Skip to main content

Advertisement

Log in

Fast multiecho balanced SSFP metabolite mapping of 1H and hyperpolarized 13C compounds

  • Research Article
  • Published:
Magnetic Resonance Materials in Physics, Biology and Medicine Aims and scope Submit manuscript

Abstract

Object

To investigate the feasibility of multiecho balanced steady-state free precession (bSSFP)-based fast chemical shift mapping hyperpolarized 13C metabolites. The overall goal was to reduce total imaging time and to increase spatial resolution compared to common chemical shift imaging (CSI).

Materials and methods

A multiecho bSSFP sequence in combination with an iterative reconstruction algorithm was implemented. 1H experiments were performed on phantoms and on a human volunteer in order to investigate the feasibility of the method on a system with metabolite maps that are known beforehand. 13C experiments were performed in vivo on pigs, where CSI images were acquired also for comparison.

Results

Chemical shift images of three and four distinct 1H resonance frequencies as well as chemical shift images of up to five hyperpolarized 13C metabolites were successfully obtained.

Conclusion

Fast metabolite mapping based on multiecho balanced SSFP in combination with an iterative reconstruction approach could successfully separate several 1H resonances and hyperpolarized 13C metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Golman K, Ardenkjaer-Larsen JH, Petersson JS, Mansson S, Leunbach I (2003) Molecular imaging with endogenous substances. Proc Natl Acad Sci USA 100(18): 10435–10439

    Article  PubMed  CAS  Google Scholar 

  2. Bhattacharya P, Harris K, Lin AP, Mansson M, Norton VA, Perman WH, Weitekamp DP, Ross BD (2005) Ultra-fast three dimensional imaging of hyperpolarized 13C in vivo. Magn Reson Mater Phys 18(5): 245–256

    Article  CAS  Google Scholar 

  3. Mansson S, Johansson E, Magnusson P, Chai CM, Hansson G, Petersson JS, Stahlberg F, Golman K (2006) 13C imaging—a new diagnostic platform. Eur Radiol 16(1): 57–67

    Article  PubMed  Google Scholar 

  4. Golman K, in’t Zandt R, Thaning M (2006) Real-time metabolic imaging. Proc Natl Acad Sci USA 103(30): 11270–11275

    Article  PubMed  CAS  Google Scholar 

  5. Albers MJ, Bok R, Chen AP, Cunningham CH, Zierhut ML, Zhang VY, Kohler SJ, Tropp J, Hurd RE, Yen YF, Nelson SJ, Vigneron DB, Kurhanewicz J (2008) Hyperpolarized 13C lactate, pyruvate, and alanine: noninvasive biomarkers for prostate cancer detection and grading. Cancer Res 68(20): 8607–8615

    Article  PubMed  CAS  Google Scholar 

  6. Mansfield P (1984) Spatial mapping of the chemical shift in NMR. Magn Reson Med 1(3): 370–386

    Article  PubMed  CAS  Google Scholar 

  7. Leupold J, Wieben O, Mansson S, Speck O, Scheffler K, Petersson JS, Hennig J (2006) Fast chemical shift mapping with multiecho balanced SSFP. Magn Reson Mater Phys 19(5): 267–273

    Article  CAS  Google Scholar 

  8. Reeder SB, Wen Z, Yu H, Pineda AR, Gold GE, Markl M, Pelc NJ (2004) Multicoil Dixon chemical species separation with an iterative least-squares estimation method. Magn Reson Med 51(1): 35–45

    Article  PubMed  CAS  Google Scholar 

  9. Reeder SB, Faranesh AZ, Atalar E, McVeigh ER (1999) A novel object-independent “balanced” reference scan for echo-planar imaging. J Magn Reson Imaging 9(6): 847–852

    Article  PubMed  CAS  Google Scholar 

  10. Freeman R, Hill HDW (1971) Phase and intensity anomalies in Fourier Transform NMR. J Magn Reson 4: 366–383

    CAS  Google Scholar 

  11. Yu H, Reeder SB, Shimakawa A, Brittain JH, Pelc NJ (2005) Field map estimation with a region growing scheme for iterative 3-point water–fat decomposition. Magn Reson Med 54(4): 1032–1039

    Article  PubMed  Google Scholar 

  12. Ardenkjaer-Larsen JH, Fridlund B, Gram A, Hansson G, Hansson L, Lerche MH, Servin R, Thaning M, Golman K (2003) Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc Natl Acad Sci USA 100(18): 10158–10163

    Article  PubMed  CAS  Google Scholar 

  13. Golman K, Petersson JS, Magnusson P, Johansson E, Akeson P, Chai CM, Hansson G, Mansson S (2008) Cardiac metabolism measured noninvasively by hyperpolarized 13C MRI. Magn Reson Med 59(5): 1005–1113

    Article  PubMed  CAS  Google Scholar 

  14. Svensson J, Mansson S, Johansson E, Petersson JS, Olsson LE (2003) Hyperpolarized 13C MR angiography using true FISP. Magn Reson Med 50(2): 256–262

    Article  PubMed  Google Scholar 

  15. Reeder SB, Brittain JH, Grist TM, Yen YF (2007) Least-squares chemical shift separation for (13)C metabolic imaging. J Magn Reson Imaging 26(4): 1145–1152

    Article  PubMed  Google Scholar 

  16. Levin YS, Mayer D, Yen YF, Hurd RE, Spielman DM (2007) Optimization of fast spiral chemical shift imaging using least squares reconstruction: application for hyperpolarized (13)C metabolic imaging. Magn Reson Med 58(2): 245–252

    Article  PubMed  CAS  Google Scholar 

  17. Althaus M, Dreher W, Geppert C, Leibfritz D (2006) Fast 3D echo planar SSFP-based 1H spectroscopic imaging: demonstration on the rat brain in vivo. Magn Reson Imaging 24(5): 549–555

    Article  PubMed  Google Scholar 

  18. Speck O, Scheffler K, Hennig J (2002) Fast 31P chemical shift imaging using SSFP methods. Magn Reson Med 48(4): 633–639

    Article  PubMed  CAS  Google Scholar 

  19. Dreher W, Geppert C, Althaus M, Leibfritz D (2003) Fast proton spectroscopic imaging using steady-state free precession methods. Magn Reson Med 50(3): 453–460

    Article  PubMed  Google Scholar 

  20. Lu W, Hargreaves BA (2008) Multiresolution field map estimation using golden section search for water–fat separation. Magn Reson Med 60(1): 236–244

    Article  PubMed  Google Scholar 

  21. Lu W, Yu H, Shimakawa A, Alley M, Reeder SB, Hargreaves BA (2008) Water–fat separation with bipolar multiecho sequences. Magn Reson Med 60(1): 198–209

    Article  PubMed  Google Scholar 

  22. Yu H, McKenzie CA, Shimakawa A, Vu AT, Brau AC, Beatty PJ, Pineda AR, Brittain JH, Reeder SB (2007) Multiecho reconstruction for simultaneous water–fat decomposition and T2* estimation. J Magn Reson Imaging 26(4): 1153–1161

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Wieben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leupold, J., Månsson, S., Stefan Petersson, J. et al. Fast multiecho balanced SSFP metabolite mapping of 1H and hyperpolarized 13C compounds. Magn Reson Mater Phy 22, 251–256 (2009). https://doi.org/10.1007/s10334-009-0169-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10334-009-0169-z

Keywords

Navigation