Skip to main content
Log in

Angiogenesis in normal and neoplastic ovaries

  • Review
  • Published:
Angiogenesis Aims and scope Submit manuscript

Abstract

Ovarian physiology is intricately connected to hormonally regulated angiogenic response. Recent advances in the post genomic revolution have significantly impacted our understanding of ovarian function. In an angiogenesis perspective, the ovary offers a unique opportunity to unravel the molecular orchestration of blood vessel development and regression under normal conditions. A majority of ovarian cancers develop from the single layer of epithelium surrounding the ovaries. Angiogenesis is critical for the development of ovarian cancer and its peritoneal dissemination. The present review summarizes recent findings on the angiogenic response in neoplastic ovaries and discusses the prospects of using anti-angiogenic approaches to treat ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Ang-1:

angiopoietin-1

CL:

corpus luteum

EG-VEGF:

endocrine gland VEGF

MMP:

matrix metalloproteinase

MT-MMP:

membrane type matrix metalloproteinase

VEGF:

vascular endothelial growth factor

VEGF-R:

vascular endothelial cell growth factor receptor

References

  1. Ries LAG, Eisner MP, Kosary CL et al. SEER cancer statistics review, 1975–2001, National Cancer Institute. Bethesda, MD, http://seer.cancer.gov/csr/1975_2001/, 2004

  2. Ries LAG, Reichman ME, Lewis DR et al (2003) Cancer survival and incidence from the surveillance, epidemiology, and end results (SEER) program. The Oncologist 8:541–552

    Article  PubMed  Google Scholar 

  3. Folkman J. (2003) Fundamental concepts of the angiogenic process. Curr Mol Med. 3(7):643–51

    Article  PubMed  CAS  Google Scholar 

  4. Holash J, Maisonpierre PC, Compton D et al (1999) Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science. 284(5422):1994–8

    PubMed  CAS  Google Scholar 

  5. Dvorak HF (2003) Rous-Whipple Award Lecture. How tumors make bad blood vessels and stroma. Am J Pathol. 162(6):1747–57

    PubMed  CAS  Google Scholar 

  6. Jain RK (2005) Normalization of tumor vasculature: an emerging concept inantiangiogenic therapy. Science. 307(5706):58–62

    PubMed  CAS  Google Scholar 

  7. Rafii S, Avecilla S, Shmelkov S et al (2003) Angiogenic factors reconstitute hematopoiesis by recruiting stem cells from bone marrow microenvironment. Ann N Y Acad Sci. 996:49–60

    PubMed  CAS  Google Scholar 

  8. Hendrix MJ, Seftor EA, Hess AR et al (2003) Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer. 3(6):411–21

    Article  PubMed  CAS  Google Scholar 

  9. Sood AK, Hendrix MJ (2003) The complexity of tumor vascularity. Cancer Biol Ther. 2(3):257–8

    PubMed  CAS  Google Scholar 

  10. Zeleznik AJ, Schuler HM, Reichert LE Jr, (1981) Gonadotropin-binding sites in the rhesus monkey ovary role of the vasculature in the selective distribution of human chorionic gonadotropin to the preovulatory follicle. Endocrinology 109: 356–362

    Article  PubMed  CAS  Google Scholar 

  11. Tamanini C, De Ambrogi M (2004) Angiogenesis in developing follicle and corpus luteum Reprod Domest Anim. 39(4):206–16

    Article  PubMed  CAS  Google Scholar 

  12. Fraser HM, Wulff C (2001) Angiogenesis in the primate ovary. Reprod Fertil Dev. 13:557–66

    Article  PubMed  CAS  Google Scholar 

  13. Hazzard TM, Stouffer RL (2000) Angiogenesis in ovarian follicular and luteal development Baillieres. Best Pract Res Clin Obstet Gynaecol. 14:883–900

    Article  PubMed  CAS  Google Scholar 

  14. Abulafia O, Sherer DM (2000) Angiogenesis of the ovary. Am J Obstet Gynecol. 182:240–6

    PubMed  CAS  Google Scholar 

  15. Grasselli F, Basini G, Tirelli M et al. (2003) Angiogenic activity of porcine granulosa cells co-cultured with endothelial cells in a microcarrier-based three-dimensional fibrin gel. J Physiol Pharmacol. 54:361–70

    PubMed  CAS  Google Scholar 

  16. Fraser HM, and Wulff C (2003) Angiogenesis in the corpus luteum. Reprod Biol Endocrinol. 1(1): 88

    Article  PubMed  Google Scholar 

  17. Wulff C, Dickson SE, Duncan WC, Fraser HM (2001) Angiogenesis in the human corpus luteum: simulated early pregnancy by HCG treatment is associated with both angiogenesis and vessel stabilization. Hum Reprod. 16(12):2515–24

    Article  PubMed  CAS  Google Scholar 

  18. Dickson SE, Fraser HM (2000) Inhibition of early luteal angiogenesis by gonadotropin-releasing hormone antagonist treatment in the primate. J Clin Endocrinol Metab. 85(6):2339–44

    Article  PubMed  CAS  Google Scholar 

  19. Christenson LK, Stouffer RL (1996) Proliferation of microvascular endothelial cells in the primate corpus luteum during the menstrual cycle and simulated early pregnancy. Endocrinology. 137(1):367–74

    Article  PubMed  CAS  Google Scholar 

  20. Rodger FE, Young FM, Fraser HM et al (1997) Endothelial cell proliferation follows the mid-cycle luteinizing hormone surge, but not human chorionic gonadotrophin rescue, in the human corpus luteum. Hum Reprod. 12(8):1723–9

    Article  PubMed  CAS  Google Scholar 

  21. Goede V, Schmidt T, Kimmina S et al (1998) Analysis of blood vessel maturation processes during cyclic ovarian angiogenesis. Lab Invest. 78(11):1385–94

    PubMed  CAS  Google Scholar 

  22. 22. Young RC, Walton LA, Ellenberg SS, et al (1990) Adjuvant therapy in stage I and II epithelial ovarian cancer. Results of two prospective randomized trials. N Engl J Med 322:1021

    Article  PubMed  CAS  Google Scholar 

  23. 23. Yancik R (1993) Ovarian cancer. Age contrasts in incidence, histology, disease stage at diagnosis, and mortality. Cancer 71:517

    Article  PubMed  CAS  Google Scholar 

  24. 24. Karlan BY, Raffel LJ, Crvenkovic G et al (1993) A multidisciplinary approach to the early detection of ovarian carcinoma: rationale, protocol design, and early results. Am J Obstet Gynecol. 169(3):494–501

    PubMed  CAS  Google Scholar 

  25. 25. Goswamy RK, Campbell S, Royston JP et al (1988) Ovarian size in postmenopausal women. Br J Obstet Gynaecol. 95(8):795–801

    PubMed  CAS  Google Scholar 

  26. 26. Granberg S, Wikland M, Jansson I (1989) Macroscopic characterization of ovarian tumors and the relation to the histological diagnosis: criteria to be used for ultrasound evaluation. Gynecol Oncol. 35(2):139–44

    Article  PubMed  CAS  Google Scholar 

  27. 27. DePriest PD, Shenson D, Fried A et al (1993) A morphology index based on sonographic findings in ovarian cancer. Gynecol Oncol. 51(1):7–11

    Article  PubMed  CAS  Google Scholar 

  28. 28. Timor-Tritsch LE, Lerner JP, Monteagudo A, Santos R (1993) Transvaginal ultrasonographic characterization of ovarian masses by means of color flow-directed doppler measurements and a morphologic scoring system. Am J Obstet Gynecol. 168 (3):909–13

    PubMed  CAS  Google Scholar 

  29. 29. Kurjak A, Zalud I, Alfirevic Z (1991) Evaluation of adnexal masses with transvaginal color ultrasound. J Ultrasound Med 10(6):295–7

    PubMed  CAS  Google Scholar 

  30. 30. Kurjak A, Kupesic S, Sparac V et al (2001) Preoperative evaluation of pelvic tumors by doppler and three-dimensional sonography. J Ultrasound Med. 20(8):829–40

    PubMed  CAS  Google Scholar 

  31. 31. Kurjak A, Kupesic S, Sparac V et al. (2003) The detection of stage I ovarian cancer by three-dimensional sonography and power doppler. Gynecol Oncol. 90(2):258–64

    Article  PubMed  Google Scholar 

  32. Scully RE, Clement PE, Young RH. In Rosai J, Sobin LH (eds): Atlas of Tumor Pathology: Tumors of the Ovary, Maldeveloped Gonads, Fallopian Tube and Broad Ligament. Washington, DC: Armed Forces Institute of Pathology, 1998.

  33. 33. Schummer M, Ng WV, Bumgarner RE et al (1999) Comparative hybridization of an array of 21,500 ovarian cDNAs for the discovery of genes overexpressed in ovarian carcinomas. Gene. 238(2):375–85

    Article  PubMed  CAS  Google Scholar 

  34. 34. Shridhar V, Sen A, Chien J et al (2002) Identification of underexpressed genes in early- and late-stage primary ovarian tumors by suppression subtraction hybridization. Cancer Res. 62(1):262–70

    PubMed  CAS  Google Scholar 

  35. 35. Welsh JB, Zarrinkar PP, Sapinoso LM et al (2001) Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci U S A. 98(3):1176–81

    Article  PubMed  CAS  Google Scholar 

  36. 36. Lu KH, Patterson AP, Wang L, Marquez RT et al (2004) Selection of potential markers for epithelial ovarian cancer with gene expression arrays and recursive descent partition analysis. Clin Cancer Res. 10(10):3291–300

    Article  PubMed  CAS  Google Scholar 

  37. 37. Hibbs K, Skubitz KM, Pambuccian SE et al (2004) Differential gene expression in ovarian carcinoma: identification of potential biomarkers. Am J Pathol. 165(2):397–414

    PubMed  CAS  Google Scholar 

  38. 38. Olson TA, Mohanraj D, Carson LF et al (1994) Vascular permeability factor gene expression in normal and neoplastic human ovaries. Cancer Res. 54(1):276–80

    PubMed  CAS  Google Scholar 

  39. 39. Boocock CA, Charnock-Jones DS, Sharkey AM et al (1995) Expression of vascular endothelial growth factor and its receptors flt and KDR in ovarian carcinoma. J Natl Cancer Inst. 87(7):506–16

    PubMed  CAS  Google Scholar 

  40. 40. Abu-Jawdeh GM, Faix JD, Niloff J et al (1996) Strong expression of vascular permeability factor (vascular endothelial growth factor) and its receptors in ovarian borderline and malignant neoplasms. Lab Invest. 74(6):1105–15

    PubMed  CAS  Google Scholar 

  41. Schumacher J, Cosin J, Auersperg N et al. Angiogenic balance in ovarian cancer development. Tumorigenesis by VEGF over expression is blocked by coexpression of endostatin (unpublished data)

  42. 42. Zhang L, Yang N, Garcia JR et al (2002) Generation of a syngeneic mouse model to study the effects of vascular endothelial growth factor in ovarian carcinoma. Am J Pathol. 161(6):2295–309

    PubMed  CAS  Google Scholar 

  43. 43. Kim KJ, Li B, Winer J et al (1993) Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumour growth in vivo. Nature. 362(6423):841–4

    Article  PubMed  CAS  Google Scholar 

  44. 44. Hu L, Hofmann J, Zaloudek C et al (2002) Vascular endothelial growth factor immunoneutralization plus Paclitaxel markedly reduces tumor burden and ascites in athymic mouse model of ovarian cancer. Am J Pathol. 161(5):1917–24

    PubMed  CAS  Google Scholar 

  45. 45. Wild R, Dings RP, Subramanian I et al (2004) Carboplatin selectively induces the VEGF stress response in endothelial cells: Potentiation of antitumor activity by combination treatment with antibody to VEGF. Int J Cancer. 110(3):343–51

    Article  PubMed  CAS  Google Scholar 

  46. 46. Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov. 3(5):391–400

    Article  PubMed  CAS  Google Scholar 

  47. 47. Machida S, Saga Y, Takei Y et al (2005) Inhibition of peritoneal dissemination of ovarian cancer by tyrosine kinase receptor inhibitor SU6668 (TSU-68). Int J Cancer. 114(2):224–9

    Article  PubMed  CAS  Google Scholar 

  48. 48. Dias S, Hattori K, Heissig B et al. (2001) Inhibition of both paracrine and autocrine VEGF/ VEGFR-2 signaling pathways is essential to induce long-term remission of xenotransplanted human leukemias. Proc Natl Acad Sci U S A. 98(19):10857–62

    Article  PubMed  CAS  Google Scholar 

  49. 49. Ramakrishnan S, Olson TA, Bautch VL et al (1996) Vascular endothelial growth factor-toxin conjugate specifically inhibits KDR/flk-1-positive endothelial cell proliferation in vitro and angiogenesis in vivo. Cancer Res. 56(6):1324–30

    PubMed  CAS  Google Scholar 

  50. 50. Wild R, Dhanabal M, Olson TA et al (2000) Inhibition of angiogenesis and tumour growth by VEGF121-toxin conjugate: differential effect on proliferating endothelial cells. Br J Cancer. 83(8):1077–83

    Article  PubMed  CAS  Google Scholar 

  51. 51. Veenendaal LM, Jin H, Ran S et al (2002)In vitro and in vivo studies of a VEGF121/rGelonin chimeric fusion toxin targeting the neovasculature of solid tumors. Proc Natl Acad Sci U S A. 99(12):7866–71

    Article  PubMed  CAS  Google Scholar 

  52. 52. Arora N, Masood R, Zheng T et al (1999) Vascular endothelial growth factor chimeric toxin is highly active against endothelial cells. Cancer Res. 59(1):183–8

    PubMed  CAS  Google Scholar 

  53. 53. Paley PJ, Staskus KA, Gebhard K et al (1997) Vascular endothelial growth factor expression in early stage ovarian carcinoma. Cancer. 80(1):98–106

    Article  PubMed  CAS  Google Scholar 

  54. 54. Hartenbach EM, Olson TA, Goswitz JJ et al. (1997) Vascular endothelial growth factor (VEGF) expression and survival in human epithelial ovarian carcinomas. Cancer Lett. 121(2):169–75

    Article  PubMed  CAS  Google Scholar 

  55. 55. Gadducci A, Viacava P, Cosio S et al. (2003) Vascular endothelial growth factor (VEGF) expression in primary tumors and peritoneal metastases from patients with advanced ovarian carcinoma. Anticancer Res. 23:3001–3008

    PubMed  CAS  Google Scholar 

  56. 56. Zebrowski BK, Liu W, Ramirez K, Akagi Y, Mills GB, and Ellis LM (1999) Markedly elevated levels of vascular endothelial growth factor in malignant ascites. Ann Surg Oncol . 6:373–378

    Article  PubMed  CAS  Google Scholar 

  57. 57. Hazelton D, Nicosia RF, and Nicosia SV (1999) Vascular endothelial growth factor levels in ovarian cyst fluid correlate with malignancy. Clin Cancer Res. 5:823–829

    PubMed  CAS  Google Scholar 

  58. 58. Zhang L, Yang N, Park JW et al (2003) Tumor-derived vascular endothelial growth factor up-regulates angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in ovarian cancer. Cancer Res. 63:3403–3412

    PubMed  CAS  Google Scholar 

  59. 59. Hata K, Nakayama K, Fujiwaki R et al (2004) Expression of the angopoietin-1, angopoietin-2, Tie2, and vascular endothelial growth factor gene in epithelial ovarian cancer. Gynecol Oncol. 93:215–22

    Article  PubMed  CAS  Google Scholar 

  60. 60. Conejo-Garcia JR, Buckanovich RJ, Benencia F et al (2005) Vascular leukocytes contribute to tumor vascularization. Blood. 105(2):679–81

    Article  PubMed  CAS  Google Scholar 

  61. 61. Conejo-Garcia JR, Benencia F, Courreges MC et al (2004) Tumor-infiltrating dendritic cell precursors recruited by a beta-defensin contribute to vasculogenesis under the influence of Vegf-A. Nat Med. 10(9):950–8

    Article  PubMed  CAS  Google Scholar 

  62. 62. Sood AK, Fletcher MS, Zahn CM et al (2002) The clinical significance of tumor cell-lined vasculature in ovarian carcinoma implications for anti-vasculogenic therapy. Cancer Biol Ther. 1(6):661–4

    PubMed  Google Scholar 

  63. 63. Sood AK, Fletcher MS, Coffin JE et al (2004) Functional role of matrix metalloproteinases in ovarian tumor cell plasticity. Am J Obstet Gynecol. 190(4):899–909

    Article  PubMed  CAS  Google Scholar 

  64. 64. Lecouter J, Lin R, Ferrara N. EG-VEGF: a novel mediator of endocrine-specific angiogenesis, endothelial phenotype, and function. Ann N Y Acad Sci. 2004 1014:50–7

    Article  CAS  Google Scholar 

  65. 65. Barton DP, Cai A, Wendt K et al (1997) Angiogenic protein expression in advanced epithelial ovarian cancer. Clin Cancer Res 3:1579–1586

    PubMed  CAS  Google Scholar 

  66. 66. Davidson B, Goldberg I, Gotlieb WH et al (2002) The prognostic value of metalloproteinases and angiogenic factors in ovarian carcinoma. Mol Cell Endocrinol. 187:39–45

    Article  PubMed  CAS  Google Scholar 

  67. 67. Sako A, Kitayama J, Yamaguchi H et al (2003) Vascular endothelial growth factor synthesis by human omental mesothelial cells is augmented by fibroblast growth factor-2: possible role of mesothelial cell on the development of peritoneal metastasis. J Surg Res. 115:113–120

    Article  PubMed  CAS  Google Scholar 

  68. 68. Kim T (2004) Technology evaluation: Matuzumab, Merck KGaA. Curr Opin Mol Ther 6:96–103

    PubMed  CAS  Google Scholar 

  69. 69. Yang G, Cai KQ, Thompson-Lanza JA et al (2004) Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 279:4339–4345

    Article  PubMed  CAS  Google Scholar 

  70. 70. Miyamoto S, Hirata M, Yamazaki A et al (2004) Heparin-binding EGF-like growth factor is a promising target for ovarian cancer therapy. Cancer Res. 64:5720–5727

    Article  PubMed  CAS  Google Scholar 

  71. 71. Calza L, Giardino L, Giuliani A et al (2001) Nerve growth factor control of neuronal expression of angiogenetic and vasoactive factors. Proc Natl Acad Sci USA. 98:4160–4165

    Article  PubMed  CAS  Google Scholar 

  72. 72. Rosano L, Varmi M, Salani D et al (2001) Endothelin-1 induces tumor proteinase activation and invasiveness of ovarian carcinoma cells. Cancer Res. 61:8340–6

    PubMed  CAS  Google Scholar 

  73. 73. Davidson B, Goldberg I, Reich R et al (2003) AlphaV- and beta1-integrin subunits are commonly expressed in malignant effusions from ovarian carcinoma patients. Gynecol Oncol. 90(2):248–57

    Article  PubMed  CAS  Google Scholar 

  74. 74. Nishikawa H, Ozaki Y, Nakanishi T et al (2004) The role of cathepsin B and cystatin C in the mechanisms of invasion by ovarian cancer. Gynecol Oncol. 92(3):881–6

    Article  PubMed  CAS  Google Scholar 

  75. 75. Behrens P, Rothe M, Florin A et al (2001) Invasive properties of serous human epithelial ovarian tumors are related to Ets-1, MMP-1 and MMP-9 expression. Int J Mol Med. 8(2):149–54

    PubMed  CAS  Google Scholar 

  76. 76. Davidson B, Goldberg I, Gotlieb WH et al (2003) PEA3 is the second Ets family transcription factor involved in tumor progression in ovarian carcinoma. Clin Cancer Res. 9(4):1412–9

    PubMed  CAS  Google Scholar 

  77. 77. Xu L, Fidler IJ (2000) Interleukin 8: an autocrine growth factor for human ovarian cancer. Oncol Res. 12:97–106

    PubMed  CAS  Google Scholar 

  78. 78. Ivarsson K, Ekerydh A, Fyhr IM, Janson PO, Brannstrom M (2000) Upregulation of interleukin-8 and polarized epithelial expression of interleukin-8 receptor A in ovarian carcinomas. Acta Obstet Gynecol Scand. 79: 777–784

    Article  PubMed  CAS  Google Scholar 

  79. 79. Sparmann A, Bar-Sagi D (2004) Ras-induced interleukin-8 expression plays a critical role in tumor growth and angiogenesis. Cancer Cell. 6:447–458

    Article  PubMed  CAS  Google Scholar 

  80. 80. Curiel TJ, Cheng P, Mottram P, Alvarez X, Moons L, Evdemon-Hogan M, Wei S, Zou L, Kryczek I, Hoyle G, Lackner A, Carmeliet P, and Zou W (2004) Dendritic cell subsets differentially regulate angiogenesis in human ovarian cancer. Cancer Res. 64: 5535–5538

    Article  PubMed  CAS  Google Scholar 

  81. 81. Chen JJ, Yao PL, Yuan A, Hong TM, Shun CT, Kuo ML, Lee YC, and Yang PC (2003) Up-regulation of tumor interleukin-8 expression by infiltrating macrophages: its correlation with tumor angiogenesis and patient survival in non-small cell lung cancer. Clin Cancer Res. 9:729–737

    PubMed  CAS  Google Scholar 

  82. 82. O’Reilly MS, Boehm T, Shing Y, et al. (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell. 88:277–285

    Article  PubMed  CAS  Google Scholar 

  83. 83. Boehm T, Folkman, J, Browder T et al. (1997) Antiangiogenic therapy of experimental cancer does not induce acquired drug resistance. Nature. 390:404–407

    Article  PubMed  CAS  Google Scholar 

  84. 84. Dhanabal M, Ramchandran R, Volk R et al (1999) Endostatin: yeast production, mutants, and antitumor effect in renal cell carcinoma. Cancer Res. 59:189–197

    PubMed  CAS  Google Scholar 

  85. 85. Rehn M, Veikkola T, Kukk-Valdre E et al. Interaction of endostatin with integrins implicated in angiogenesis. Proc Natl Acad Sci USA. 98:1024–1029

    Article  PubMed  CAS  Google Scholar 

  86. 86. Wickstrom SA, Alitalo K, Keiski-Oja J et al (2002) Endostatin associates with integrin alpha5beta1 and caveolin-1, and activates Src via a tyrosyl phosphatase-dependent pathway in human endothelial cells. Cancer Res. 62:5580–9

    PubMed  CAS  Google Scholar 

  87. 87. Karumanchi S. A., Jha V, Ramchandran R et al (2001) Cell surface glypicans are low-affinity endostatin receptors. Mol Cell. 7:811–822

    Article  PubMed  Google Scholar 

  88. 88. Dixelius J, Larsson H, Sasaki T et al (2000) Endostatin-induced tyrosine kinase signaling through the Shb adaptor protein regulates endothelial cell apoptosis. Blood. 95:3403–3411

    PubMed  CAS  Google Scholar 

  89. 89. Shichiri M, Hirata Y (2001) Antiangiogenesis signals by endostatin. Faseb J. 15:1044–53

    Article  PubMed  CAS  Google Scholar 

  90. 90. Hanai J, Karumanchi SA, Kale S et al (2002) Endostatin is a potential inhibitor of Wnt signaling. J Cell Biol. 158:529–539

    Article  PubMed  CAS  Google Scholar 

  91. 91. Kim YM., Jang JW, Lee OH et al (2000) Endostatin inhibits endothelial and tumor cellular invasion by blocking the activation and catalytic activity of matrix metalloproteinase. Cancer Res. 60:5410–3

    PubMed  CAS  Google Scholar 

  92. 92. Yokoyama Y, Ramakrishnan S (2004) Improved biological activity of a mutant endostatin containing a single amino-acid substitution. Br J Cancer 90:1627–1635

    Article  PubMed  CAS  Google Scholar 

  93. 93. Calvo A, Yokoyama Y, Smith LE et al (2002) Inhibition of the mammary carcinoma angiogenic switch in C3(1)/SV40 transgenic mice by a mutated form of human endostatin. Int J Cancer. 101:224–234

    Article  PubMed  CAS  Google Scholar 

  94. 94. Yokoyama Y, Ramakrishnan S (2004) Addition of Integrin Binding Sequence to a Mutant Endostatin Improves Inhibition of Tumor Growth. Int J Cancer. 111(6):839–48

    Article  PubMed  CAS  Google Scholar 

  95. 95. O’Reilly MS, Holmgren L, Shing Y et al (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell. 79:315–28

    Article  PubMed  CAS  Google Scholar 

  96. 96. Tarui T, Miles LA, Takada Y (2001) Specific interaction of angiostatin with integrin alpha(v)beta(3) in endothelial cells. J Biol Chem. 276:39562–8

    Article  PubMed  CAS  Google Scholar 

  97. 97. Moser TL, Stack S, Asplin I et al (1999) Angiostatin binds ATP synthase on the surface of human endothelial cells. Proc Natl Acad Sci USA 96:2811–6

    Article  PubMed  CAS  Google Scholar 

  98. 98. Yokoyama Y, Dhanabal M, Griffioen AW et al (2000) Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res. 60:2190–6

    PubMed  CAS  Google Scholar 

  99. 99. Iruela-Arispe ML, Luque A, Lee N (2004) Thrombospondin modules and angiogenesis. Int J Biochem Cell Biol. 36:1070–8

    Article  PubMed  CAS  Google Scholar 

  100. 100. Kodama J, Hashimoto I, Seki N et al (2001) Thrombospondin-1 and −2 messenger RNA expression in invasive cervical cancer: correlation with angiogenesis and prognosis. Clin Cancer Res. 7:2826–31

    PubMed  CAS  Google Scholar 

  101. 101. Wu MP, Tzeng CC, Wu L et al (2004) Thrombospondin-1 acts as a fence to inhibit angiogenesis that occurs during cervical carcinogenesis. Cancer J. 10:27–32

    Article  PubMed  CAS  Google Scholar 

  102. 102. Alvarez AA, Axelrod JR, Whitaker RS et al (2001) Thrombospondin-1 expression in epithelial ovarian carcinoma: association with p53 status, tumor angiogenesis, and survival in platinum-treated patients. Gynecol Oncol 82:273–278

    Article  PubMed  CAS  Google Scholar 

  103. 103. Yee KO, Streit M, Hawighorst T et al (2004) Expression of the type-1 repeats of thrombospondin-1 inhibits tumor growth through activation of transforming growth factor-beta. Am J Pathol. 165:541–52

    PubMed  CAS  Google Scholar 

  104. 104. Zhou J, Rothman VL, Sargiannidou I et al (2004) Cloning and characterization of angiocidin, a tumor cell binding protein for thrombospondin-1. J Cell Biochem. 92:125–46

    Article  PubMed  CAS  Google Scholar 

  105. 105. Gomez DE, Alonso DF, Yoshiji H et al (1997) Tissue inhibitors of metalloproteinases: structure, regulation and biological functions. Eur J Cell Biol. 74:111–22

    PubMed  CAS  Google Scholar 

  106. 106. Tunuguntla R, Ripley D, Sang QX et al (2003) Expression of matrix metalloproteinase-26 and tissue inhibitors of metalloproteinases TIMP-3 and −4 in benign endometrium and endometrial cancer. Gynecol Oncol. 89:453–9

    Article  PubMed  CAS  Google Scholar 

  107. 107. Krol J, Kopitz C, Kirschenhofer A et al (2003) Inhibition of intraperitoneal tumor growth of human ovarian cancer cells by bi- and trifunctional inhibitors of tumor-associated proteolytic systems. Biol Chem. 384:1097–1102

    Article  PubMed  CAS  Google Scholar 

  108. 108. O’Reilly MS, Pirie-Shepherd S, Lane WS et al (1999) Antiangiogenic activity of the cleaved conformation of the serpin antithrombin. Science. 285:1926–1928

    PubMed  CAS  Google Scholar 

  109. 109. Yi M, Saka T, Fassler R et al (2003) Antiangiogenic proteins require plasma fibronectin or vitronectin for in vivo activity. Proc Natl Acad Sci USA 100:11435–11438

    Article  PubMed  CAS  Google Scholar 

  110. 110. Zhang W, Chuang YJ, Swanson R et al (2004) Antiangiogenic antithrombin down-regulates the expression of the proangiogenic heparan sulfate proteoglycan, perlecan, in endothelial cells. Blood. 103:1185–91

    Article  PubMed  CAS  Google Scholar 

  111. 111. Laschke MW, Cengiz Z, Hoffmann JN et al (2004) Latent antithrombin does not affect physiological angiogenesis: an in vivo study on vascularization of grafted ovarian follicles. Life Sci. 75:203–213

    Article  PubMed  CAS  Google Scholar 

  112. 112. Hussain MM, Kotz H, Minasian L et al. Phase II trial of carboxyamidotriazole in patients with relapsed epithelial ovarian cancer. J Clin Oncol. 2003; 21:4356–4363

    Article  PubMed  CAS  Google Scholar 

  113. 113. Li D, Williams JI, and Pietras RJ (2002) Squalamine and cisplatin block angiogenesis and growth of human ovarian cancer cells with or without HER-2 gene overexpression. Oncogene 21: 2805–2814

    Article  PubMed  CAS  Google Scholar 

  114. 114. Dings RP, Nesmelova I, Griffioen AW et al (2003) Discovery and development of anti-angiogenic peptides: A structural link. Angiogenesis. 6(2):83–91

    Article  PubMed  CAS  Google Scholar 

  115. 115. Griffioen AW, van der Schaft DW, Barendsz-Janson AF et al. (2001) Anginex, a designed peptide that inhibits angiogenesis. Biochem J 354:233–42

    Article  PubMed  CAS  Google Scholar 

  116. 116. Dings RP, Yokoyama Y, Ramakrishnan S et al (2003) The designed angiostatic peptide anginex synergistically improves chemotherapy and antiangiogenesis therapy with angiostatin. Cancer Res. 63:382–5

    PubMed  CAS  Google Scholar 

  117. 117. Mayo KH, Dings RP, Flader C et al. (2003) Design of a partial peptide mimetic of anginex with antiangiogenic and anticancer activity. J Biol Chem 278:45746–52

    Article  PubMed  CAS  Google Scholar 

  118. Dings RP, Williams BW, Song CW et al. Anginex synergizes with radiation therapy to inhibit tumor growth by radiosensitizing endothelial cells. Int J Cancer 2005 Feb 1 [Epub ahead of print]

  119. 119. Akerman ME, Pilch J, Peters D, Ruoslahti E (2005) Angiostatic peptides use plasma fibronectin to home to angiogenic vasculature. Proc Natl Acad Sci U S A. 102(6):2040–5

    Article  PubMed  CAS  Google Scholar 

  120. 120. Kerbel R, Folkman J (2002) Clinical translation of angiogenesis inhibitors. Nat Rev Cancer. 2:727–39

    Article  PubMed  CAS  Google Scholar 

  121. 121. Hida K, Hida Y, Amin DN et al. (2004) Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64(22):8249–55

    Article  PubMed  CAS  Google Scholar 

  122. 122. Kisker O, Becker CM, Prox D et al (2001) Continuous administration of endostatin by intraperitoneally implanted osmotic pump improves the efficacy and potency of therapy in a mouse xenograft tumor model. Cancer Res 61:7669–7674

    PubMed  CAS  Google Scholar 

  123. 123. Kotin RM, Siniscalco M, Samulski RJ et al (1990) Site-Specific Integration by Adeno-Associated Virus. Proc Natl Acad Sci 87:2211–2215

    PubMed  CAS  Google Scholar 

  124. 124. Subramanian V, Ghebre R, Ramakrishnan S, (2005). Adeno-associated virus-mediated delivery of a mutant endostatin suppresses ovarian carcinoma growth in mice. Gene Ther 2(1):30–8

    Article  CAS  Google Scholar 

  125. 125. Ponnazhagan S, Mahendra G, Kumar S et al (2004) Adeno-associated virus 2-mediated antiangiogenic cancer gene therapy: long-term efficacy of a vector encoding angiostatin and endostatin over vectors encoding a single factor. Cancer Res. 64(5):1781–7

    Article  PubMed  CAS  Google Scholar 

  126. 126. Isayeva T, Ren C, Ponnazhagan S (2005) Recombinant adeno-associated virus 2-mediated antiangiogenic prevention in a mouse model of intraperitoneal ovarian cancer. Clin Cancer Res 11(3):1342–7

    PubMed  CAS  Google Scholar 

  127. 127. Mahendra G, Kumar S, Isayeva T et al (2005) Antiangiogenic cancer gene therapy by adeno-associated virus 2-mediated stable expression of the soluble FMS-like tyrosine kinase-1 receptor. Cancer Gene Ther 12(1):26–34

    Article  PubMed  CAS  Google Scholar 

  128. 128. Hampl M, Tanaka T, Albert PS et al (2001) Therapeutic effects of viral vector-mediated antiangiogenic gene transfer in malignant ascites. Hum Gene Ther. 12(14):1713–29

    Article  PubMed  CAS  Google Scholar 

  129. 129. Mahasreshti PJ, Navarro JG, Kataram M et al (2001) Adenovirus-mediated soluble FLT-1 gene therapy for ovarian carcinoma.Clin Cancer Res. 7(7):2057–66

    PubMed  CAS  Google Scholar 

  130. 130. Alvarez RD, Barnes MN, Gomez-Navarro J et al (2000) A cancer gene therapy approach utilizing an anti-erbB-2 single-chain antibody-encoding adenovirus (AD21): A phase I trial. Clin Cancer Res. 6(8):3081–3087

    PubMed  CAS  Google Scholar 

  131. 131. Yang G, Cai KQ, Thompson-Lanza JA et al (2004) Inhibition of breast and ovarian tumor growth through multiple signaling pathways by using retrovirus-mediated small interfering RNA against Her-2/neu gene expression. J Biol Chem. 279(6):4339–45

    Article  PubMed  CAS  Google Scholar 

  132. 132. Igarashi T, Miyake K, Kato K, et al (2003). Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model. Gene Ther. 10(3):219–26

    Article  PubMed  CAS  Google Scholar 

  133. 133. Kim KS, Kim HS, Park JS, et al. (2004). Inhibition of B16BL6 tumor progression by coadministration of recombinant angiostatin K13- and endostatin genes with cationic liposomes. Cancer Gene Ther. 11(6):441–9

    Article  PubMed  CAS  Google Scholar 

  134. 134. Kohno T, Mizukami H, Suzuki M, et al. (2003). Interleukin-10-mediated Inhibition of Angiogenesis and Tumor Growth in Mice Bearing VEGF-producing Ovarian Cancer. Cancer Res. 63:5091–5094

    PubMed  CAS  Google Scholar 

  135. 135. Liu G, Aronovich EL, Cui Z, Whitley CB, Hackett PB, (2004). Excision of Sleeping Beauty transposons: parameters and applications to gene therapy. J Gene Med. 6(5):574–83

    Article  PubMed  CAS  Google Scholar 

  136. 136. Ohlfest JR, Lobitz PD, Perkinson SG, et al. (2004). Integration and long-term expression in xenografted human glioblastoma cells using a plasmid-based transposon system. Mol Ther. 10(2):260–8

    Article  PubMed  CAS  Google Scholar 

  137. 137. Belur LR, Frandsen JL, Dupuy AJ, et al. (2003). Gene insertion and long-term expression in lung mediated by the Sleeping Beauty transposon system. Mol Ther. 8(3):501–7

    Article  PubMed  CAS  Google Scholar 

  138. 138. Lam JT, Kanerva A, Bauerschmitz GJ, et al. (2004). Inter-patient variation in efficacy of five oncolytic adenovirus candidates for ovarian cancer therapy. J Gene Med. 6(12):1333–42

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr K.M. Burleson for critically reading the manuscript. This work is supported in part by the grants DA102104, DA011806, CA089652 from the National Institutes of Health, Minnesota Ovarian Cancer Alliance and Sparboe Endowment for Women’s Cancer Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramakrishnan, S., Subramanian, I., Yokoyama, Y. et al. Angiogenesis in normal and neoplastic ovaries. Angiogenesis 8, 169–182 (2005). https://doi.org/10.1007/s10456-005-9001-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10456-005-9001-1

Keywords

Navigation