Skip to main content

Advertisement

Log in

Sequential whole-body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer’s perspective

  • Review Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

PET and MRI are established clinical tools which provide complementary information, but clinical workflow limits widespread clinical application of both modalities in combination. The two modalities are usually situated in different hospital departments and operated and reported independently, and patients are referred for both scans, often consecutively. With the advent of PET/MR as a new hybrid imaging modality there is now a possibility of addressing these concerns. There are two different design philosophies for integrated PET/MR imaging—positioning PET inside the MRI magnet or in tandem, similar to PET/CT. The Ingenuity TF PET/MR by Philips Healthcare is a sequential PET/MR tomograph combining state-of-the-art time-of-flight PET and high-field MRI with parallel transmission capabilities. In this review article we describe the technology implemented in the system, for example RF and magnetic shielding, MR-based attenuation correction, peculiarities in scatter correction, MR system optimisation, and the philosophy behind its design. Furthermore, we provide an overview of how the system has been used during the last two years, and expectations of how the use of PET/MR may continue in the years to come. On the basis of these observations and experiences we discuss the utility of the system, clinical workflow and acquisition times, and possible ways of optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Ratib O, Beyer T (2011) Whole-body hybrid PET/MRI: ready for clinical use? Eur J Nucl Med Mol Imaging 38(6):992–995

    Article  PubMed  Google Scholar 

  2. Jones T (2002) Molecular imaging with PET–the future challenges. Br J Radiol 75:S6–S15

    PubMed  CAS  Google Scholar 

  3. Pichler BJ, Kolb A, Nagele T, Schlemmer HP (2010) PET/MRI: paving the way for the next generation of clinical multimodality imaging applications. J Nucl Med 51(3):333–336

    Article  PubMed  Google Scholar 

  4. Schiepers C, Dahlbom M (2011) Molecular imaging in oncology: the acceptance of PET/CT and the emergence of MR/PET imaging. Eur Radiol 21(3):548–554

    Article  PubMed  Google Scholar 

  5. Hicks RJ, Lau EW (2009) PET/MRI: a different spin from under the rim. Eur J Nucl Med Mol Imaging 36(Suppl 1):S10–S14

    Article  PubMed  Google Scholar 

  6. Goyen M, Debatin JF (2009) Healthcare costs for new technologies. Eur J Nucl Med Mol Imaging 36(Suppl 1):S139–S143

    Article  PubMed  Google Scholar 

  7. von Schulthess GK, Schlemmer HP (2009) A look ahead: PET/MR versus PET/CT. Eur J Nucl Med Mol Imaging 36(Suppl 1):S3–S9

    Article  Google Scholar 

  8. Oates ME, Diagnostic Radiology Participants of ACRSNMTF, II (2012) Integrated residency training pathways of the future: diagnostic radiology, nuclear radiology, nuclear medicine, and molecular imaging. J Am Coll Radiol 9(4):239–244

    Article  PubMed  Google Scholar 

  9. Lecomte R (2009) Novel detector technology for clinical PET. Eur J Nucl Med Mol Imaging 36(Suppl 1):S69–S85

    Article  PubMed  Google Scholar 

  10. Peng BJ, Walton JH, Cherry SR, Willig-Onwuachi J (2010) Studies of the interactions of an MRI system with the shielding in a combined PET/MRI scanner. Phys Med Biol 55(1):265

    Article  PubMed  Google Scholar 

  11. Schlemmer HP, Pichler BJ, Schmand M, Burbar Z, Michel C, Ladebeck R, Jattke K, Townsend D, Nahmias C, Jacob PK, Heiss WD, Claussen CD (2008) Simultaneous MR/PET imaging of the human brain: feasibility study. Radiology 248(3):1028–1035

    Article  PubMed  Google Scholar 

  12. Judenhofer MS, Catana C, Swann BK, Siegel SB, Jung WI, Nutt RE, Cherry SR, Claussen CD, Pichler BJ (2007) PET/MR images acquired with a compact MR-compatible PET detector in a 7-T magnet. Radiology 244(3):807–814

    Article  PubMed  Google Scholar 

  13. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, Ratib O, Izquierdo-Garcia D, Fayad ZA, Shao L (2011) Design and performance evaluation of a whole-body Ingenuity TF PET-MRI system. Phys Med Biol 56(10):3091–3106

    Article  PubMed  CAS  Google Scholar 

  14. Delso G, Furst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, Schwaiger M, Ziegler SI (2011) Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med 52(12):1914–1922

    Article  PubMed  Google Scholar 

  15. Zaidi H, Del Guerra A (2011) An outlook on future design of hybrid PET/MRI systems. Med Phys 38(10):5667–5689

    Article  PubMed  Google Scholar 

  16. Heiss WD (2009) The potential of PET/MR for brain imaging. Eur J Nucl Med Mol Imaging 36(Suppl 1):S105–S112

    Article  PubMed  Google Scholar 

  17. Saraste A, Knuuti J (2012) Cardiac PET, CT, and MR: what are the advantages of hybrid imaging? Curr Cardiol Rep 14(1):24–31

    Article  PubMed  Google Scholar 

  18. Herzog H, Langen K-J, Kaffanke J, Weirich C, Neuner I, Stoffels G, Kops ER, Scheins J, Tellmann L, Shah NJ (2010) MR-PET opens new horizons in neuroimaging. Future Neurol 5(6):807–815

    Article  Google Scholar 

  19. Jansen NL, Graute V, Armbruster L, Suchorska B, Lutz J, Eigenbrod S, Cumming P, Bartenstein P, Tonn JC, Kreth FW, la Fougère C (2012) MRI-suspected low-grade glioma: is there a need to perform dynamic FET PET? Eur J Nucl Med Mol Imaging 39(6):1021–1029

    Google Scholar 

  20. Beuthien-Baumann B, Platzek I, Lauterbach I, van den Hoff J, Schramm G, Zophel K, Laniado M, Kotzerke J (2012) Improved anatomic visualization of a glomus caroticum tumour within the carotic bifurcation with combined 68 Ga-DOTATATE PET/MRI. Eur J Nucl Med Mol Imaging 39(6):1087–1088

    Article  PubMed  Google Scholar 

  21. Eiber M, Souvatzoglou M, Pickhard A, Loeffelbein DJ, Knopf A, Holzapfel K, Martinez-Moller A, Nekolla SG, Scherer EQ, Schwaiger M, Rummeny EJ, Beer AJ (2011) Simulation of a MR-PET protocol for staging of head-and-neck cancer including Dixon MR for attenuation correction. Eur J Radiol. doi:10.1016/j.ejrad.2011.10.005

  22. Boss A, Bisdas S, Kolb A, Hofmann M, Ernemann U, Claussen CD, Pfannenberg C, Pichler BJ, Reimold M, Stegger L (2010) Hybrid PET/MRI of intracranial masses: initial experiences and comparison to PET/CT. J Nucl Med 51(8):1198–1205

    Article  PubMed  Google Scholar 

  23. Garibotto V, Vargas MI, Lovblad KO, Ratib O (2011) A PET-MRI case of corticocerebellar diaschisis after stroke. Clin Nucl Med 36(9):821–825

    Article  PubMed  Google Scholar 

  24. Wissmeyer M, Heinzer S, Majno P, Buchegger F, Zaidi H, Garibotto V, Viallon M, Becker CD, Ratib O, Terraz S (2011) 90Y Time-of-flight PET/MR on a hybrid scanner following liver radioembolisation (SIRT). Eur J Nucl Med Mol Imaging 38(9):1744–1745

    Article  PubMed  Google Scholar 

  25. Lord M, Ratib O, Vallee JP (2011) (1)F-Fluorocholine integrated PET/MRI for the initial staging of prostate cancer. Eur J Nucl Med Mol Imaging 38(12):2288

    Article  PubMed  Google Scholar 

  26. Rubi S, Setoain X, Donaire A, Bargallo N, Sanmarti F, Carreno M, Rumia J, Calvo A, Aparicio J, Campistol J, Pons F (2011) Validation of FDG-PET/MRI coregistration in nonlesional refractory childhood epilepsy. Epilepsia 52(12):2216–2224

    Article  PubMed  Google Scholar 

  27. Drzezga A, Becker JA, Van Dijk KR, Sreenivasan A, Talukdar T, Sullivan C, Schultz AP, Sepulcre J, Putcha D, Greve D, Johnson KA, Sperling RA (2011) Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain 134(Pt 6):1635–1646

    Article  PubMed  Google Scholar 

  28. Kanda T, Ishii K, Uemura T, Miyamoto N, Yoshikawa T, Kono AK, Mori E (2008) Comparison of grey matter and metabolic reductions in frontotemporal dementia using FDG-PET and voxel-based morphometric MR studies. Eur J Nucl Med Mol Imaging 35(12):2227–2234

    Article  PubMed  Google Scholar 

  29. Karow DS, McEvoy LK, Fennema-Notestine C, Hagler DJ Jr, Jennings RG, Brewer JB, Hoh CK, Dale AM, Alzheimer’s Disease Neuroimaging I (2010) Relative capability of MR imaging and FDG PET to depict changes associated with prodromal and early Alzheimer disease. Radiology 256(3):932–942

    Article  PubMed  Google Scholar 

  30. Wu YW, Tadamura E, Yamamuro M, Kanao S, Marui A, Tanabara K, Komeda M, Togashi K (2007) Comparison of contrast-enhanced MRI with (18)F-FDG PET/201Tl SPECT in dysfunctional myocardium: relation to early functional outcome after surgical revascularization in chronic ischemic heart disease. J Nucl Med 48(7):1096–1103

    Article  PubMed  Google Scholar 

  31. Qiao H, Zhang H, Zheng Y, Ponde DE, Shen D, Gao F, Bakken AB, Schmitz A, Kung HF, Ferrari VA, Zhou R (2009) Embryonic stem cell grafting in normal and infarcted myocardium: serial assessment with MR imaging and PET dual detection. Radiology 250(3):821–829

    Article  PubMed  Google Scholar 

  32. Tang TY, Moustafa RR, Howarth SP, Walsh SR, Boyle JR, Li ZY, Baron JC, Gillard JH, Warburton EA (2008) Combined PET-FDG and USPIO-enhanced MR imaging in patients with symptomatic moderate carotid artery stenosis. Eur J Vasc Endovasc Surg 36(1):53–55

    Article  PubMed  CAS  Google Scholar 

  33. Knaapen P, Gotte MJ, Paulus WJ, Zwanenburg JJ, Dijkmans PA, Boellaard R, Marcus JT, Twisk JW, Visser CA, van Rossum AC, Lammertsma AA, Visser FC (2006) Does myocardial fibrosis hinder contractile function and perfusion in idiopathic dilated cardiomyopathy? PET and MR imaging study. Radiology 240(2):380–388

    Article  PubMed  Google Scholar 

  34. Park SH, Moon WK, Cho N, Chang JM, Im SA, Park IA, Kang KW, Han W, Noh DY (2012) Comparison of diffusion-weighted MR imaging and FDG PET/CT to predict pathological complete response to neoadjuvant chemotherapy in patients with breast cancer. Eur Radiol 22(1):18–25

    Article  PubMed  Google Scholar 

  35. Loeffelbein DJ, Souvatzoglou M, Wankerl V, Martinez-Moller A, Dinges J, Schwaiger M, Beer AJ (2012) PET-MRI fusion in head-and-neck oncology: current status and implications for hybrid PET/MRI. J Oral Maxil Surg 70(2):473–483

    Article  Google Scholar 

  36. Wu X, Korkola P, Pertovaara H, Eskola H, Jarvenpaa R, Kellokumpu-Lehtinen PL (2011) No correlation between glucose metabolism and apparent diffusion coefficient in diffuse large B-cell lymphoma: a PET/CT and DW-MRI study. Eur J Radiol 79(2):e117–e121

    Article  PubMed  Google Scholar 

  37. Thorwarth D, Henke G, Muller AC, Reimold M, Beyer T, Boss A, Kolb A, Pichler B, Pfannenberg C (2011) Simultaneous 68 Ga-DOTATOC-PET/MRI for IMRT treatment planning for meningioma: first experience. Int J Radiat Oncol Biol Phys 81(1):277–283

    Article  PubMed  Google Scholar 

  38. Ng SH, Chan SC, Yen TC, Liao CT, Lin CY, Chang JT-C, Ko SF, Wang HM, Chang KP, Fan KH (2011) PET/CT and 3-T whole-body MRI in the detection of malignancy in treated oropharyngeal and hypopharyngeal carcinoma. Eur J Nucl Med Mol Imaging 38(6):996–1008

    Article  PubMed  Google Scholar 

  39. Nakamoto Y, Tamai K, Saga T, Higashi T, Hara T, Suga T, Koyama T, Togashi K (2009) Clinical value of image fusion from MR and PET in patients with head and neck cancer. Mol Imaging Biol 11(1):46–53

    Article  PubMed  Google Scholar 

  40. Ho KC, Lin G, Wang JJ, Lai CH, Chang CJ, Yen TC (2009) Correlation of apparent diffusion coefficients measured by 3T diffusion-weighted MRI and SUV from FDG PET/CT in primary cervical cancer. Eur J Nucl Med Mol Imaging 36(2):200–208

    Article  PubMed  Google Scholar 

  41. Beer AJ, Eiber M, Souvatzoglou M, Holzapfel K, Ganter C, Weirich G, Maurer T, Kubler H, Wester HJ, Gaa J, Krause BJ (2011) Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in (11)C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol 13(2):352–361

    Article  PubMed  Google Scholar 

  42. Takenaka S, Shinoda J, Asano Y, Aki T, Miwa K, Ito T, Yokoyama K, Iwama T (2011) Metabolic assessment of monofocal acute inflammatory demyelination using MR spectroscopy and (11)C-methionine-, (11)C-choline-, and (18)F-fluorodeoxyglucose-PET. Brain Tumor Pathol 28(3):229–238

    Article  PubMed  CAS  Google Scholar 

  43. Bural GG, Torigian DA, Burke A, Houseni M, Alkhawaldeh K, Cucchiara A, Basu S, Alavi A (2010) Quantitative assessment of the hepatic metabolic volume product in patients with diffuse hepatic steatosis and normal controls through use of FDG-PET and MR imaging: a novel concept. Mol Imaging Biol 12(3):233–239

    Article  PubMed  Google Scholar 

  44. Bailey DL, Karp JS, Surti S (2003) Physics and Instrumentation in PET. In: Valk PE, Bailey DL, Townsend DW, Maisey MN (eds) Positron emission tomography: basic science and clinical practice, 2nd edn. Springer, London, pp 41–67

    Google Scholar 

  45. Hofmann M, Pichler B, Scholkopf B, Beyer T (2009) Towards quantitative PET/MRI: a review of MR-based attenuation correction techniques. Eur J Nucl Med Mol Imaging 36(Suppl 1):S93–S104

    Article  PubMed  Google Scholar 

  46. Cloquet C, Sureau FC, Defrise M, Van Simaeys G, Trotta N, Goldman S (2010) Non-Gaussian space-variant resolution modelling for list-mode reconstruction. Phys Med Biol 55(17):5045–5066

    Article  PubMed  CAS  Google Scholar 

  47. J-y Cui, Pratx G, Prevrhal S, Levin CS (2011) Fully 3D list-mode time-of-flight PET image reconstruction on GPUs using CUDA. Med Phys 38(12):6775–6786

    Article  Google Scholar 

  48. El Fakhri G, Surti S, Trott CM, Scheuermann J, Karp JS (2011) Improvement in lesion detection with whole-body oncologic time-of-flight PET. J Nucl Med 52(3):347–353

    Article  PubMed  Google Scholar 

  49. Hammer BE (1996) Engineering considerations for a MR-PET scanner. Phys Medica XII (Suppl. 1):69–76

  50. Kaffanke JB, Neuner I, Stöcker T, Tellmann L, Langen K-J, Herzog H, Shah NJ (2010) fMRI investigations on an MR-PET system during simultaneous PET scanning: technical considerations. In: Proceedings of the 18th scientific meeting, International Society for Magnetic Resonance in Medicine, Stockholm, p 3954

  51. Weirich C, Brenner D, Tellmann L, Herzog H, Shah NJ (2011) Systematic investigation and correction of MR influences on simultaneous PET measurements. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine, Toronto, Canada, p 3796

  52. Schwenzer NF, Stegger L, Bisdas S, Schraml C, Kolb A, Boss A, Muller M, Reimold M, Ernemann U, Claussen CD, Pfannenberg C, Schmidt H (2012) Simultaneous PET/MR imaging in a human brain PET/MR system in 50 patients-current state of image quality. Eur J Radiol. doi:10.1016/j.ejrad.2011.12.027

  53. Kinahan PE, Townsend DW, Beyer T, Sashin D (1998) Attenuation correction for a combined 3D PET/CT scanner. Med Phys 25(10):2046–2053

    Article  PubMed  CAS  Google Scholar 

  54. Chuanyong B, Ling S, Da Silva AJ, Zuo Z (2003) A generalized model for the conversion from CT numbers to linear attenuation coefficients. IEEE T Nucl Sci 50(5):1510–1515

    Article  Google Scholar 

  55. Schreibmann E, Nye JA, Schuster DM, Martin DR, Votaw J, Fox T (2010) MR-based attenuation correction for hybrid PET-MR brain imaging systems using deformable image registration. Med Phys 37(5):2101–2109

    Article  PubMed  Google Scholar 

  56. Keereman V, Vandenberghe S, De Deene Y, Luypaert R, Broux T, Lemahieu I (2008) MR-based attenuation correction for PET using an Ultrashort Echo Time (UTE) sequence. In: IEEE nuclear science symposium conference record, 19–25 Oct 2008, Dresden, pp 4656–4661

  57. Martinez-Moller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd’hotel C, Ziegler SI, Navab N, Schwaiger M, Nekolla SG (2009) Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med 50(4):520–526

    Article  PubMed  Google Scholar 

  58. Johansson A, Karlsson M, Nyholm T (2011) CT substitute derived from MRI sequences with ultrashort echo time. Med Phys 38(5):2708–2714

    Article  PubMed  Google Scholar 

  59. Hofmann M, Steinke F, Scheel V, Charpiat G, Farquhar J, Aschoff P, Brady M, Scholkopf B, Pichler BJ (2008) MRI-based attenuation correction for PET/MRI: a novel approach combining pattern recognition and atlas registration. J Nucl Med 49(11):1875–1883

    Article  PubMed  Google Scholar 

  60. Hu Z, Ojha N, Renisch S, Schulz V, Torres I, Buhl A, Pal D, Muswick G, Penatzer J, Guo T, Bönert P, Tung C, Kaste J, Morich M, HAVENS T, Maniawski P, Schäfer W, Günther RW, Krombach GA, Shao L (2009) MR-based Attenuation Correction for a Whole-body Sequential PET/MR System. In: IEEE nuclear science symposium conference record (NSS/MIC), Orlando, pp 3508–3512

  61. Hu Z, Renisch S, Schweizer B, Blaffert T, Ojha N, Guo T, Tang J, Tung C, Kaste J, Schulz V, Torres I, Shao L (2010) MR-based attenuation correction for whole-body PET/MR system. In: IEEE nuclear science symposium conference record (NSS/MIC), Oct 30 2010–Nov 6 2010, Knoxville, pp 2119–2122

  62. Mawlawi O, Erasmus JJ, Pan T, Cody DD, Campbell R, Lonn AH, Kohlmyer S, Macapinlac HA, Podoloff DA (2006) Truncation artifact on PET/CT: impact on measurements of activity concentration and assessment of a correction algorithm. Am J Roentgenol 186(5):1458–1467

    Article  Google Scholar 

  63. Delso G, Martinez-Moller A, Bundschuh RA, Nekolla SG, Ziegler SI (2010) The effect of limited MR field of view in MR/PET attenuation correction. Med Phys 37(6):2804–2812

    Article  PubMed  Google Scholar 

  64. Zhang B, Pal D, Hu Z, Ojha N, Guo T, Muswick G, Tung C-H, Kaste J (2009) Attenuation correction for MR table and coils for a sequential PET/MR system. In: IEEE nuclear science symposium conference record (NSS/MIC), Oct. 24 2009–Nov. 1 2009, Orlando, pp 3303–3306

  65. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Bornert P, Perkuhn M, Niendorf T, Schafer WM, Brockmann H, Krohn T, Buhl A, Gunther RW, Mottaghy FM, Krombach GA (2011) Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging 38(1):138–152

    Article  PubMed  CAS  Google Scholar 

  66. Eiber M, Martinez-Moller A, Souvatzoglou M, Holzapfel K, Pickhard A, Loffelbein D, Santi I, Rummeny EJ, Ziegler S, Schwaiger M, Nekolla SG, Beer AJ (2011) Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging 38(9):1691–1701

    Article  PubMed  Google Scholar 

  67. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, Pichler BJ, Scholkopf B (2011) MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med 52(9):1392–1399

    Article  PubMed  Google Scholar 

  68. Samarin A, Burger C, Wollenweber SD, Crook DW, Burger IA, Schmid DT, von Schulthess GK, Kuhn FP (2012) PET/MR imaging of bone lesions—implications for PET quantification from imperfect attenuation correction. Eur J Nucl Med Mol Imaging 39(7):1154–1160

    Article  PubMed  Google Scholar 

  69. Du J, Hamilton G, Takahashi A, Bydder M, Chung CB (2007) Ultrashort echo time spectroscopic imaging (UTESI) of cortical bone. Magn Reson Med 58(5):1001–1009

    Article  PubMed  Google Scholar 

  70. Keereman V, Fierens Y, Broux T, De Deene Y, Lonneux M, Vandenberghe S (2010) MRI-based attenuation correction for PET/MRI using ultrashort echo time sequences. J Nucl Med 51(5):812–818

    Article  PubMed  Google Scholar 

  71. Catana C, van der Kouwe A, Benner T, Michel CJ, Hamm M, Fenchel M, Fischl B, Rosen B, Schmand M, Sorensen AG (2010) Toward implementing an MRI-based PET attenuation-correction method for neurologic studies on the MR-PET brain prototype. J Nucl Med 51(9):1431–1438

    Article  PubMed  CAS  Google Scholar 

  72. Berker Y, Franke J, Salomon A, Palmowski M, Donker HC, Temur Y, Mottaghy FM, Kuhl C, Izquierdo-Garcia D, Fayad ZA, Kiessling F, Schulz V (2012) MRI-based attenuation correction for hybrid PET/MRI systems: a 4-class tissue segmentation technique using a combined ultrashort-echo-time/Dixon MRI sequence. J Nucl Med 53(5):796–804

    Article  PubMed  Google Scholar 

  73. Bagheri MH, Hosseini MM, Emami MJ, Foroughi AA (2012) Metallic artifact in MRI after removal of orthopedic implants. Eur J Radiol 81(3):584–590

    Article  PubMed  Google Scholar 

  74. Luboldt W, Kufer R, Blumstein N, Toussaint TL, Kluge A, Seemann MD, Luboldt HJ (2008) Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology 249(3):1017–1025

    Article  PubMed  Google Scholar 

  75. Olsen RV, Munk PL, Lee MJ, Janzen DL, MacKay AL, Xiang QS, Masri B (2000) Metal artifact reduction sequence: early clinical applications. Radiographics 20(3):699–712

    PubMed  CAS  Google Scholar 

  76. Watson CC (2007) Extension of single scatter simulation to scatter correction of time-of-flight PET. IEEE T Nucl Sci 54(5):1679–1686

    Article  Google Scholar 

  77. Werner ME, Surti S, Karp JS (2006) Implementation and evaluation of a 3D PET single scatter simulation with tof modeling. In: IEEE nuclear science symposium conference record. San Diego, pp 1768–1773

  78. Pruessmann KP (2006) Encoding and reconstruction in parallel MRI. NMR Biomed 19(3):288–299

    Article  PubMed  Google Scholar 

  79. Katscher U, Börnert P, Leussler C, van den Brink JS (2003) Transmit SENSE. Magn Reson Med 49(1):144–150

    Article  PubMed  Google Scholar 

  80. Willinek WA, Gieseke J, Kukuk GM, Nelles M, Konig R, Morakkabati-Spitz N, Traber F, Thomas D, Kuhl CK, Schild HH (2010) Dual-source parallel radiofrequency excitation body MR imaging compared with standard MR imaging at 3.0 T: initial clinical experience. Radiology 256(3):966–975

    Article  PubMed  Google Scholar 

  81. Heilman JA, Derakhshan JD, Riffe MJ, Gudino N, Tkach J, Flask CA, Duerk JL, Griswold MA (2012) Parallel excitation for B-field insensitive fat-saturation preparation. Magn Reson Med. doi:10.1002/mrm.23238

  82. Nelles M, Konig RS, Gieseke J, Guerand-van Battum MM, Kukuk GM, Schild HH, Willinek WA (2010) Dual-source parallel RF transmission for clinical MR imaging of the spine at 3.0 T: intraindividual comparison with conventional single-source transmission. Radiology 257(3):743–753

    Article  PubMed  Google Scholar 

  83. Rahbar H, Partridge SC, Demartini WB, Gutierrez RL, Parsian S, Lehman CD (2012) Improved B(1) homogeneity of 3 tesla breast MRI using dual-source parallel radiofrequency excitation. J Magn Reson Imaging 35(5):1222–1226

    Article  PubMed  Google Scholar 

  84. Mueller A, Kouwenhoven M, Naehle CP, Gieseke J, Strach K, Willinek WA, Schild HH, Thomas D (2012) Dual-source radiofrequency transmission with patient-adaptive local radiofrequency shimming for 3.0-T cardiac MR imaging: initial experience. Radiology 263(1):77–85

    Article  PubMed  Google Scholar 

  85. Herrick P, Ansorge R, Hawkes R, Sawiak S, Stevick J, Carpenter A (2011) RF coil design for simultaneous PET/MR and brain. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine, Montreal, p 3801

  86. Sander CY, Keil B, Catana C, Rosen BR, Wald LL (2011) Design criteria of an MR-PET array coil for highly parallel mr brain imaging. In: Proceedings of the 19th scientific meeting, International Society for Magnetic Resonance in Medicine, Montreal, p 169

  87. Herzog H, Van den Hoff J (2012) Combined PET/MR systems: an overview and comparison of currently available options. Q J Nucl Med. Accepted for publication

  88. Antoch G, Bockisch A (2009) Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging 36(Suppl 1):S113–S120

    Article  PubMed  Google Scholar 

  89. Catana C, Benner T, van der Kouwe A, Byars L, Hamm M, Chonde DB, Michel CJ, El Fakhri G, Schmand M, Sorensen AG (2010) MRI-assisted PET motion correction for neurologic studies in an integrated MR-PET scanner. J Nucl Med 52(1):154–161

    Article  Google Scholar 

  90. King AP, Buerger C, Tsoumpas C, Marsden PK, Schaeffter T (2012) Thoracic respiratory motion estimation from MRI using a statistical model and a 2-D image navigator. Med Image Anal 16(1):252–264

    Article  PubMed  CAS  Google Scholar 

  91. Tsoumpas C, Buerger C, King AP, Mollet P, Keereman V, Vandenberghe S, Schulz V, Schleyer P, Schaeffter T, Marsden PK (2011) Fast generation of 4D PET-MR data from real dynamic MR acquisitions. Phys Med Biol 56(20):6597–6613

    Article  PubMed  CAS  Google Scholar 

  92. Murray I, Kalemis A, Glennon J, Hasan S, Quraishi S, Beyer T, Avril N (2010) Time-of-flight PET/CT using low-activity protocols: potential implications for cancer therapy monitoring. Eur J Nucl Med Mol Imaging 37(9):1643–1653

    Article  PubMed  Google Scholar 

  93. Conti M (2011) Focus on time-of-flight PET: the benefits of improved time resolution. Eur J Nucl Med Mol Imaging 38(6):1147–1157

    Article  PubMed  Google Scholar 

  94. Derlin T, Weber C, Habermann CR, Herrmann J, Wisotzki C, Ayuk F, Wolschke C, Klutmann S, Kroger N (2012) 18F-FDG PET/CT for detection and localization of residual or recurrent disease in patients with multiple myeloma after stem cell transplantation. Eur J Nucl Med Mol Imaging 39(3):493–500

    Article  PubMed  Google Scholar 

  95. Derlin T, Toth Z, Papp L, Wisotzki C, Apostolova I, Habermann CR, Mester J, Klutmann S (2011) Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study. J Nucl Med 52(7):1020–1027

    Article  PubMed  Google Scholar 

  96. Zhu Y (2004) Parallel excitation with an array of transmit coils. Magn Reson Med 51(4):775–784

    Article  PubMed  Google Scholar 

  97. Harvey PR, Zhai Z, Morich M, Mens G, van Yperen G, DeMeester G, Graesslin I, Hoogeveen R (2009) SAR behavior during whole-body multitransmit RF shimming at 3.0T. In: Proceedings of the 17th scientific meeting, International Society for Magnetic Resonance in Medicine, Honolulu, p 4786

  98. Ehman RL, Felmlee JP (1989) Adaptive technique for high-definition MR imaging of moving structures. Radiology 173(1):255–263

    PubMed  CAS  Google Scholar 

  99. Guerin B, Cho S, Chun SY, Zhu X, Alpert NM, El Fakhri G, Reese T, Catana C (2011) Nonrigid PET motion compensation in the lower abdomen using simultaneous tagged-MRI and PET imaging. Med Phys 38(6):3025–3038

    Article  PubMed  CAS  Google Scholar 

  100. Fieseler M, Kosters T, Gigengack F, Braun H, Quick HH, Schafers KP, Xiaoyi J (2011) Motion correction in PET-MRI: a human torso phantom study. In: Nuclear science symposium and medical imaging conference (NSS/MIC), 2011 IEEE, Valencia, pp 3586–3588

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonis Kalemis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalemis, A., Delattre, B.M.A. & Heinzer, S. Sequential whole-body PET/MR scanner: concept, clinical use, and optimisation after two years in the clinic. The manufacturer’s perspective. Magn Reson Mater Phy 26, 5–23 (2013). https://doi.org/10.1007/s10334-012-0330-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-012-0330-y

Keywords

Navigation