Skip to main content

Advertisement

Log in

Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance

  • Preclinical Study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Classically the insulin receptor substrate-1 (IRS-1) is an essential component of insulin-like growth factor type 1 receptor (IGF-IR) signalling, providing an interface between the receptor and key downstream signalling cascades. Here, however, we show that in tamoxifen-resistant MCF-7 (Tam-R) breast cancer cells, that are highly dependent on epidermal growth factor receptor (EGFR) for growth, IRS-1 can interact with EGFR and be preferentially phosphorylated on tyrosine (Y) 896, a Grb2 binding site. Indeed, phosphorylation of this site is greatly enhanced by exposure of these cells, and other EGFR-positive cell lines, to EGF. Importantly, while IGF-II promotes phosphorylation of IRS-1 on Y612, a PI3-K recruitment site, it has limited effect on Y896 phosphorylation in Tam-R cells. Furthermore, EGF and IGF-II co-treatment, reduces the ability of IGF-II to phosphorylate Y612, whilst maintaining Y896 phosphorylation, suggesting that the EGFR is the dominant recruiter of IRS-1 in this cell line. Significantly, challenge of Tam-R cells with the EGFR-selective tyrosine kinase inhibitor gefitinib, for 7 days, reduces IRS-1/EGFR association and IRS-1 Y896 phosphorylation, while promoting IRS-1/IGF-IR association and IRS-1 Y612 phosphorylation. Furthermore, gefitinib significantly enhances IGF-II-mediated phosphorylation of IRS-1 Y612 and AKT in Tam-R cells. Importantly, induction of this pathway by gefitinib can be abrogated by inhibition/downregulation of the IGF-IR. Our data would therefore suggest a novel association exists between the EGFR and IRS-1 in several EGFR-positive cancer cell lines. This association acts to promote phosphorylation of IRS-1 at Y896 and drive MAPK signalling whilst preventing recruitment of IRS-1 by the IGF-IR and inhibiting signalling via this receptor. Treatment with gefitinib alters the dynamics of this system, promoting IGF-IR signalling, the dominant gefitinib-resistant growth regulatory pathway in Tam-R cells, thus, potentially limiting its efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Olayioye MA, Neve RM, Lane HA, Hynes N (2000) The erbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–3167

    Article  PubMed  CAS  Google Scholar 

  2. Nicholson RI, Gee JMW, Harper ME (2001) EGFR and cancer prognosis. Eur J Cancer 37(Suppl 4):S9–S15

    Article  PubMed  CAS  Google Scholar 

  3. Salomon DS, Bradt R, Ciardiello F, Normanno N (1995) Epidermal growth factor-related peptides and their receptors in human malignancies. Crit Rev Oncol Hematol 19:183–232

    Article  PubMed  CAS  Google Scholar 

  4. Schlessinger J (2000) Cell Signaling by receptor tyrosine kinases cell 103:211–225

    Google Scholar 

  5. Baselga J (2002) Why the epidermal growth factor receptor? The rationale for cancer therapy. Oncologist 7:2–8

    Article  PubMed  CAS  Google Scholar 

  6. Baselga J, Arteaga CL (2005) Critical update and emerging trends in epidermal growth factor receptor targeting in cancer. J Clin Oncol 23:2445–2459

    Article  PubMed  CAS  Google Scholar 

  7. Agrawal A, Gutteridge E, Gee JM, Nicholson RI, Robertson JF (2005) Overview of tyrosine kinase inhibitors in clinical breast cancer. Endocr Relat Cancer 12(Suppl 1):S135–S144

    Article  PubMed  CAS  Google Scholar 

  8. Johnston SRD (2005) Clinical trials of intracellular signal transductions inhibitors for breast cancer—a strategy to overcome endocrine resistance. Endocr Relat Cancer 12:145–157

    Article  Google Scholar 

  9. Ranson M, Hammond LA, Ferry D, Kris M, Tullo A, Murray PI, Miller V, Averbuch S, Ochs J, Morris C, Feyereislova A, Swaisland H, Rowinsky EK (2002) ZD1839, a selective oral epidermal growth factor receptor-tyrosine kinase inhibitor, is well tolerated and active in patients with solid, malignant tumors: results of a phase I trial. J Clin Oncol 20:2240–2250

    Article  PubMed  CAS  Google Scholar 

  10. Baselga J, Norton L, Masui H, Pandiella A, Coplan K, Miller WH Jr, Mendelsohn J (1993) Antitumor effects of doxorubicin in combination with anti-epidermal growth factor receptor monoclonal antibodies. J Natl Cancer Inst 18:1327–1333

    Article  Google Scholar 

  11. Ciardiello F (2005) Epidermal growth factor receptor inhibitors in cancer treatment. Future Oncol 1:221–234

    Article  PubMed  CAS  Google Scholar 

  12. Raben D, Helfrich BA, Chan D, Johnson G, Bunn PA Jr (2002) Zd1839, a selective epidermal growth factor receptor tyrosine kinase inhibitor, alone and in combination with radiation and chemotherapy as a new therapeutic strategy in non-small cell lung cancer. Semin Oncol 29:37–46

    Article  PubMed  CAS  Google Scholar 

  13. El-Rayes BF, LoRusso PM (2004) Targeting the epidermal growth factor receptor. Br J Cancer 91:418–424

    Article  PubMed  CAS  Google Scholar 

  14. Lynch TJ, Bell DW, Sordella R, Gurubhagavatula S, Okimoto RA, Brannigan BW, Harris PL, Haserlat SM, Supko JG, Haluska FG, Louis DN, Christiani DC, Settleman J, Haber DA (2004) Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N Engl J Med 350:2129–2139

    Article  PubMed  CAS  Google Scholar 

  15. Paez JG, Janne PA, Lee JC, Tracy S, Greulich H, Gabriel S, Herman P, Kaye FJ, Lindeman N, Boggon TJ, Naoki K, Sasaki H, Fujii Y, Eck MJ, Sellers WR, Johnson BE, Meyerson M (2004) EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304:1497–1500

    Article  PubMed  CAS  Google Scholar 

  16. Riedel RF, Febbo PG (2005) Epidermal growth factor receptor mutations predict sensitivity to gefitinib in patients with non-small-cell lung cancer. Future Oncol 14:461–466

    Article  Google Scholar 

  17. Bianco R, Shin I, Ritter CA, Yakes FM, Basso A, Rosen N, Tsurutani J, Dennis PA, Mills GB, Arteaga CL (2003) Loss of PTEN/MMAC1/TEP in EGF receptor-expressing tumor cells counteracts the antitumor action of EGFR tyrosine kinase inhibitors. Oncogene 22:2812–2822

    Article  PubMed  CAS  Google Scholar 

  18. Liu B, Fang M, Lu Y, Mendelsohn J, Fan Z (2001) Fibroblast growth factor and insulin-like growth factor differentially modulate the apoptosis and G1 arrest induced by anti-epidermal growth factor receptor monoclonal antibody. Oncogene 20:1913–1922

    Article  PubMed  CAS  Google Scholar 

  19. Chakravarti A, Loeffler JS, Dyson NJ (2002) Insulin-like growth factor receptor I mediates resistance to anti-epidermal growth factor receptor therapy in primary human glioblastoma cells through continued activation of phosphoinositide 3-kinase signalling. Cancer Res 62:200–207

    PubMed  CAS  Google Scholar 

  20. Jones HE, Goddard L, Gee JMW, Hiscox S, Rubini M, Barrow D, Knowlden JM, Williams S, Wakeling AE, Nicholson RI (2004) Insulin-like growth factor-I receptor signalling and acquired resistance to gefitinib (ZD1839; Iressa) in human breast and prostate cancer cells. Endocr Relat Cancer 11:793–814

    Article  PubMed  CAS  Google Scholar 

  21. Camirand A, Zakikhani M, Young F, Pollak M (2005) Inhibition of insulin-like growth factor receptor signalling enhances growth-inhibitory and pro-apoptotic effects of gefitinib (Iressa) in human breast cancer cells. Breast Cancer Res 7:570–579

    Article  Google Scholar 

  22. Ullrich A, Gray A, Tam AW, Yang-Feng T, Tsubokawa M, Collins C, Henzel W, Le Bon T, Kathuria S, Chen E, Jacobs S, Francke U, Ramachandran J, Fujita-Yamaguchi Y (1986) Insulin-like growth factor I receptor primary structure: comparison with insulin receptor suggests structural determinants that define functional specificity. EMBO J 5:2503–2512

    PubMed  CAS  Google Scholar 

  23. Rocha RL, Hilsenbeck SG, Jackson JG, Van Den Berg CL, Weng C, Lee AV, Yee D (1997) Insulin-like growth factor binding protein 3 and insulin receptor substrate 1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Can Res 3:103–109

    CAS  Google Scholar 

  24. Turner BC, Haffty BG, Narayanan L, Yuan J, Havre PA, Gumbs AA, Kaplan L, Burgaud JL, Carter D, Baserga R, Glazer PM (1997) IGF-I receptor and cyclin D1 expression influence cellular radiosensitivity and local recurrence after lumpectomy and radiation. Cancer Res 57:3079–3083

    PubMed  CAS  Google Scholar 

  25. White MF (1997) The insulin signalling system and the IRS proteins. Diabetologia 40:2–17

    Article  Google Scholar 

  26. Esposito DL, Li Y, Cama A, Quon MJ (2001) Tyr(612) and Tyr(632) in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinositol 3-kinase activity and translocation of GLUT4 in adipose cells. Endocrinology 142:2833–2840

    Article  PubMed  CAS  Google Scholar 

  27. Hers I, Bell CJ, Poole AW, Jiang D, Denton RM, Schaeffer E, Tavare JM (2002) Reciprocal feedback regulation of insulin receptor and insulin receptor substrate tyrosine phosphorylation by phosphoinositide 3-kinase in primary adipocytes. Biochem J 368:875–884

    Article  PubMed  CAS  Google Scholar 

  28. Lu Y, Zi X, Zhao Y, Mascarenhas D, Pollak M (2001) Insulin-like growth factor receptor signalling and resistance to trastuzumab (Herceptin). J Natl Cancer Inst 93:1852–1857

    Article  PubMed  CAS  Google Scholar 

  29. Lu Y, Xiaolin ZI, Pollak M (2004) Molecular mechanisms underlying IGF-I-induced attenuation of the growth inhibitory activity of trastuzumab (Herceptin) on SKBR3 breast cancer cells. Int J Cancer 108:334–341

    Article  PubMed  CAS  Google Scholar 

  30. Knowlden JM, Hutcheson IR, Jones HE, Madden T, Gee JM, Harper ME, Barrow D, Wakeling AE, Nicholson RI (2003) Elevated levels of epidermal growth factor receptor/c-erbB2 heterodimers mediate an autocrine growth regulatory pathway in tamoxifen-resistant MCF-7 cells. Endocrinology 144:1032–1044

    Article  PubMed  CAS  Google Scholar 

  31. Jones HE, Gee JM, Barrow D, Tonge D, Holloway B, Nicholson RI (2006) Inhibition of insulin receptor isoform-A signalling restores sensitivity to gefitinib in previously de novo resistant colon cancer cells. Br J Cancer 95:172–180

    Article  PubMed  CAS  Google Scholar 

  32. Knowlden JM, Hutcheson IR, Barrow D, Gee JM, Nicholson RI (2005) Insulin-like growth factor-I receptor signaling in tamoxifen-resistant breast cancer: a supporting role to the epidermal growth factor receptor. Endocrinology 146:4609–4618

    Article  PubMed  CAS  Google Scholar 

  33. Jordan NJ, Gee JMW, Barrow D, Wakeling AE, Nicholson RI (2004) Increased constitutive activity of PKB/Akt in tamoxifen resistant breast cancer MCF-7 cells. Breast Cancer Res Treat 87:167–180

    Article  PubMed  CAS  Google Scholar 

  34. Fujioka T, Kim JH, Adachi H, Saito K, Tsujimoto M, Yokoyama S, Ui M (2001) Further evidence for the involvement of insulin receptor substrates in epidermal growth factor-induced activation of phosphatidylinositol 3-kinase. Eur J Biochem 268:4158–4168

    Article  PubMed  CAS  Google Scholar 

  35. Fujioka T, Ui M (2001) Involvement of insulin receptor substrates in epidermal growth factor induced activation of phosphatidylinositol 3-kinase in rat hepatocyte primary culture. Eur J Biochem 268:25–34

    Article  PubMed  CAS  Google Scholar 

  36. Hardy RW, Gupta KB, McDonald JM, Williford J, Wells A (1995) Epidermal growth factor (EGF) receptor carboxy-terminal domains are required for EGF-induced glucose transport in transgenic 3T3-L1 adipocytes. Endocrinology 136:431–439

    Article  PubMed  CAS  Google Scholar 

  37. Jones RB, Gordus A, Krall JA, MacBeath G (2006) A quantitative protein interaction network for the ErbB receptors using protein microarrays. Nature 439:168–174

    Article  PubMed  CAS  Google Scholar 

  38. Songyang Z, Margolis B, Chaudhuri M, Shoelson SE, Cantley LC (1995) The phosphotyrosine interaction domain of SHC recognizes tyrosine-phosphorylated NPXY motif. J Biol Chem 270:14863–14866

    Article  PubMed  CAS  Google Scholar 

  39. Zhang H, Hoff H, Sell C (2000) Insulin-like growth factor I-mediated degradation of insulin receptor substrate-1 is inhibited by epidermal growth factor in prostate epithelial cells. J Biol Chem 275:22558–22562

    Article  PubMed  CAS  Google Scholar 

  40. Nicholson RI, Hutcheson IR, Knowlden JM, Jones H, Harper ME, Jordan N, Hiscox SE, Barrow B, Gee JMW (2004) Nonendocrine pathways and endocrine resistance: observations with antiestrogens and signal transduction inhibitors. Clin Cancer Res 10:346–354

    Article  Google Scholar 

  41. Reiss K, Wang JY, Romano G, Furnari FB, Cavenee WK, Morrione A, Tu X, Baserga R (2000) IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene 19:2687–2694

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Carol Dutkowski and Martin Giles for expert technical assistance. This research was generously supported by the Tenovus organisation. ‘IRESSA’ is a trademark of the AstraZeneca group of companies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iain R. Hutcheson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Knowlden, J.M., Jones, H.E., Barrow, D. et al. Insulin receptor substrate-1 involvement in epidermal growth factor receptor and insulin-like growth factor receptor signalling: implication for Gefitinib (‘Iressa’) response and resistance. Breast Cancer Res Treat 111, 79–91 (2008). https://doi.org/10.1007/s10549-007-9763-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9763-9

Keywords

Navigation