Skip to main content
Log in

Computer Modeling of Controlled Microsphere Release and Targeting in a Representative Hepatic Artery System

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Combating liver tumors via yttrium-90 (90Y) radioembolization is a viable treatment option of nonresectable liver tumors. Employing clinical 90Y microparticles (i.e., SIR-Spheres® and TheraSpheres®) in a computational model of a representative hepatic artery system, laminar transient 3D particle-hemodynamics were simulated. Specifically, optimal particle release positions in the right hepatic (parent) artery as well as the best temporal release window were determined for the microspheres to exit specific outlet daughter vessels, potentially connected to liver tumors. The results illustrate the influence of a curved geometry on the velocity field and the particle trajectory dependence on the spatial and temporal particle injection conditions. The differing physical particle characteristics of the SIR-Spheres® and the TheraSpheres® had a subtle impact on particle trajectories in the decelerating portion of the arterial pulse, i.e., when the inertial forces on the particles are weaker. Conversely, particle characteristics and inelastic wall collisions had little effect on particles released during the accelerating phase of the arterial pulse, i.e., both types of microspheres followed organized paths to predetermined outlets. Such results begin paving the way towards directing 100% of the released microspheres to specific daughter vessels (e.g., those connected to tumors) under transient flow conditions in realistic geometries via a novel drug-particle targeting methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Ahn, C. S., S. G. Lee, S. Hwang, D. B. Moon, T. Y. Ha, Y. J. Lee, K. M. Park, K. H. Kim, Y. D. Kim, and K. K. Kim. Anatomic variation of the right hepatic artery and its reconstruction for living donor liver transplantation using right lobe graft. Transplant. Proc. 37:1067–1069, 2005.

    Article  PubMed  Google Scholar 

  2. Basciano, C. A. Computational particle hemodynamics analyses with applications to abdominal aortic aneurysms and liver targeting. PhD Dissertation under Prof. Clement Kleinstreuer at North Carolina State University, Raleigh, NC, 2010.

  3. Befeler, A. S., and A. M. Di Bisceglie. Hepatocellular carcinoma: diagnosis and treatment. Gastroenterology 122:1609–1619, 2002.

    Article  PubMed  Google Scholar 

  4. Bilbao, J. I., A. Martino, E. Luis, L. Díaz-Dorronsoro, A. Alonso-Burgos, A. Martinez de la Cuesta, B. Sangro, and J. A. García de Jalón. Biocompatability, inflammatory response, and recannalization characteristics of nonradioactive resin microspheres: histological findings. Cardiovasc. Inter. Rad. 32:727–736, 2009.

    Article  Google Scholar 

  5. Bruix, J., and M. Sherman. Management of hepatocellular carcinoma. Hepatology 6:1208–1236, 2005.

    Article  Google Scholar 

  6. Buchanan, J. R. Computational particle hemodynamics in the rabbit abdominal aorta. PhD Dissertation under Prof. Clement Kleinstreuer at North Carolina State University, Raleigh, NC, 2000.

  7. Buchanan, J. R., C. Kleinstreuer, and J. K. Comer. Rheological effects on pulsatile hemodynamics in a stenosed tube. Comp. Fluids 29:695–724, 2000.

    Article  Google Scholar 

  8. Bushi, D., Y. Grad, S. Einav, O. Yodfat, B. Nishri, and D. Tanne. Hemodynamic evaluation of embolic trajectory in an arterial bifurcation: an in-vitro experimental model. Stroke 36:2696–2700, 2005.

    Article  PubMed  Google Scholar 

  9. Cabibbo, G., F. Latteri, M. Antonucci, and A. Craxi. Multimodal approaches to the treatment of hepatocellular carcinoma. Nat. Clin. Pract. Gastroenterol. Hepatol. 6:159–169, 2009.

    Article  PubMed  Google Scholar 

  10. Carlisle, K. M., M. Halliwell, A. E. Read, and P. N. Wells. Estimation of total hepatic flow by duplex ultrasound. Gut 33:92–97, 1992.

    Article  CAS  PubMed  Google Scholar 

  11. da Silveira, L. A., F. B. C. Silveira, and V. P. S. Fazan. Arterial diameter of the celiac trunk and its branches. Anatomical study. Acta Cir. Bras. 24(1):044–047, 2009.

    Article  Google Scholar 

  12. Han, S. H. B., S. Rice, S. M. Cohen, T. B. Reynolds, and T. L. Fong. Duplex Doppler ultrasound of the hepatic artery in patients with acute alcoholic hepatitis. J. Clin. Gastroenterol. 34(5):573–577, 2002.

    Article  PubMed  Google Scholar 

  13. Hiatt, J. R., J. Gabbay, and R. W. Busuttil. Surgical anatomy of the hepatic arteries in 1000 cases. Ann. Surg. 220(1):50–52, 1994.

    Article  CAS  PubMed  Google Scholar 

  14. Hübner, G. H., N. Steudel, G. Kleber, C. Behrmann, E. Lotterer, and W. E. Fleig. Hepatic artery blood flow velocities: assessment by transcutaneous and intravascular Doppler sonography. J. Hepatol. 32:893–899, 2000.

    Article  PubMed  Google Scholar 

  15. Ishigami, K., Y. Zhang, S. Rayhill, D. Katz, and A. Stolpen. Does variant hepatic artery anatomy in a liver transplant recipient increase the risk of hepatic artery complications after transplantation. Am. J. Roentgenol. 183:1577–1584, 2004.

    Google Scholar 

  16. Jakab, F., Z. Rath, F. Schmal, P. Nagy, and J. Falller. Changes in hepatic hemodynamics due to primary liver tumours. HPB Surg. 9:245–248, 1996.

    Article  CAS  PubMed  Google Scholar 

  17. Jin, N., R. J. Lewandowski, R. A. Omary, and A. C. Larson. Respiratory self-gaiting for free-breathing abdominal phase-contrast blood flow measurements. J. Magn. Reson. Imaging 29:860–868, 2009.

    Article  PubMed  Google Scholar 

  18. Kennedy, A. S., D. Coldwell, C. Nutting, R. Murthy, D. E. Wertman, Jr., S. P. Loeher, C. Overton, S. Meranze, J. Niedzwiecki, and S. Sailer. Resin 90Y-Microsphere brachytherapy for unresectable colorectal liver metastases: modern USA experience. Int. J. Radiat. Oncol. 65(2):412–425, 2006.

    Article  CAS  Google Scholar 

  19. Kennedy, A., C. Kleinstreuer, C. A. Basciano, and A. Dezarn. Computer modeling of 90Y microsphere transport in the hepatic arterial tree to improve clinical outcomes. Int. J. Radiat. Oncol. 76(2):631–637, 2010.

    Article  CAS  Google Scholar 

  20. Kennedy, A., S. Nag, R. Salem, R. Murthy, A. J. McEwan, C. Nutting, A. Benson, J. Eespat, J. I. Bilbao, R. A. Sharma, J. P. Thomas, and D. Coldwell. Recommendations for radioembolizations of hepatic malignancies using yttrium-90 microsphere brachytherapy: a concensus panel report from the radioembolization brachytherapy oncology consortium. Int. J. Radiat. Oncol. 68(1):13–23, 2007.

    Article  Google Scholar 

  21. Kennedy, A. S., C. Nutting, D. Coldwell, J. Gaiser, and C. Drachenberg. Pathological response and microdosimetry of 90Y microspheres in man: review of four explanted whole livers. Int. J. Radiat. Oncol. 60(5):1552–1563, 2004.

    Article  CAS  Google Scholar 

  22. Kito, Y., M. Nagino, and Y. Nimura. Doppler sonography of hepatic arterial blood flow velocity after percutaneous transhepatic portal vein embolization. Am. J. Roentgenol. 176:909–912, 2001.

    CAS  Google Scholar 

  23. Kleinstreuer, C. Biofluid Dynamics: Principles and Selected Applications. Boca Raton, FL: CRC Press, pp. 78–108, 243–421, 2006.

    Google Scholar 

  24. Kleinstreuer, C. Methods and devices for targeted injection of radioactive microspheres. U.S. Patent Application 61/127,889, July 28, 2009, NC State University, Raleigh, NC.

  25. Kleinstreuer, C., Z. Zhang, and J. F. Donohue. Targeted drug-aerosol delivery in the human respiratory system. Annu. Rev. Biomed. Eng. 10:195–220, 2008.

    Article  CAS  PubMed  Google Scholar 

  26. Koops, A., B. Wojciechowski, D. C. Broering, G. Adam, and G. Krupski-Berdien. Anatomic variations of the hepatic arteries in 604 selective celiac and superior mesenteric angiographies. Surg. Radiol. Anat. 26:239–244, 2004.

    Article  CAS  PubMed  Google Scholar 

  27. Kruskal, J. B., P. A. Newman, L. G. Sammons, and R. A. Kane. Optimizing Doppler and color flow US: application to hepatic sonography. RadioGraphics 24:657–675, 2004.

    Article  PubMed  Google Scholar 

  28. Liu, L. X., W. H. Zhang, and H. C. Jiang. Current treatment for liver metastases from colorectal cancer. World J. Gastroenterol. 9(2):193–200, 2003.

    PubMed  Google Scholar 

  29. Longest, P. W., C. Kleinstreuer, and R. R. Buchanan. Efficient computation of micro-particle dynamics including wall effects. Comput. Fluids 33:577–601, 2004.

    Article  Google Scholar 

  30. Michels, N. A. Newer anatomy of the liver and its variant blood supply and collateral circulation. Am. J. Surg. 112:337–347, 1966.

    Article  CAS  PubMed  Google Scholar 

  31. Patruno, L. E., A. H. V. Repetto Llamazares, and M. O. Prado. Simulation of arterial hemodynamics for brachytherapy applications. Mecánica Computacional 25:2539–2548, 2006.

    Google Scholar 

  32. Pouponneau, P., J.-C. Leroux, and S. Martel. Magnetic nanoparticles encapsulated into biodegradable microparticles steered with an upgraded magnetic resonance imaging system for tumor chemoembolization. Biomaterials 30:6327–6332, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Taylor, K. J. W., P. N. Burns, J. P. Woodcock, and P. N. T. Wells. Blood flow in deep abdominal and pelvic vessels: ultrasonic pulsed-Doppler analysis. Radiology 154:487–493, 1985.

    CAS  PubMed  Google Scholar 

  34. Truskey, G. A., F. Yuan, and D. F. Katz. Transport Phenomena in Biological Systems. Upper Saddle River, NJ: Pearson Prentice Hall, p. 226, 2004.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the use of ANSYS CFX v12 (ANSYS Inc., Canonsburg, PA) for all computational fluid-particle simulations and the financial support of the first author (C.A.B.) via an educational grant from Sirtex Medical (Lane Cove, Australia).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clement Kleinstreuer.

Additional information

Associate Editor Scott L. Diamond oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basciano, C.A., Kleinstreuer, C., Kennedy, A.S. et al. Computer Modeling of Controlled Microsphere Release and Targeting in a Representative Hepatic Artery System. Ann Biomed Eng 38, 1862–1879 (2010). https://doi.org/10.1007/s10439-010-9955-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-9955-z

Keywords

Navigation