Skip to main content
Log in

Integrated microfluidic devices for combinatorial cell-based assays

  • Published:
Biomedical Microdevices Aims and scope Submit manuscript

Abstract

The development of miniaturized cell culture platforms for performing parallel cultures and combinatorial assays is important in cell biology from the single-cell level to the system level. In this paper we developed an integrated microfluidic cell-culture platform, Cell-microChip (Cell-μChip), for parallel analyses of the effects of microenvironmental cues (i.e., culture scaffolds) on different mammalian cells and their cellular responses to external stimuli. As a model study, we demonstrated the ability of culturing and assaying several mammalian cells, such as NIH 3T3 fibroblast, B16 melanoma and HeLa cell lines, in a parallel way. For functional assays, first we tested drug-induced apoptotic responses from different cell lines. As a second functional assay, we performed “on-chip” transfection of a reporter gene encoding an enhanced green fluorescent protein (EGFP) followed by live-cell imaging of transcriptional activation of cyclooxygenase 2 (Cox-2) expression. Collectively, our Cell-μChip approach demonstrated the capability to carry out parallel operations and the potential to further integrate advanced functions and applications in the broader space of combinatorial chemistry and biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • P.A. Auroux, D. Iossifidis, D.R. Reyes, A. Manz, Micro total analysis systems. 2. Analytical standard operations and applications Anal. Chem. 74, 2637–2652 (2002). doi:10.1021/ac020239t

    Article  Google Scholar 

  • M.R. Bennett, W.L. Pang, N.A. Ostroff, B.L. Baumgartner, S. Nayak, L.S. Tsimring, J. Hasty, Metabolic gene regulation in a dynamically changing environment Nature 454, 1119–1122 (2008). doi:10.1038/nature07211

    Article  Google Scholar 

  • S.H. Cartmell, B.D. Porter, A.J. Garcia, R.E. Guldberg, Effects of medium perfusion rate on cell-seeded three-dimensional bone constructs in vitro Tissue Eng. 9, 1197–1203 (2003). doi:10.1089/10763270360728107

    Article  Google Scholar 

  • H.P. Chou, M.A. Unger, S.R. Quake, A microfabricated rotary pump Biomed. Microdevices 3(4), 323–330 (2001). doi:10.1023/A:1012412916446

    Article  Google Scholar 

  • B.G. Chung, L.A. Flanagan, S.W. Rhee, P.H. Schwartz, A.P. Lee, E.S. Monuki, N.L. Jeon, Human neural stem cell growth and differentiation in a gradient-generating microfluidic device Lab Chip 5, 401–406 (2005). doi:10.1039/b417651k

    Article  Google Scholar 

  • P.S. Dittrich, A. Manz, Lab-on-a-chip: microfluidics in drug discovery Nat. Rev. Drug Discov. 5, 210–218 (2006). doi:10.1038/nrd1985

    Article  Google Scholar 

  • P.S. Dittrich, K. Tachikawa, A. Manz, Micro total analysis systems. Latest advancements and trends Anal. Chem. 78, 3887–3907 (2006). doi:10.1021/ac0605602

    Article  Google Scholar 

  • R. Gomez-Sjoberg, A.A. Leyrat, D.M. Pirone, C.S. Chen, S.R. Quake, Versatile, fully automated, microfluidic cell culture system Anal. Chem. 79, 8557–8563 (2007). doi:10.1021/ac071311w

    Article  Google Scholar 

  • W. Gu, X. Zhu, N. Futai, B.S. Cho, S. Takayama, Computerized microfluidic cell culture using elastomeric channels and Braille displays Proc. Natl. Acad. Sci. U. S. A. 101, 15861–15866 (2004). doi:10.1073/pnas.0404353101

    Article  Google Scholar 

  • D.C. Hill, S.K. Wrigley, L.J. Nisbet, Novel screen methodologies for identification of new microbial metabolites with pharmacological activity Adv. Biochem. Eng. Biotechnol. 59, 73–121 (1998). doi:10.1007/BFb0102297

    Article  Google Scholar 

  • B. Hudson, W.B. Upholt, J. Devinny, J. Vinograd, The use of an ethidium analogue in the dye-buoyant density procedure for the isolation of closed circular DNA: the variation of the superhelix density of mitochondrial DNA Proc. Natl. Acad. Sci. U. S. A. 62, 813–820 (1969). doi:10.1073/pnas.62.3.813

    Article  Google Scholar 

  • J.M. Irish, N. Kotecha, G.P. Nolan, Mapping normal and cancer cell signalling networks: towards single-cell proteomics Nat. Rev. Cancer 6, 146–155 (2006). doi:10.1038/nrc1804

    Article  Google Scholar 

  • B.J. Kane, M.J. Zinner, M.L. Yarmush, M. Toner, Liver-specific functional studies in a microfluidic array of primary mammalian hepatocytes Anal. Chem. 78, 4291–4298 (2006). doi:10.1021/ac051856v

    Article  Google Scholar 

  • L. Kim, M.D. Vahey, H.Y. Lee, J. Voldman, Microfluidic arrays for logarithmically perfused embryonic stem cell culture Lab Chip 6, 394–406 (2006). doi:10.1039/b511718f

    Article  Google Scholar 

  • L. Kim, Y.C. Toh, J. Voldman, H. Yu, A practical guide to microfluidic perfusion culture of adherent mammalian cells Lab Chip 7, 681–694 (2007). doi:10.1039/b704602b

    Article  Google Scholar 

  • N. Korin, A. Bransky, U. Dinnar, S. Levenberg, A parametric study of human fibroblasts culture in a microchannel bioreactor Lab Chip 7, 611–617 (2007). doi:10.1039/b702392h

    Article  Google Scholar 

  • C.C. Lee, G. Sui, A. Elizarov, C.J. Shu, Y.S. Shin, A.N. Dooley, J. Huang, A. Daridon, P. Wyatt, D. Stout, H.C. Kolb, O.N. Witte, N. Satyamurthy, J.R. Heath, M.E. Phelps, S.R. Quake, H.R. Tseng, Multistep synthesis of a radiolabeled imaging probe using integrated microfluidics Science 310, 1793–1796 (2005). doi:10.1126/science.1118919

    Article  Google Scholar 

  • Q. Liang, M. Yamamoto, D.T. Curiel, H.R. Herschman, Noninvasive imaging of transcriptionally restricted transgene expression following intratumoral injection of an adenovirus in which the COX-2 promoter drives a reporter gene Mol. Imaging Biol. 6, 395–404 (2004). doi:10.1016/j.mibio.2004.09.002

    Article  Google Scholar 

  • S.J. Martin, S.V. Lennon, A.M. Bonham, T.G. Cotter, Induction of apoptosis (programmed cell death) in human leukemic HL-60 cells by inhibition of RNA or protein synthesis J. Immunol. 145, 1859–1867 (1990)

    Google Scholar 

  • L.J. Millet, M.E. Stewart, J.V. Sweedler, R.G. Nuzzo, M.U. Gillette, Microfluidic devices for culturing primary mammalian neurons at low densities Lab Chip 7, 987–994 (2007). doi:10.1039/b705266a

    Article  Google Scholar 

  • L.K. Minor, Assays to measure the activation of membrane tyrosine kinase receptors: focus on cellular methods Curr. Opin. Drug Discov. Devel. 6, 760–765 (2003)

    Google Scholar 

  • J.M. Padron, C.L. van der Wilt, K. Smid, E. Smitskamp-Wilms, H.H. Backus, P.E. Pizao, G. Giaccone, G.J. Peters, The multilayered postconfluent cell culture as a model for drug screening Crit. Rev. Oncol. Hematol. 36, 141–157 (2000). doi:10.1016/S1040-8428(00)00083-4

    Article  Google Scholar 

  • J.W. Park, B. Vahidi, A.M. Taylor, S.W. Rhee, N.L. Jeon, Microfluidic culture platform for neuroscience research Nat. Protoc. 1, 2128–2136 (2006). doi:10.1038/nprot.2006.316

    Article  Google Scholar 

  • D. Rajotte, P. Haddad, A. Haman, E.J. Cragoe Jr., T. Hoang, Role of protein kinase C and the Na+/H+ antiporter in suppression of apoptosis by granulocyte macrophage colony-stimulating factor and interleukin-3 J. Biol. Chem. 267, 9980–9987 (1992)

    Google Scholar 

  • D.R. Reyes, D. Iossifidis, P.A. Auroux, A. Manz, Micro total analysis systems. 1. Introduction, theory, and technology Anal. Chem. 74, 2623–2636 (2002). doi:10.1021/ac0202435

    Article  Google Scholar 

  • A. Sin, K.C. Chin, M.F. Jamil, Y. Kostov, G. Rao, M.L. Shuler, The design and fabrication of three-chamber microscale cell culture analog devices with integrated dissolved oxygen sensors Biotechnol. Prog. 20, 338–345 (2004). doi:10.1021/bp034077d

    Article  Google Scholar 

  • W.H. Song, J. Kwan, G.V. Kaigala, V.N. Hoang, C.J. Backhouse, Readily integrated, electrically controlled microvalves J. Micromechanics Microengineering 8, 1071–1078 (2008)

    Google Scholar 

  • M. Tafani, D.A. Minchenko, A. Serroni, J.L. Farber, Induction of the mitochondrial permeability transition mediates the killing of HeLa cells by staurosporine Cancer Res. 61, 2459–2466 (2001)

    Google Scholar 

  • Y.C. Toh, C. Zhang, J. Zhang, Y.M. Khong, S. Chang, V.D. Samper, D. van Noort, D.W. Hutmacher, H. Yu, A novel 3D mammalian cell perfusion-culture system in microfluidic channels Lab Chip 7, 302–309 (2007). doi:10.1039/b614872g

    Article  Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, A. Folch, Differentiation-on-a-chip: a microfluidic platform for long-term cell culture studies Lab Chip 5, 14–19 (2005). doi:10.1039/b405719h

    Article  Google Scholar 

  • A. Tourovskaia, X. Figueroa-Masot, A. Folch, Long-term microfluidic cultures of myotube microarrays for high-throughput focal stimulation Nat. Protoc. 1, 1092–1104 (2006). doi:10.1038/nprot.2006.123

    Article  Google Scholar 

  • F. Traganos, Z. Darzynkiewicz, T. Sharpless, M.R. Melamed, Simultaneous staining of ribonucleic and deoxyribonucleic acids in unfixed cells using acridine orange in a flow cytofluorometric system J. Histochem. Cytochem. 25, 46–56 (1977)

    Google Scholar 

  • Y. Umezawa, Genetically encoded optical probes for imaging cellular signaling pathways Biosens. Bioelectron. 20, 2504–2511 (2005). doi:10.1016/j.bios.2004.10.015

    Article  Google Scholar 

  • M.A. Unger, H.P. Chou, T. Thorsen, A. Scherer, S.R. Quake, Monolithic microfabricated valves and pumps by multilayer soft lithography Science 288, 113–116 (2000). doi:10.1126/science.288.5463.113

    Article  Google Scholar 

  • X. Wang, N.G. Zelenski, J. Yang, J. Sakai, M.S. Brown, J.L. Goldstein, Cleavage of sterol regulatory element binding proteins (SREBPs) by CPP32 during apoptosis EMBO J. 15, 1012–1020 (1996)

    Google Scholar 

  • J. Wang, G. Sui, V.P. Mocharla, R.J. Lin, M.E. Phelps, H.C. Kolb, H.R. Tseng, Integrated microfluidics for parallel screening of an in situ click chemistry library Angew. Chem. Int. Ed. Engl. 45, 5276–5281 (2006). doi:10.1002/anie.200601677

    Article  Google Scholar 

  • P.K. Wong, F. Yu, A. Shahangian, G. Cheng, R. Sun, C.M. Ho, Closed-loop control of cellular functions using combinatory drugs guided by a stochastic search algorithm Proc. Natl. Acad. Sci. U. S. A. 105, 5105–5110 (2008). doi:10.1073/pnas.0800823105

    Article  Google Scholar 

  • Y.N. Xia, G.M. Whitesides, Soft lithography Annu. Rev. Mater. Sci. 28, 153–184 (1998). doi:10.1146/annurev.matsci.28.1.153

    Article  Google Scholar 

  • M.Y. Zhang, P.J. Lee, P.J. Hung, T. Johnson, L.P. Lee, M.R. Mofrad, Microfluidic environment for high density hepatocyte culture Biomed. Microdevices 10, 117–121 (2008). doi:10.1007/s10544-007-9116-9

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the NIH NanoSystems Biology Cancer Center, the DOE-UCLA Institute of Molecular Medicine and the NIH-UCLA Center for In Vivo Imaging in Cancer Biology and Siemens Medical Solutions USA Inc. We thank Stephanie M. Shelly, Dan Rohle, Shirley Quan and Mireille Riedinger for the outstanding technical support with conventional cell culture conditions. ONW is an Investigator of the Howard Hughes Medical Institute. CGR was supported by a Developmental Project Award (ICMIC, NIH/NCI grant no. CA08630). C.J.S. was supported by a National Institutes of Health (NIH) Research Training in Pharmacological Sciences training grant PHS T32 CM008652.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Caius G. Radu, Owen N. Witte, Ki-Bum Lee or Hsian-Rong Tseng.

Additional information

Zeta Tak For Yu and Ken-ichiro Kamei contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 115 KB)

ESM Movie 1

(MOV 11.8 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, Z.T.F., Kamei, Ki., Takahashi, H. et al. Integrated microfluidic devices for combinatorial cell-based assays. Biomed Microdevices 11, 547–555 (2009). https://doi.org/10.1007/s10544-008-9260-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10544-008-9260-x

Keywords

Navigation