Skip to main content
Log in

Ultrasound Imaging of Oxidative Stress In Vivo with Chemically-Generated Gas Microbubbles

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Ultrasound contrast agents (UCAs) have tremendous potential for in vivo molecular imaging because of their high sensitivity. However, the diagnostic potential of UCAs has been difficult to exploit because current UCAs are based on pre-formed microbubbles, which can only detect cell surface receptors. Here, we demonstrate that chemical reactions that generate gas forming molecules can be used to perform molecular imaging by ultrasound in vivo. This new approach was demonstrated by imaging reactive oxygen species in vivo with allylhydrazine, a liquid compound that is converted into nitrogen and propylene gas after reacting with radical oxidants. We demonstrate that allylhydrazine encapsulated within liposomes can detect a 10 micromolar concentration of radical oxidants by ultrasound, and can image oxidative stress in mice, induced by lipopolysaccharide, using a clinical ultrasound system. We anticipate numerous applications of chemically-generated microbubbles for molecular imaging by ultrasound, given ultrasound’s ability to detect small increments above the gas saturation limit, its spatial resolution and widespread clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Apfel, R. E., and C. K. Holland. Gauging the likelihood of cavitation from short-pulse, low-duty cycle diagnostic ultrasound. Ultrasound Med. Biol. 17(2):179–185, 1991.

    Article  PubMed  CAS  Google Scholar 

  2. Barnham, K. J., C. L. Masters, and A. I. Bush. Neurodegenerative diseases and oxidative stress. Nat. Rev. Drug Discov. 3(3):205–214, 2004.

    Article  PubMed  CAS  Google Scholar 

  3. Bird, R. B., W. E. Stewart, and E. N. Lightfoot. Transport Phenomena. New York: John Wiley, 2002.

    Google Scholar 

  4. Blander, M., and J. L. Katz. Bubble nucleation in liquids. AIChE J. 21(5):833–848, 1975.

    Article  CAS  Google Scholar 

  5. Borden, M. A., and M. L. Longo. Dissolution behavior of lipid monolayer-coated, air-filled microbubbles: effect of lipid hydrophobic chain length. Langmuir 18(24):9225–9233, 2002.

    Article  CAS  Google Scholar 

  6. Bowers, P. G., K. Bar-Eli, and R. M. Noyes. Chemical oscillations and instabilities .100. Unstable supersaturated solutions of gases in liquids and nucleation theory. Transactions 92(16):2843–2849, 1996.

    CAS  Google Scholar 

  7. Cable, M., and J. R. Frade. The influence of surface-tension on the diffusion-controlled growth or dissolution of spherical gas-bubbles. Proceedings of the Royal Society of London Series A-Mathematical Physical and Engineering Sciences 420(1859):247–265, 1988.

    Article  CAS  Google Scholar 

  8. Cadenas, E., and K. J. A. Davies. Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biol. Med. 29(3–4):222–230, 2000.

    Article  CAS  Google Scholar 

  9. Calderwood, T. S., C. L. Johlman, J. L. Roberts, C. L. Wilkins, and D. T. Sawyer. Oxidation of substituted hydrazines by superoxide ion—the initiation step for the autoxidation of 1,2-diphenylhydrazine. J. Am. Chem. Soc. 106(17):4683–4687, 1984.

    Article  CAS  Google Scholar 

  10. Chen, W. T., C. H. Tung, and R. Weissleder. Imaging reactive oxygen species in arthritis. Mol. Imaging 3(3):159–162, 2004.

    Article  PubMed  CAS  Google Scholar 

  11. Chomas, J. E., P. Dayton, J. Allen, K. Morgan, and K. W. Ferrara. Mechanisms of contrast agent destruction. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 48(1):232–248, 2001.

    Article  PubMed  CAS  Google Scholar 

  12. Christiansen, J. P., H. Leong-Poi, A. L. Klibanov, S. Kaul, and J. R. Lindner. Noninvasive imaging of myocardial reperfusion injury using leukocyte-targeted contrast echocardiography. Circulation 105(15):1764–1767, 2002.

    Article  PubMed  Google Scholar 

  13. Church, C. C. Spontaneous homogeneous nucleation, inertial cavitation and the safety of diagnostic ultrasound. Ultrasound Med. Biol. 28(10):1349–1364, 2002.

    Article  PubMed  Google Scholar 

  14. Corey, E. J., G. Wess, Y. B. Xiang, and A. K. Singh. Stereospecific total synthesis of (+/−)-cafestol. J. Am. Chem. Soc. 109(15):4717–4718, 1987.

    Article  CAS  Google Scholar 

  15. Dayton, P. A., J. E. Chomas, A. F. H. Lum, J. S. Allen, J. R. Lindner, S. I. Simon, et al. Optical and acoustical dynamics of microbubble contrast agents inside neutrophils. Biophys. J. 80(3):1547–1556, 2001.

    Article  PubMed  CAS  Google Scholar 

  16. Dayton, P. A., K. E. Morgan, A. L. Klibanov, G. H. Brandenburger, and K. W. Ferrara. Optical and acoustical observations of the effects of ultrasound on contrast agents. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 46(1):220–232, 1999.

    Article  PubMed  CAS  Google Scholar 

  17. Ferrell, R. T., and D. M. Himmelbl. Diffusion coefficients of nitrogen and oxygen in water. J. Chem. Eng. Data 12(1):111, 1967.

    Article  CAS  Google Scholar 

  18. Finkel, T., and N. J. Holbrook. Oxidants, oxidative stress and the biology of ageing. Nature 408(6809):239–247, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Finkelstein, Y., and A. Tamir. Formation of gas-bubbles in supersaturated solutions of gases in water. AIChE J. 31(9):1409–1419, 1985.

    Article  CAS  Google Scholar 

  20. Forstermann, U. Oxidative stress in vascular disease: causes, defense mechanisms and potential therapies. Nat. Clin. Pract. Cardiovasc. Med. 5(6):338–349, 2008.

    Article  PubMed  Google Scholar 

  21. Gomes, A., E. Fernandes, and J. L. F. C. Lima. Fluorescence probes used for detection of reactive oxygen species. J. Biochem. Biophys. Methods 65(2–3):45–80, 2005.

    Article  PubMed  CAS  Google Scholar 

  22. Huang, S. L., and R. C. MacDonald. Acoustically active liposomes for drug encapsulation and ultrasound-triggered release. Biochim. Biophys. Acta Biomembr. 1665(1–2):134–141, 2004.

    Article  CAS  Google Scholar 

  23. Jabbari, A., E. J. Sorensen, and K. N. Houk. Transition states of the retro-ene reactions of allylic diazenes. Org. Lett. 8(14):3105–3107, 2006.

    Article  PubMed  CAS  Google Scholar 

  24. Jones, S. F., G. M. Evans, and K. P. Galvin. Bubble nucleation from gas cavities—a review. Adv. Colloid Interface 80(1):27–50, 1999.

    Article  CAS  Google Scholar 

  25. Kakade, M. L., and I. E. Liener. Determination of available lysine in proteins. Anal. Biochem. 27(2):273–280, 1969.

    Article  PubMed  CAS  Google Scholar 

  26. Lanza, G. M., and S. A. Wickline. Targeted ultrasonic contrast agents for molecular imaging and therapy. Prog. Cardiovasc. Dis. 44(1):13–31, 2001.

    Article  PubMed  CAS  Google Scholar 

  27. Lasic, D. D. The mechanism of vesicle formation. Biochem. J. 256(1):1–11, 1988.

    PubMed  CAS  Google Scholar 

  28. Lee, D., S. Khaja, J. C. Velasquez-Castano, M. Dasari, C. Sun, J. Petros, W. R. Taylor, and N. Murthy. In vivo imaging of hydrogen peroxide with chemiluminescent nanoparticles. Nat. Mater. 6(10):765–769, 2007.

    Article  PubMed  CAS  Google Scholar 

  29. Lee, J. C., H. Bermudez, B. M. Discher, M. A. Sheehan, Y. Y. Won, F. S. Bates, and D. E. Discher. Preparation, stability, and in vitro performance of vesicles made with diblock copolymers. Biotechnol. Bioeng. 73(2):135–145, 2001.

    Article  PubMed  CAS  Google Scholar 

  30. Lindner, J. R., J. Song, F. Xu, A. L. Klibanov, K. Singbartl, K. Ley, and S. Kaul. Noninvasive ultrasound imaging of inflammation using microbubbles targeted to activated leukocytes. Circulation 102(22):2745–2750, 2000.

    Article  PubMed  CAS  Google Scholar 

  31. Lubetkin, S. D. Why is it much easier to nucleate gas bubbles than theory predicts? Langmuir 19(7):2575–2587, 2003.

    Article  CAS  Google Scholar 

  32. Price, J. D., and R. P. Johnson. Thermal rearrangements of cyclic allenes via retro-ene reactions. Tetrahedron Lett. 26(21):2499–2502, 1985.

    Article  CAS  Google Scholar 

  33. Re, R., N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, and C. Rice-Evans. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biol. Med. 26(9–10):1231–1237, 1999.

    Article  CAS  Google Scholar 

  34. Rubin, M. B., and R. M. Noyes. Chemical oscillations and instabilities .77. Measurements of critical supersaturation for homogeneous nucleation of bubbles. J. Phys. Chem. 91(15):4193–4198, 1987.

    Article  CAS  Google Scholar 

  35. Ryan, P. J., and D. L. Melchior. Liposomes containing gas for ultrasound detection. USPTO #4900540, USA, 1990.

  36. Sashidhar, R. B., A. K. Capoor, and D. Ramana. Quantitation of epsilon-amino group using amino-acids as reference-standards by trinitrobenzene sulfonic-acid—a simple spectrophotometric method for the estimation of hapten to carrier protein ratio. J. Immunol. Methods 167(1–2):121–127, 1994.

    Article  PubMed  CAS  Google Scholar 

  37. Toth, B., and D. Nagel. Tumor induction study with allylhydrazine HCl in swiss mice. Br. J. Cancer 34(1):90–93, 1976.

    Article  PubMed  CAS  Google Scholar 

  38. Unger, E. Liposomes as contrast agents for ultrasonic imaging and method for preparing the same. 5123414. USPTO, USA, 1992.

  39. Weller, G. E. R., M. K. K. Wong, R. A. Modzelewski, E. X. Lu, A. L. Klibanov, W. R. Wagner, and F. S. Villanueva. Ultrasonic imaging of tumor angiogenesis using contrast microbubbles targeted via the tumor-binding peptide arginine-arginine-leucine. Cancer Res. 65(2):533–539, 2005.

    PubMed  CAS  Google Scholar 

  40. Zalipsky, S., N. Mullah, C. Engbers, M. U. Hutchins, and R. Kiwan. Thiolytically cleavable dithiobenzyl urethane-linked polymer-protein conjugates as macromolecular prodrugs: reversible PEGylation of proteins. Bioconjugate Chem. 18(6):1869–1878, 2007.

    Article  CAS  Google Scholar 

  41. Zheng, Q., D. J. Durben, G. H. Wolf, and C. A. Angell. Liquid at large negative pressures—water at the homogenous nucleation limit. Science 254(5033):829–832, 1991.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH UO1 HL80711-01, (N.M.), NSF-BES-0546962 (N.M.), NIH U01 268201000043C-0-0-1 (N.M.) and NIH RO1, HL096796-01 (N.M.), NIHR01CA112356 (K.F.) and NIHCA103828 (K.F.). The authors would like to thank Dr. Lihong Cheng for assisting the setup for the clinical ultrasound system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niren Murthy.

Additional information

Associate Editor James Tunnell oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Perng, J.K., Lee, S., Kundu, K. et al. Ultrasound Imaging of Oxidative Stress In Vivo with Chemically-Generated Gas Microbubbles. Ann Biomed Eng 40, 2059–2068 (2012). https://doi.org/10.1007/s10439-012-0573-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-012-0573-9

Keywords

Navigation