Skip to main content

Advertisement

Log in

Short telomeres are frequent in hereditary breast tumors and are associated with high tumor grade

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Telomere shortening is a common event involved in malignant transformation. Critically short telomeres may trigger chromosomal aberrations and produce genomic instability leading to cancer development. Therefore, telomere shortening is a frequent molecular alteration in early stages of many epithelial tumors and in breast cancer correlates with stage and prognosis. A better understanding of the involvement of short telomeres in tumors may have a significant impact on patient management and the design of more specific treatments. To understand the role of telomere length (TL) in breast cancer etiology we measured the length of individual telomere signals in single cells by using quantitative telomere in situ hybridization in paraffin-embedded tissue from hereditary and sporadic breast cancers. A total of 104 tumor tissue samples from 75 familial breast tumors (BRCA1, n = 14; BRCA2, n = 13; non-BRCA1/2, n = 48) and 29 sporadic tumors were analyzed. Assessment of telomere signal intensity allowed estimation of the mean TL and related variables, such as percentage of critically short telomeres and percentage of cells with short telomeres. These data were correlated with the immunohistochemical expression of molecular breast cancer markers. Hereditary BRCA1, BRCA2, and non-BRCA1/2 tumors were characterized by shorter TL comparing to sporadic tumors. Considering all tumors, tumor grade was a strong risk factor determining the proportion of short telomeres or short telomere cells. Moreover, some histopathological features appeared to be differentially associated to hereditary or sporadic subgroups. Short telomeres correlated with ER-negative tumors in sporadic cases but not in familial cases, whereas a high level of apoptosis was associated with shorter telomeres in hereditary BRCA1 and BRCA2 tumors. In addition, TL helped to define a subset of non-BRCA1/2 tumors with short telomeres associated with increased expression of antiapoptotic proteins. These findings highlight the potential interest of TL measurements as markers of aggressiveness in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Artandi SE, DePinho RA (2010) Telomeres and telomerase in cancer. Carcinogenesis 31:9–18

    Article  PubMed  CAS  Google Scholar 

  2. Blasco MA (2005) Telomeres and human disease: ageing, cancer and beyond. Nat Rev Genet 6:611–622

    Article  PubMed  CAS  Google Scholar 

  3. Prescott J, Wentzensen IM, Savage SA, De VI (2012) Epidemiologic evidence for a role of telomere dysfunction in cancer etiology. Mutat Res 730:75–84

    Article  PubMed  CAS  Google Scholar 

  4. Broccoli D, Godley LA, Donehower LA, Varmus HE, de LT (1996) Telomerase activation in mouse mammary tumors: lack of detectable telomere shortening and evidence for regulation of telomerase RNA with cell proliferation. Mol Cell Biol 16:3765–3772

    PubMed  CAS  Google Scholar 

  5. Chin K, de Solorzano CO, Knowles D, Jones A, Chou W, Rodriguez EG et al (2004) In situ analyses of genome instability in breast cancer. Nat Genet 36:984–988

    Article  PubMed  CAS  Google Scholar 

  6. Meeker AK, Hicks JL, Platz EA, March GE, Bennett CJ, Delannoy MJ et al (2002) Telomere shortening is an early somatic DNA alteration in human prostate tumorigenesis. Cancer Res 62:6405–6409

    PubMed  CAS  Google Scholar 

  7. Meeker AK, Hicks JL, Iacobuzio-Donahue CA, Montgomery EA, Westra WH, Chan TY et al (2004) Telomere length abnormalities occur early in the initiation of epithelial carcinogenesis. Clin Cancer Res 10:3317–3326

    Article  PubMed  CAS  Google Scholar 

  8. van Heek NT, Meeker AK, Kern SE, Yeo CJ, Lillemoe KD, Cameron JL et al (2002) Telomere shortening is nearly universal in pancreatic intraepithelial neoplasia. Am J Pathol 161:1541–1547

    Article  PubMed  Google Scholar 

  9. Vera E, Canela A, Fraga MF, Esteller M, Blasco MA (2008) Epigenetic regulation of telomeres in human cancer. Oncogene 27:6817–6833

    Article  PubMed  CAS  Google Scholar 

  10. Meeker AK, Argani P (2004) Telomere shortening occurs early during breast tumorigenesis: a cause of chromosome destabilization underlying malignant transformation? J Mammary Gland Biol Neoplasia 9:285–296

    Article  PubMed  Google Scholar 

  11. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al (2000) Molecular portraits of human breast tumours. Nature 406:747–752

    Article  PubMed  CAS  Google Scholar 

  12. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  13. Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A et al (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci USA 100:8418–8423

    Article  PubMed  CAS  Google Scholar 

  14. Sotiriou C, Pusztai L (2009) Gene-expression signatures in breast cancer. N Engl J Med 360:790–800

    Article  PubMed  CAS  Google Scholar 

  15. Abd El-Rehim DM, Ball G, Pinder SE, Rakha E, Paish C, Robertson JF et al (2005) High-throughput protein expression analysis using tissue microarray technology of a large well-characterised series identifies biologically distinct classes of breast cancer confirming recent cDNA expression analyses. Int J Cancer 116:340–350

    Article  PubMed  CAS  Google Scholar 

  16. Callagy G, Cattaneo E, Daigo Y, Happerfield L, Bobrow LG, Pharoah PD et al (2003) Molecular classification of breast carcinomas using tissue microarrays. Diagn Mol Pathol 12:27–34

    Article  PubMed  CAS  Google Scholar 

  17. Gown AM (2009) Tweaking and nudging toward improved-IHC quality. Appl Immunohistochem Mol Morphol 17:363–365

    Article  PubMed  Google Scholar 

  18. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K et al (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  PubMed  CAS  Google Scholar 

  19. Tang P, Skinner KA, Hicks DG (2009) Molecular classification of breast carcinomas by immunohistochemical analysis: are we ready? Diagn Mol Pathol 18:125–132

    Article  PubMed  CAS  Google Scholar 

  20. Cheang MC, Chia SK, Voduc D, Gao D, Leung S, Snider J et al (2009) Ki67 index, HER2 status, and prognosis of patients with Luminal B breast cancer. J Natl Cancer Inst 101:736–750

    Article  PubMed  CAS  Google Scholar 

  21. Voduc KD, Cheang MC, Tyldesley S, Gelmon K, Nielsen TO, Kennecke H (2010) Breast cancer subtypes and the risk of local and regional relapse. J Clin Oncol 28:1684–1691

    Article  PubMed  Google Scholar 

  22. Heaphy CM, Subhawong AP, Gross AL, Konishi Y, Kouprina N, Argani P et al (2011) Shorter telomeres in Luminal B, HER-2 and triple-negative breast cancer subtypes. Mod Pathol 24:194–200

    Article  PubMed  Google Scholar 

  23. Rahman N, Stratton MR (1998) The genetics of breast cancer susceptibility. Annu Rev Genet 32:95–121

    Article  PubMed  CAS  Google Scholar 

  24. Stratton MR, Rahman N (2008) The emerging landscape of breast cancer susceptibility. Nat Genet 40:17–22

    Article  PubMed  CAS  Google Scholar 

  25. Mavaddat N, Antoniou AC, Easton DF, Garcia-Closas M (2010) Genetic susceptibility to breast cancer. Mol Oncol 4:174–191

    Article  PubMed  CAS  Google Scholar 

  26. Martinez-Delgado B, Yanowsky K, Inglada-Perez L, Domingo S, Urioste M, Osorio A et al (2011) Genetic anticipation is associated with telomere shortening in hereditary breast cancer. PLoS Genet 7:e1002182

    Article  PubMed  CAS  Google Scholar 

  27. Ballal RD, Saha T, Fan S, Haddad BR, Rosen EM (2009) BRCA1 localization to the telomere and its loss from the telomere in response to DNA damage. J Biol Chem 284:36083–36098

    Article  PubMed  CAS  Google Scholar 

  28. McPherson JP, Hande MP, Poonepalli A, Lemmers B, Zablocki E, Migon E et al (2006) A role for Brca1 in chromosome end maintenance. Hum Mol Genet 15:831–838

    Article  PubMed  CAS  Google Scholar 

  29. Badie S, Escandell JM, Bouwman P, Carlos AR, Thanasoula M, Gallardo MM et al (2010) BRCA2 acts as a RAD51 loader to facilitate telomere replication and capping. Nat Struct Mol Biol 17:1461–1469

    Article  PubMed  CAS  Google Scholar 

  30. Osorio A, Barroso A, Martinez B, Cebrian A, San Roman JM, Lobo F et al (2000) Molecular analysis of the BRCA1 and BRCA2 genes in 32 breast and/or ovarian cancer Spanish families. Br J Cancer 82:1266–1270

    Article  PubMed  CAS  Google Scholar 

  31. Diez O, Osorio A, Duran M, Martinez-Ferrandis JI, de la Hoya M, Salazar R et al (2003) Analysis of BRCA1 and BRCA2 genes in Spanish breast/ovarian cancer patients: a high proportion of mutations unique to Spain and evidence of founder effects. Hum Mutat 22:301–312

    Article  PubMed  CAS  Google Scholar 

  32. Flores I, Canela A, Vera E, Tejera A, Cotsarelis G, Blasco MA (2008) The longest telomeres: a general signature of adult stem cell compartments. Genes Dev 22:654–667

    Article  PubMed  CAS  Google Scholar 

  33. Gonzalez-Suarez E, Samper E, Flores JM, Blasco MA (2000) Telomerase-deficient mice with short telomeres are resistant to skin tumorigenesis. Nat Genet 26:114–117

    Article  PubMed  CAS  Google Scholar 

  34. Munoz P, Blanco R, Flores JM, Blasco MA (2005) XPF nuclease-dependent telomere loss and increased DNA damage in mice overexpressing TRF2 result in premature aging and cancer. Nat Genet 37:1063–1071

    Article  PubMed  CAS  Google Scholar 

  35. Samper E, Goytisolo FA, Slijepcevic P, van Buul PP, Blasco MA (2000) Mammalian Ku86 protein prevents telomeric fusions independently of the length of TTAGGG repeats and the G-strand overhang. EMBO Rep 1:244–252

    Article  PubMed  CAS  Google Scholar 

  36. Zijlmans JM, Martens UM, Poon SS, Raap AK, Tanke HJ, Ward RK et al (1997) Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc Natl Acad Sci USA 94:7423–7428

    Article  PubMed  CAS  Google Scholar 

  37. Palacios J, Honrado E, Osorio A, Cazorla A, Sarrio D, Barroso A et al (2003) Immunohistochemical characteristics defined by tissue microarray of hereditary breast cancer not attributable to BRCA1 or BRCA2 mutations: differences from breast carcinomas arising in BRCA1 and BRCA2 mutation carriers. Clin Cancer Res 9:3606–3614

    PubMed  CAS  Google Scholar 

  38. Palacios J, Honrado E, Osorio A, Cazorla A, Sarrio D, Barroso A et al (2005) Phenotypic characterization of BRCA1 and BRCA2 tumors based in a tissue microarray study with 37 immunohistochemical markers. Breast Cancer Res Treat 90:5–14

    Article  PubMed  CAS  Google Scholar 

  39. Sabine VS, Faratian D, Kirkegaard-Clausen T, Bartlett JM (2012) Validation of activated caspase-3 antibody staining as a marker of apoptosis in breast cancer. Histopathology 60:369–371

    Article  PubMed  Google Scholar 

  40. Melchor L, Honrado E, Garcia MJ, Alvarez S, Palacios J, Osorio A et al (2008) Distinct genomic aberration patterns are found in familial breast cancer associated with different immunohistochemical subtypes. Oncogene 27:3165–3175

    Article  PubMed  CAS  Google Scholar 

  41. Stefansson OA, Jonasson JG, Johannsson OT, Olafsdottir K, Steinarsdottir M, Valgeirsdottir S et al (2009) Genomic profiling of breast tumours in relation to BRCA abnormalities and phenotypes. Breast Cancer Res 11:R47

    Article  PubMed  Google Scholar 

  42. Jonsson G, Staaf J, Vallon-Christersson J, Ringner M, Holm K, Hegardt C et al (2010) Genomic subtypes of breast cancer identified by array-comparative genomic hybridization display distinct molecular and clinical characteristics. Breast Cancer Res 12:R42

    Article  PubMed  Google Scholar 

  43. Ellsworth RE, Hooke JA, Love B, Kane JL, Patney HL, Ellsworth DL et al (2008) Correlation of levels and patterns of genomic instability with histological grading of invasive breast tumors. Breast Cancer Res Treat 107:259–265

    Article  PubMed  Google Scholar 

  44. Kronenwett U, Ploner A, Zetterberg A, Bergh J, Hall P, Auer G et al (2006) Genomic instability and prognosis in breast carcinomas. Cancer Epidemiol Biomarkers Prev 15:1630–1635

    Article  PubMed  CAS  Google Scholar 

  45. Odagiri E, Kanada N, Jibiki K, Demura R, Aikawa E, Demura H (1994) Reduction of telomeric length and c-erbB-2 gene amplification in human breast cancer, fibroadenoma, and gynecomastia. Relationship to histologic grade and clinical parameters. Cancer 73:2978–2984

    Article  PubMed  CAS  Google Scholar 

  46. Griffith JK, Bryant JE, Fordyce CA, Gilliland FD, Joste NE, Moyzis RK (1999) Reduced telomere DNA content is correlated with genomic instability and metastasis in invasive human breast carcinoma. Breast Cancer Res Treat 54:59–64

    Article  PubMed  CAS  Google Scholar 

  47. Poonepalli A, Banerjee B, Ramnarayanan K, Palanisamy N, Putti TC, Hande MP (2008) Telomere-mediated genomic instability and the clinico-pathological parameters in breast cancer. Genes Chromosomes Cancer 47:1098–1109

    Article  PubMed  CAS  Google Scholar 

  48. Jin Y, Stewenius Y, Lindgren D, Frigyesi A, Calcagnile O, Jonson T et al (2007) Distinct mitotic segregation errors mediate chromosomal instability in aggressive urothelial cancers. Clin Cancer Res 13:1703–1712

    Article  PubMed  CAS  Google Scholar 

  49. Stewenius Y, Jin Y, Ora I, de Kraker J, Bras J, Frigyesi A et al (2007) Defective chromosome segregation and telomere dysfunction in aggressive Wilms’ tumors. Clin Cancer Res 13:6593–6602

    Article  PubMed  CAS  Google Scholar 

  50. Fordyce CA, Heaphy CM, Bisoffi M, Wyaco JL, Joste NE, Mangalik A et al (2006) Telomere content correlates with stage and prognosis in breast cancer. Breast Cancer Res Treat 99:193–202

    Article  PubMed  Google Scholar 

  51. Ducray C, Pommier JP, Martins L, Boussin FD, Sabatier L (1999) Telomere dynamics, end-to-end fusions and telomerase activation during the human fibroblast immortalization process. Oncogene 18:4211–4223

    Article  PubMed  CAS  Google Scholar 

  52. Cheung AL, Deng W (2008) Telomere dysfunction, genome instability and cancer. Front Biosci 13:2075–2090

    Article  PubMed  CAS  Google Scholar 

  53. Leoncini L, Del Vecchio MT, Megha T, Barbini P, Galieni P, Pileri S et al (1993) Correlations between apoptotic and proliferative indices in malignant non-Hodgkin’s lymphomas. Am J Pathol 142:755–763

    PubMed  CAS  Google Scholar 

  54. Lipponen PK, Aaltomaa S (1994) Apoptosis in bladder cancer as related to standard prognostic factors and prognosis. J Pathol 173:333–339

    Article  PubMed  CAS  Google Scholar 

  55. Lipponen P, Aaltomaa S, Kosma VM, Syrjanen K (1994) Apoptosis in breast cancer as related to histopathological characteristics and prognosis. Eur J Cancer 30A:2068–2073

    Article  PubMed  CAS  Google Scholar 

  56. Tanaka K, Iwamoto S, Gon G, Nohara T, Iwamoto M, Tanigawa N (2000) Expression of survivin and its relationship to loss of apoptosis in breast carcinomas. Clin Cancer Res 6:127–134

    PubMed  CAS  Google Scholar 

  57. Nasu S, Yagihashi A, Izawa A, Saito K, Asanuma K, Nakamura M et al (2002) Survivin mRNA expression in patients with breast cancer. Anticancer Res 22:1839–1843

    PubMed  CAS  Google Scholar 

  58. Izawa A, Kobayashi D, Nasu S, Saito K, Moriai R, Asanuma K et al (2002) Relevance of c-erbB2, PLU-1 and survivin mRNA expression to diagnostic assessment of breast cancer. Anticancer Res 22:2965–2969

    PubMed  CAS  Google Scholar 

  59. Lv YG, Yu F, Yao Q, Chen JH, Wang L (2010) The role of survivin in diagnosis, prognosis and treatment of breast cancer. J Thorac Dis 2:100–110

    PubMed  CAS  Google Scholar 

  60. Tischkowitz MD, Foulkes WD (2006) The basal phenotype of BRCA1-related breast cancer: past, present and future. Cell Cycle 5:963–967

    Article  PubMed  CAS  Google Scholar 

  61. Turner NC, Reis-Filho JS (2006) Basal-like breast cancer and the BRCA1 phenotype. Oncogene 25:5846–5853

    Article  PubMed  CAS  Google Scholar 

  62. Honrado E, Osorio A, Milne RL, Paz MF, Melchor L, Cascon A et al (2007) Immunohistochemical classification of non-BRCA1/2 tumors identifies different groups that demonstrate the heterogeneity of BRCAX families. Mod Pathol 20:1298–1306

    Article  PubMed  CAS  Google Scholar 

  63. Oldenburg RA, Kroeze-Jansema K, Meijers-Heijboer H, van Asperen CJ, Hoogerbrugge N, van LI et al (2006) Characterization of familial non-BRCA1/2 breast tumors by loss of heterozygosity and immunophenotyping. Clin Cancer Res 12:1693–1700

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank all members of the Human Genetics Group and the Immunohistochemistry Unit of the Spanish National Cancer Research Centre for their help in obtaining and analyzing the results. This work was funded by Spanish Ministry of Economy and Competitiveness PI08/1120 and PI12/00070 projects, and the Asociación Española contra el Cancer (AECC). Research in the Blasco lab is funded by the Spanish Ministry of Economy and Competitiveness Projects SAF2008-05384 and CSD2007-00017, the Madrid Regional Government Project S2010/BMD-2303 (ReCaRe), the European Union FP7 Project FHEALTH-2010-259749 (EuroBATS), the European Research Council (ERC) Project GA#232854 (TEL STEM CELL), the Körber European Science Award from the Körber Foundation, the Preclinical Research Award from Fundación Lilly (Spain), Fundación Botín (Spain), and the AXA Research Fund.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beatriz Martinez-Delgado.

Additional information

Beatriz Martinez-Delgado and Mercedes Gallardo have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 66 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martinez-Delgado, B., Gallardo, M., Tanic, M. et al. Short telomeres are frequent in hereditary breast tumors and are associated with high tumor grade. Breast Cancer Res Treat 141, 231–242 (2013). https://doi.org/10.1007/s10549-013-2696-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2696-6

Keywords

Navigation