Skip to main content
Log in

Simultaneous Quantification of Perfusion and Permeability in the Prostate Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging with an Inversion-Prepared Dual-Contrast Sequence

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The aim of the present study was to quantify both perfusion and extravasation in the prostate to discriminate tumor from healthy tissue, which might be achieved by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) using a nonspecific low-molecular-weight contrast medium (CM). To determine extravasation as well as tissue perfusion an inversion-prepared dual-contrast sequence employing a parallel acquisition technique (PAT) was designed for interleaved acquisition of T 1-weighted images for extravasation measurement and T2\( T^{\ast}_{2} \)-weighted images for determination of the highly concentrated bolus with a sufficiently high temporal and spatial resolution at an acceptable signal-to-noise ratio. Thirteen patients with proven prostate cancer were examined with the sequence using a combined body-array prostate coil. Before pharmacokinetic evaluation the images were intensity-corrected and, if required, motion-corrected. The pharmacokinetic model used to calculate perfusion, permeability, blood volume, interstitial volume, transit time, and vessel size index included two compartments and a correction of delay and dispersion of the arterial input function. The information provided by the dual-contrast sequence allowed application of a more elaborate model for evaluation and enabled quantification of all parameters. Peripheral prostate tumors were found to differ from peripheral healthy prostate tissue in perfusion (1.38 mL/(min cm3) vs. 0.23 mL/(min cm3), p = 0.004), mean transit time (2.88 vs. 4.88 s, p = 0.039), and blood volume (1.9  vs. 0.7%, p = 0.019). A inversion-prepared dual-contrast sequence acquiring T 1- and \( T^{\ast}_{2} \)-weighted images with sufficient temporal resolution and signal-to-noise ratio was successfully applied in patients with prostate cancer to quantify all pharmacokinetic parameters of inflow and extravasation of a low-molecular-weight inert tracer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Benner T., Heiland S., Erb G., Forsting M., Sartor K. Accuracy of gamma-variate fits to concentration–time curves from dynamic susceptibility-contrast enhanced MRI: influence of time resolution, maximal signal drop and signal-to-noise. Magn. Reson. Imaging 1997;15(3):307–17

    Article  PubMed  CAS  Google Scholar 

  2. Beyersdorff D., Taupitz M., Winkelmann B., Fischer T., Lenk S., Loening S.A., Hamm B. Patients with a history of elevated prostate-specific antigen levels and negative transrectal US-guided quadrant or sextant biopsy results: value of MR imaging. Radiology 2002;224(3):701–6

    Article  PubMed  Google Scholar 

  3. Bostwick D.G., Wheeler T.M., Blute M., Barrett D.M., MacLennan G.T., Sebo T.J., Scardino P.T., Humphrey P.A., Hudson M.A., Fradet Y., et al. Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. Urology 1996;48(1):47–57

    Article  PubMed  CAS  Google Scholar 

  4. Brawer M.K., Deering R.E., Brown M., Preston S.D., Bigler S.A. Predictors of pathologic stage in prostatic carcinoma. The role of neovascularity. Cancer 1994;73(3):678–87

    Article  PubMed  CAS  Google Scholar 

  5. Brix G., Kiessling F., Lucht R., Darai S., Wasser K., Delorme S., Griebel J. Microcirculation and microvasculature in breast tumors: pharmacokinetic analysis of dynamic MR image series. Magn. Reson. Med. 2004;52(2):420–9

    Article  PubMed  Google Scholar 

  6. Buckley D.L., Roberts C., Parker G.J., Logue J.P., Hutchinson C.E. Prostate cancer: evaluation of vascular characteristics with dynamic contrast-enhanced T1-weighted MR imaging–initial experience. Radiology 2004;233(3):709–15

    Article  PubMed  Google Scholar 

  7. Calamante F., Gadian D.G., Connelly A. Delay, dispersion effects in dynamic susceptibility contrast MRI: simulations using singular value decomposition. Magn. Reson. Med. 2000;44(3):466–73

    Article  PubMed  CAS  Google Scholar 

  8. Calamante F., Thomas D.L., Pell G.S., Wiersma J., Turner R. Measuring cerebral blood flow using magnetic resonance imaging techniques. J Cereb Blood Flow Metab 1999;19(7):701–35

    Article  PubMed  CAS  Google Scholar 

  9. Chandler J.D. Subroutine STEPIT: Finds local minima of a smooth function of several parameters. Behavioral Science 1969;14:81–82

    Google Scholar 

  10. Checkley D., Tessier J.J., Kendrew J., Waterton J.C., Wedge S.R. Use of dynamic contrast-enhanced MRI to evaluate acute treatment with ZD6474, a VEGF signalling inhibitor, in PC-3 prostate tumours. Br J Cancer 2003;89(10):1889–95

    Article  PubMed  CAS  Google Scholar 

  11. Daldrup H., Shames D.M., Wendland M., Okuhata Y., Link T.M., Rosenau W., Lu Y., Brasch R.C. Correlation of dynamic contrast-enhanced MR imaging with histologic tumor grade: comparison of macromolecular and small-molecular contrast media. AJR-Am-J-Roentgenol 1998;171(4):941–9

    PubMed  CAS  Google Scholar 

  12. de Bazelaire C., Rofsky N.M., Duhamel G., Zhang J., Michaelson M.D., George D., Alsop D.C. Combined T2* and T1 measurements for improved perfusion and permeability studies in high field using dynamic contrast enhancement. Eur Radiol 2006;16(9):2083–91

    Article  PubMed  Google Scholar 

  13. Degani H., Gusis V., Weinstein D., Fields S., Strano S. Mapping pathophysiological features of breast tumors by MRI at high spatial resolution. Nat Med 1997;3(7):780–2

    Article  PubMed  CAS  Google Scholar 

  14. Dennie J., Mandeville J.B., Boxerman J.L., Packard S.D., Rosen B.R., Weisskoff R.M. NMR imaging of changes in vascular morphology due to tumor angiogenesis. Magn. Reson. Med. 1998;40(6):793–9

    Article  PubMed  CAS  Google Scholar 

  15. Dennis L.K., Resnick M.I. Analysis of recent trends in prostate cancer incidence and mortality. Prostate 2000;42(4):247–52

    Article  PubMed  CAS  Google Scholar 

  16. Donahue K.M., Weisskoff R.M., Parmelee D.J., Callahan R.J., Wilkinson R.A., Mandeville J.B., Rosen B.R. Dynamic Gd-DTPA enhanced MRI measurement of tissue cell volume fraction. Magn-Reson-Med 1995;34(3):423–32

    Article  PubMed  CAS  Google Scholar 

  17. Fritz Hansen T., Rostrup E., Sondergaard L., Ring P.B., Amtorp O., Larsson H.B. Capillary transfer constant of Gd-DTPA in the myocardium at rest and during vasodilation assessed by MRI. Magn. Reson. Med. 1998;40(6):922–9

    Article  PubMed  CAS  Google Scholar 

  18. Gleason D.F., Mellinger G.T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J-Urol 1974;111(1):58–64

    PubMed  CAS  Google Scholar 

  19. Griswold M.A., Jakob P.M., Heidemann R.M., Nittka M., Jellus V., Wang J., Kiefer B., Haase A. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 2002;47(6):1202–10

    Article  PubMed  Google Scholar 

  20. Hara N., Okuizumi M., Koike H., Kawaguchi M., Bilim V. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a useful modality for the precise detection and staging of early prostate cancer. Prostate 2005;62(2):140–7

    Article  PubMed  Google Scholar 

  21. Harrer J.U., Parker G.J., Haroon H.A., Buckley D.L., Embelton K., Roberts C., Baleriaux D., Jackson A. Comparative study of methods for determining vascular permeability and blood volume in human gliomas. J. Magn. Reson. Imaging 2004;20(5):748–57

    Article  PubMed  Google Scholar 

  22. Heverhagen J.T., von Tengg-Kobligk H., Baudendistel K.T., Jia G., Polzer H., Henry H., Levine A.L., Rosol T.J., Knopp M.V. Benign prostate hyperplasia: evaluation of treatment response with DCE MRI. Magma 2004;17(1):5–11

    Article  PubMed  CAS  Google Scholar 

  23. Hricak H., White S., Vigneron D., Kurhanewicz J., Kosco A., Levin D., Weiss J., Narayan P., Carroll P.R. Carcinoma of the prostate gland: MR imaging with pelvic phased-array coils versus integrated endorectal–pelvic phased-array coils. Radiology 1994;193(3):703–9

    PubMed  CAS  Google Scholar 

  24. Inaba T. Quantitative measurements of prostatic blood flow and blood volume by positron emission tomography. J Urol 1992;148(5):1457–60

    PubMed  CAS  Google Scholar 

  25. Jenkinson M., Smith S. A global optimisation method for robust affine registration of brain images. Med Image Anal 2001;5(2):143–56

    Article  PubMed  CAS  Google Scholar 

  26. Jiang L., Zhao D., Constantinescu A., Mason R.P. Comparison of BOLD contrast and Gd-DTPA dynamic contrast-enhanced imaging in rat prostate tumor. Magn. Reson. Med. 2004;51(5):953–60

    Article  PubMed  Google Scholar 

  27. Johnson G., Wetzel S.G., Cha S., Babb J., Tofts P.S. Measuring blood volume and vascular transfer constant from dynamic, T(2)*-weighted contrast-enhanced MRI. Magn. Reson. Med. 2004;51(5):961–8

    Article  PubMed  Google Scholar 

  28. Kershaw L.E., Buckley D.L. Precision in measurements of perfusion and microvascular permeability with T1-weighted dynamic contrast-enhanced MRI. Magn. Reson. Med. 2006;56(5):986–92

    Article  PubMed  Google Scholar 

  29. Kety S.S., Axel L., Hoop B. Principles of conventional techniques. In: Bihan-D L. editor. Diffusion and Perfusion Magnetic Resonance Imaging. New York: Raven Press; 1995. p 201–215

    Google Scholar 

  30. Kiessling F., Huber P.E., Grobholz R., Heilmann M., Meding J., Lichy M.P., Fink C., Krix M., Peschke P., Schlemmer H.P. Dynamic magnetic resonance tomography and proton magnetic resonance spectroscopy of prostate cancers in rats treated by radiotherapy. Invest Radiol 2004;39(1):34–44

    Article  PubMed  Google Scholar 

  31. Kiselev V.G., Strecker R., Ziyeh S., Speck O., Hennig J. Vessel size imaging in humans. Magn. Reson. Med. 2005;53(3):553–63

    Article  PubMed  CAS  Google Scholar 

  32. Larsson H.B., Fritz Hansen T., Rostrup E., Sondergaard L., Ring P., Henriksen O. Myocardial perfusion modeling using MRI. Magn. Reson. Med. 1996;35(5):716–26

    Article  PubMed  CAS  Google Scholar 

  33. Lüdemann L., Grieger W., Wurm R., Wust P., Zimmer C. Quantitative measurement of leakage volume and permeability in gliomas, meningiomas and brain metastases with dynamic contrast-enhanced MRI. Magn. Reson. Imaging 2005;23(8):833–41

    Article  PubMed  Google Scholar 

  34. Mullerad M., Hricak H., Wang L., Chen H.N., Kattan M.W., Scardino P.T. Prostate cancer: detection of extracapsular extension by genitourinary and general body radiologists at MR imaging. Radiology 2004;232(1):140–6

    Article  PubMed  Google Scholar 

  35. Ostergaard L., Weisskoff R.M., Chesler D.A., Gyldensted C., Rosen B.R. High resolution measurement of cerebral blood flow using intravascular tracer bolus passages. Part I: Mathematical approach and statistical analysis. Magn. Reson. Med. 1996;36(5):715–25

    Article  PubMed  CAS  Google Scholar 

  36. Padhani A.R., Gapinski C.J., Macvicar D.A., Parker G.J., Suckling J., Revell P.B., Leach M.O., Dearnaley D.P., Husband J.E. Dynamic contrast enhanced MRI of prostate cancer: correlation with morphology and tumour stage, histological grade and PSA. Clin Radiol 2000;55(2):99–109

    Article  PubMed  CAS  Google Scholar 

  37. Pradel C., Siauve N., Bruneteau G., Clement O., de Bazelaire C., Frouin F., Wedge S.R., Tessier J.L., Robert P.H., Frija G., et al. Reduced capillary perfusion and permeability in human tumour xenografts treated with the VEGF signalling inhibitor ZD4190: an in vivo assessment using dynamic MR imaging and macromolecular contrast media. Magn. Reson. Imaging 2003;21(8):845–51

    Article  PubMed  CAS  Google Scholar 

  38. Pruessmann K.P., Weiger M., Scheidegger M.B., Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 1999;42(5):952–62

    Article  PubMed  CAS  Google Scholar 

  39. Pschyrembel, W. Blutbild. In: Klinisches Wörterbuch, 256th edn, edited by C. Zink. Berlin, New York: de Gruyter, 1990, p. 217.

  40. Rohlfing T., Denzler J., Grassl C., Russakoff D.B., Maurer C.R. Jr. Markerless real-time 3-D target region tracking by motion backprojection from projection images. IEEE Trans Med Imaging 2005;24(11):1455–68

    Article  PubMed  Google Scholar 

  41. Rosen B.R., Belliveau J.W., Vevea J.M., Brady T.J. Perfusion imaging with NMR contrast agents. Magn-Reson-Med 1990;14(2):249–65

    Article  PubMed  CAS  Google Scholar 

  42. Sodickson D.K., Manning W.J. Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 1997;38(4):591–603

    Article  PubMed  CAS  Google Scholar 

  43. Stanisz G.J., Henkelman R.M. Gd-DTPA relaxivity depends on macromolecular content. Magn. Reson. Med. 2000;44(5):665–7

    Article  PubMed  CAS  Google Scholar 

  44. St Lawrence K.S., Lee T.Y. An adiabatic approximation to the tissue homogeneity model for water exchange in the brain: II. Experimental validation. J Cereb Blood Flow Metab 1998;18(12):1378–85

    Article  PubMed  CAS  Google Scholar 

  45. Studholme C., Hill D.L.G. An overlap invariant entropy measure of 3D medical image alignment. Pattern Recognition 1999;32(1):71–86

    Article  Google Scholar 

  46. Taillieu F., Salomon L.J., Siauve N., Clement O., Faye N., Balvay D., Vayssettes C., Frija G., Ville Y., Cuenod C.A. Placental perfusion and permeability: simultaneous assessment with dual-echo contrast-enhanced MR imaging in mice. Radiology 2006;241(3):737–45

    Article  PubMed  Google Scholar 

  47. Thompson H.K. Jr., Starmer C.F., Whalen R.E., McIntosh H.D. Indicator Transit Time Considered as a Gamma Variate. Circ Res 1964;14:502–15

    PubMed  Google Scholar 

  48. Tofts P.S., Brix G., Buckley D.L., Evelhoch J.L., Henderson E., Knopp M.V., Larsson H.B., Lee T.Y., Mayr N.A., Parker G.J., et al. Estimating kinetic parameters from dynamic contrast-enhanced T(1)-weighted MRI of a diffusable tracer: standardized quantities and symbols. J. Magn. Reson. Imaging 1999;10(3):223–32

    Article  PubMed  CAS  Google Scholar 

  49. Tropres I., Grimault S., Vaeth A., Grillon E., Julien C., Payen J.F., Lamalle L., Decorps M. Vessel size imaging. Magn. Reson. Med. 2001;45(3):397–408

    Article  PubMed  CAS  Google Scholar 

  50. Vallee J.P., Sostman H.D., MacFall J.R., Coleman R.E. Quantification of myocardial perfusion with MRI and exogenous contrast agents. Cardiology 1997;88(1):90–105

    Article  PubMed  CAS  Google Scholar 

  51. van Lin E.N., Futterer J.J., Heijmink S.W., van der Vight L.P., Hoffmann A.L., van Kollenburg P., Huisman H.J., Scheenen T.W., Witjes J.A., Leer J.W., et al. IMRT boost dose planning on dominant intraprostatic lesions: gold marker-based three-dimensional fusion of CT with dynamic contrast-enhanced and 1H-spectroscopic MRI. Int J Radiat Oncol Biol Phys 2006;65(1):291–303

    PubMed  Google Scholar 

  52. Vonken E.P., van Osch M.J., Bakker C.J., Viergever M.A. Simultaneous quantitative cerebral perfusion and Gd-DTPA extravasation measurement with dual-echo dynamic susceptibility contrast MRI. Magn. Reson. Med. 2000;43(6):820–7

    Article  PubMed  CAS  Google Scholar 

  53. Zhu X.P., Li K.L., Kamaly Asl I.D., Checkley D.R., Tessier J.J., Waterton J.C., Jackson A. Quantification of endothelial permeability, leakage space, and blood volume in brain tumors using combined T1 and T2* contrast-enhanced dynamic MR imaging. J. Magn. Reson. Imaging 2000;11(6):575–85

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lutz Lüdemann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lüdemann, L., Prochnow, D., Rohlfing, T. et al. Simultaneous Quantification of Perfusion and Permeability in the Prostate Using Dynamic Contrast-Enhanced Magnetic Resonance Imaging with an Inversion-Prepared Dual-Contrast Sequence. Ann Biomed Eng 37, 749–762 (2009). https://doi.org/10.1007/s10439-009-9645-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-009-9645-x

Keywords

Navigation