstract]. 2004 ASCO Annual Meeting Proceedings June 5–8, J Clin Oncol 22(Suppl.): 7507, 2004

    Google Scholar 

  76. Greenberg PA, Hortobagyi GN, Smith TL, Ziegler LD, Frye DK, Buzdar AU: Long-term follow-up of patients with complete remission following combination chemotherapy for metastatic breast cancer. J Clin Oncol 14: 2197–205, 1996

    PubMed  CAS  Google Scholar 

  77. Nabholtz JM, Gelmon K, Bontenbal M, Spielmann M, Catimel G, Conte P, Klaassen U, Namer M, Bonneterre J, Fumoleau P, Winograd B: Multicenter, randomized comparative study of two doses of paclitaxel in patients with metastatic breast cancer. J Clin Oncol 14: 1858–1867, 1996

    PubMed  CAS  Google Scholar 

  78. Winer EP, Berry DA, Woolf S, Duggan D, Kornblith A, Harris LN, Michaelson RA, Kirshner JA, Fleming GF, Perry MC, Graham ML, Sharp SA, Keresztes R, Henderson IC, Hudis C, Muss H, Norton L: Failure of higher-dose paclitaxel to improve outcome in patients with metastatic breast cancer: Cancer and leukemia group B trial 9342. J Clin Oncol 22: 2061–2068, 2004

    Article  PubMed  CAS  Google Scholar 

  79. Seidman AD, Hochhauser D, Gollub M, Edelman B, Yao TJ, Hudis CA, Francis P, Fennelly D, Gilewski TA, Moynahan ME, Currie V, Baselga J, Tong W, O'Donaghue M, Salvaggio R, Auguste L, Spriggs D, Norton L: Ninety-six-hour paclitaxel infusion after progression during short taxane exposure: A phase II pharmacokinetic and pharmacodynamic study in metastatic breast cancer. J Clin Oncol 14: 1877–1884, 1996

    PubMed  CAS  Google Scholar 

  80. Lopes NM, Adams EG, Pitts TW, Bhuyan BK: Cell kill kinetics and cell cycle effects of taxol on human and hamster ovarian cell lines. Cancer Chemother Pharmacol 32: 235–242, 1993

    Article  PubMed  CAS  Google Scholar 

  81. Di Leo A, Piccart MJ: Paclitaxel activity, dose, and schedule: Data from phase III trials in metastatic breast cancer. Semin Oncol 26: 27–32, 1999

    PubMed  Google Scholar 

  82. Seidman AD, Hudis CA, Albanell J, Tong W, Tepler I, Currie V, Moynahan ME, Theodoulou M, Gollub M, Baselga J, Norton L: Dose-dense therapy with weekly 1-hour paclitaxel infusions in the treatment of metastatic breast cancer. J Clin Oncol 16: 3353–3361, 1998

    PubMed  CAS  Google Scholar 

  83. Kerbel RS, Viloria-Petit A, Klement G, Rak J: ‘Accidental’ anti-angiogenic drugs. anti-oncogene directed signal transduction inhibitors and conventional chemotherapeutic agents as examples. Eur J Cancer 36: 1248–1257, 2000

    Article  PubMed  CAS  Google Scholar 

  84. Seidman AD, Berry D, Cirrincione C, et al.: CALGB 9840: Phase III study of weekly (W) paclitaxel (P) via 1-hour(h) infusion versus standard (S) 3h infusion every third week in the treatment of metastatic breast cancer (MBC), with trastuzumab (T) for HER2 positive MBC and randomized for T in HER2 normal MBC. J Clin Oncol, 2004 ASCO Proc 22(14S): 512, 2004

    Google Scholar 

  85. Shepherd GM: Hypersensitivity reactions to chemotherapeutic drugs. Clin Rev Allergy Immunol 24: 253–262, 2003

    Article  PubMed  CAS  Google Scholar 

  86. Abi 007. Drugs R D 5:155–159, 2004

    Google Scholar 

  87. Desai N, Trieu V, Yao R, et al.: Increased endothelial transcytosis of nanoparticle albumin-bound paclitaxel (ABI-007) by gp60-receptors: A pathway inhibited by taxol. Breast Cancer Res Treat 88(S1): 1071, 2004

    Google Scholar 

  88. Carver LA, Schnitzer JE: Caveolae: Mining little caves for new cancer targets. Nat Rev Cancer 3: 571–581, 2003

    Article  PubMed  CAS  Google Scholar 

  89. Koukourakis MI, Giatromanolaki A, Brekken RA, Sivridis E, Gatter KC, Harris AL, Sage EH: Enhanced expression of SPARC/osteonectin in the tumor-associated stroma of non-small cell lung cancer is correlated with markers of hypoxia/acidity and with poor prognosis of patients. Cancer Res 63: 5376–5380, 2003

    PubMed  CAS  Google Scholar 

  90. Rumpler G, Becker B, Hafner C, McClelland M, Stolz W, Landthaler M, Schmitt R, Bosserhoff A, Vogt T: Identification of differentially expressed genes in models of melanoma progression by cDNA array analysis: SPARC, MIF and a novel cathepsin protease characterize aggressive phenotypes. Exp Dermatol 12: 761–771, 2003

    Article  PubMed  CAS  Google Scholar 

  91. Sangaletti S, Stoppacciaro A, Guiducci C, Torrisi MR, Colombo MP: Leukocyte, rather than tumor-produced SPARC, determines stroma and collagen type IV deposition in mammary carcinoma. J Exp Med 198: 1475–1485, 2003

    Article  PubMed  CAS  Google Scholar 

  92. Sato N, Fukushima N, Maehara N, Matsubayashi H, Koopmann J, Su GH, Hruban RH, Goggins M: SPARC/osteonectin is a frequent target for aberrant methylation in pancreatic adenocarcinoma and a mediator of tumor-stromal interactions. Oncogene 22: 5021–5030, 2003

    Article  PubMed  CAS  Google Scholar 

  93. Vadlamuri SV, Media J, Sankey SS, Nakeff A, Divine G, Rempel SA: SPARC affects glioma cell growth differently when grown on brain ECM proteins in vitro under standard versus reduced-serum stress conditions. Neuro-oncol 5: 244–254, 2003

    Article  PubMed  CAS  Google Scholar 

  94. Yamashita K, Upadhay S, Mimori K, Inoue H, Mori M: Clinical significance of secreted protein acidic and rich in cystein in esophageal carcinoma and its relation to carcinoma progression. Cancer 97: 2412–2419, 2003

    Article  PubMed  CAS  Google Scholar 

  95. Schneider S, Yochim J, Brabender J, Uchida K, Danenberg KD, Metzger R, Schneider PM, Salonga D, Holscher AH, Danenberg PV: Osteopontin but not osteonectin messenger RNA expression is a prognostic marker in curatively resected non-small cell lung cancer. Clin Cancer Res 10: 1588–1596, 2004

    Article  PubMed  CAS  Google Scholar 

  96. Desai N, Trieu V, Yao R, et al.: SPARC expression in breast tumors may correlate to increased tumor distribution of nanoparticle albumin-bound paclitaxel (ABI-007) vs. taxol. Breast Cancer Res Treat 88(S1): 206, 2004

    Google Scholar 

  97. Trieu V, Frankel T, Labao E, et al.: SPARC expression in breast tumors may correlate to increased tumor distribution of nanoparticle albumin-bound paclitaxel (ABI-007) vs. taxol. Proc Amer Assoc Cancer Res 46: 5584, 2005

    Google Scholar 

  98. Desai N, Yao Z, Soon-Shiong P, et al.: Evidence of Enhanced In Vivo Efficacy at Maximum Tolerated Dose (MTD) of Nanoparticle Paclitaxel (ABI-007) and Taxol in 5 Human Tumor Xenografts of Varying Sensitivity to Paclitaxel. Proc Am Soc Clin Oncol 21: 462, 2002

    Google Scholar 

  99. Ibrahim NK, Desai N, Legha S, Soon-Shiong P, Theriault RL, Rivera E, Esmaeli B, Ring SE, Bedikian A, Hortobagyi GN, Ellerhorst JA: Phase I and pharmacokinetic study of ABI-007, a Cremophor-free, protein-stabilized, nanoparticle formulation of paclitaxel. Clin Cancer Res 8: 1038–1044, 2002

    PubMed  CAS  Google Scholar 

  100. Abi 007. Drugs R D 4: 303–305, 2003

    Google Scholar 

  101. Ibrahim NK, Samuels B, Page R, Doval D, Patel KM, Rao SC, Nair MK, Bhar P, Desai N, Hortobagyi GN: Multicenter phase II trial of ABI-007, an albumin-bound paclitaxel, in women with metastatic breast cancer. J Clin Oncol 23: 6019–6026, 2005

    Article  PubMed  CAS  Google Scholar 

  102. Gradishar WJ, Tjulandin S, Davidson N, Shaw H, Desai N, Bhar P, Hawkins M, O'Shaughnessy J: Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxel in women with breast cancer. J Clin Oncol 23: 7794–7803, 2005

    Article  PubMed  CAS  Google Scholar 

  103. Nyman DW, Campbell KJ, Hersh E, Long K, Richardson K, Trieu V, Desai N, Hawkins MJ, Von Hoff DD: Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonhematologic malignancies. J Clin Oncol 23: 7785–7793, 2005

    Article  PubMed  CAS  Google Scholar 

  104. O'Shaughnessy JA, Blum JL, Sandbach JF, et al.: Weekly nanoparticle albumin paclitaxel (Abraxane) results in long-term disease control in patients with taxane-refractory metastatic breast cancer. Breast Cancer Res Treat 88 (S1): 1070, 2004

    Google Scholar 

  105. Blum JL, Savin MA, Edelman G, et al.: Long term disease control in taxane-refractory metastatic breast cancer treated with nab paclitaxel. Proc Am Soc Clin Oncol 22(14S): 543, 2004

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harold J. Wanebo.

Additional information

Presented as a lunch mini-symposium at the First International Symposium on Cancer Metastasis and the Lymphovascular System. April 28–30, 2005, San Fransciso, CA; Chaired by Harold J. Wanebo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wanebo, H.J., Argiris, A., Bergsland, E. et al. Targeting growth factors and angiogenesis; using small molecules in malignancy. Cancer Metastasis Rev 25, 279–292 (2006). https://doi.org/10.1007/s10555-006-8508-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-006-8508-2

Keywords

Navigation