Skip to main content
Log in

Properties of Noise in Positron Emission Tomography Images Reconstructed with Filtered-Backprojection and Row-Action Maximum Likelihood Algorithm

  • Published:
Journal of Digital Imaging Aims and scope Submit manuscript

Abstract

Noise levels observed in positron emission tomography (PET) images complicate their geometric interpretation. Post-processing techniques aimed at noise reduction may be employed to overcome this problem. The detailed characteristics of the noise affecting PET images are, however, often not well known. Typically, it is assumed that overall the noise may be characterized as Gaussian. Other PET-imaging-related studies have been specifically aimed at the reduction of noise represented by a Poisson or mixed Poisson + Gaussian model. The effectiveness of any approach to noise reduction greatly depends on a proper quantification of the characteristics of the noise present. This work examines the statistical properties of noise in PET images acquired with a GEMINI PET/CT scanner. Noise measurements have been performed with a cylindrical phantom injected with 11C and well mixed to provide a uniform activity distribution. Images were acquired using standard clinical protocols and reconstructed with filtered-backprojection (FBP) and row-action maximum likelihood algorithm (RAMLA). Statistical properties of the acquired data were evaluated and compared to five noise models (Poisson, normal, negative binomial, log-normal, and gamma). Histograms of the experimental data were used to calculate cumulative distribution functions and produce maximum likelihood estimates for the parameters of the model distributions. Results obtained confirm the poor representation of both RAMLA- and FBP-reconstructed PET data by the Poisson distribution. We demonstrate that the noise in RAMLA-reconstructed PET images is very well characterized by gamma distribution followed closely by normal distribution, while FBP produces comparable conformity with both normal and gamma statistics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Caldwell CB, et al: Observer variation in contouring gross tumor volume in patients with poorly defined non-small-cell lung tumors on CT: The impact of 18FDG-hybrid PET fusion. Int J Radiat Oncol Biol Phys 51(4):923–931, 2001

    Article  PubMed  CAS  Google Scholar 

  2. Sailer SL, et al: Improving treatment planning accuracy through multimodality imaging. Int J Radiat Oncol Biol Phys 35(1):117–124, 1996

    Article  PubMed  CAS  Google Scholar 

  3. Bar-Shalom R, et al: Clinical performance of PET/CT in evaluation of cancer: Additional value for diagnostic imaging and patient management. J Nucl Med 44(8):1200–1209, 2003

    PubMed  Google Scholar 

  4. Bradley JD, et al: Implementing biologic target volumes in radiation treatment planning for non-small cell lung cancer. J Nucl Med 45(Suppl 1):96S–101S, 2004

    PubMed  Google Scholar 

  5. Drever LA: Positron emission tomography target volume delineation xiv + 134. Thesis, University of Alberta, 2005

  6. Pieterman RM, et al: Preoperative staging of non-small-cell lung cancer with positron-emission tomography. N Engl J Med 343(4):254–261, 2000

    Article  PubMed  CAS  Google Scholar 

  7. Kubota K, et al: Differential diagnosis of lung tumor with positron emission tomography: A prospective study. J Nucl Med 31(12):1927–1932, 1990

    PubMed  CAS  Google Scholar 

  8. Weber W, et al: Assessment of pulmonary lesions with 18F-fluorodeoxyglucose positron imaging using coincidence mode gamma cameras. J Nucl Med 40(4):574–578, 1999

    PubMed  CAS  Google Scholar 

  9. Vardi Y, Shepp LA, Kaufman L: A statistical model for positron emission tomography. J Amer Stat Assoc 80(389):8–20, 1985

    Article  Google Scholar 

  10. Tsui BM, et al: Analysis of recorded image noise in nuclear medicine. Phys Med Biol 26(5):883–902, 1981

    Article  PubMed  CAS  Google Scholar 

  11. Rzeszotarski MS: Counting statistics. Radiographics 19(3):765–782, 1999

    PubMed  CAS  Google Scholar 

  12. Rowe RW, Dai S: A pseudo-Poisson noise model for simulation of positron emission tomographic projection data. Med Phys 19(4):1113–1119, 1992

    Article  PubMed  CAS  Google Scholar 

  13. Lange K, Carson R: EM reconstruction algorithms for emission and transmission tomography. J Comput Assist Tomogr 8(2):306–316, 1984

    PubMed  CAS  Google Scholar 

  14. Shepp LA, Vardi Y: Maximum likelihood reconstruction for emission tomography. IEEE Trans Med Imag 1(2):113–122, 1982

    Article  CAS  Google Scholar 

  15. Shepp LA, Logan BF: Fourier reconstruction of a head section. IEEE Trans Nucl Sci NS21(3):21–43, 1974

    Google Scholar 

  16. Kadrmas DJ: LOR-OSEM: Statistical PET reconstruction from raw line-of-response histograms. Phys Med Biol 49(20):4731–4744, 2004

    Article  PubMed  Google Scholar 

  17. Razifar P: Novel approaches for application of principal component analysis on dynamic pet images for improvement of image quality and clinical diagnosis. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology, x + 89, 2005

  18. Wahl RL: In: Wahl RL Ed. Principles and Practice of Positron Emission Tomography. Lippincott Williams & Wilkins, Philadelphia, 2002, p 442

    Google Scholar 

  19. Green GC: Wavelet-based denoising of cardiac PET data xiv + 135. Dissertation, Carleton University, 2005

  20. Ollinger JM, Fessler JA: Positron-emission tomography. EEE Signal Process Mag 14(1):43–55, 1997

    Article  Google Scholar 

  21. Coxson PG, Huesman RH, Borland L: Consequences of using a simplified kinetic model for dynamic PET data. J Nucl Med 38(4):660–667, 1997

    PubMed  CAS  Google Scholar 

  22. Slifstein M, Mawlawi OR, Laruelle M: Chapter 11 (816): Partial volume effect correction: Methodological considerations. In: Gjedde A, Hansen SB, Knudsen GM, Paulson OB Eds. Physiological Imaging of the Brain with PET. Academic, San Diego, 2000, p 413

    Google Scholar 

  23. Rodrigues I, Sanches J, Bioucas-Dias J: Denoising of medical images corrupted by poisson noise. 15th IEEE International Conference on Image Processing 1–5(ICIP 2008):1756–1759, 2008

  24. Hannequin P, Mas J: Statistical and heuristic image noise extraction (SHINE): A new method for processing Poisson noise in scintigraphic images. Phys Med Biol 47(24):4329–4344, 2002

    Article  PubMed  Google Scholar 

  25. Němeček P: Filtrace šumu ve scintigrafických snímcích metodou založenou na Correspondence Analysis. v + 47, 2006

  26. Seret A, Vanhove C, Defrise M: Resolution improvement and noise reduction in human pinhole SPECT using a multi-ray approach and the SHINE method. Nuklearmedizin 48(4):159–165, 2009

    PubMed  CAS  Google Scholar 

  27. Budinger TF, et al: Quantitative potentials of dynamic emission computed tomography. J Nucl Med 19(3):309–315, 1978

    PubMed  CAS  Google Scholar 

  28. Browne J, de Pierro AB: A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans Med Imag 15(5):687–699, 1996

    Article  CAS  Google Scholar 

  29. Mandelkern MA: Nuclear techniques for medical imaging: Positron emission tomography. Annu Rev Nucl Part Sci 45:205–254, 1995

    Article  CAS  Google Scholar 

  30. Wilson DW, Tsui BMW: Noise properties of filtered-backprojection and ML-EM reconstructed emission tomographic images. IEEE Trans Nucl Sci 40(4):1198–1203, 1993

    Article  CAS  Google Scholar 

  31. Soares EJ, Byrne CL, Glick SJ: Noise characterization of block-iterative reconstruction algorithms: I. Theory. IEEE Trans Med Imaging 19(4):261–270, 2000

    Article  PubMed  CAS  Google Scholar 

  32. Tanaka E, Kudo H: Subset-dependent relaxation in block-iterative algorithms for image reconstruction in emission tomography. Phys Med Biol 48(10):1405–1422, 2003

    Article  PubMed  Google Scholar 

  33. Dempster AP, Laird NM, Rubin DB: Maximum likelihood from incomplete data via the EM algorithm. J Roy Stat Soc B Meth 39(1):1–38, 1977

    Google Scholar 

  34. Hudson HM, Larkin RS: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans Med Imaging 13(4):601–609, 1994

    Article  PubMed  CAS  Google Scholar 

  35. Gonzalez RC, Woods RE: Digital Image Processing, 3rd edition. Pearson Prentice Hall, Upper Saddle River, 2008, p 954

    Google Scholar 

  36. NIST/SEMATECH: e-handbook of statistical methods. 2006(07/05/2006), 2010

  37. Hilbe J: Negative Binomial Regression. Cambridge University Press, Cambridge, 2007, p 251

    Chapter  Google Scholar 

  38. Barrett HH, Wilson DW, Tsui BM: Noise properties of the EM algorithm: I. Theory. Phys Med Biol 39(5):833–846, 1994

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Teymurazyan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teymurazyan, A., Riauka, T., Jans, HS. et al. Properties of Noise in Positron Emission Tomography Images Reconstructed with Filtered-Backprojection and Row-Action Maximum Likelihood Algorithm. J Digit Imaging 26, 447–456 (2013). https://doi.org/10.1007/s10278-012-9511-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10278-012-9511-5

Keywords

Navigation