Skip to main content

Advertisement

Log in

Site-specific rate constants for iron acquisition from transferrin by the Aspergillus fumigatus siderophores N′,N′′,N′′′-triacetylfusarinine C and ferricrocin

  • Original Article
  • Published:
JBIC Journal of Biological Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Aspergillus fumigatus is an opportunistic fungal pathogen that causes life-threatening infections in immunocompromised patients. Despite low levels of free iron, A. fumigatus grows in the presence of human serum in part because it produces high concentrations of siderophores. The most abundant siderophores produced by A. fumigatus are N′,N′′,N′′′-triacetylfusarinine C (TAF) and ferricrocin, both of which have thermodynamic iron binding constants that theoretically allow them to remove transferrin (Tf)-bound iron. Urea–polyacrylamide gel electrophoresis was used to measure the change in concentration of Tf species incubated with TAF or ferricrocin. The rate of removal of iron from diferric Tf by both siderophores was measured, as were the individual microscopic rates of iron removal from each Tf species (diferric Tf, N-terminal monoferric Tf and C-terminal monoferric Tf). TAF removed iron from all Tf species at a faster rate than ferricrocin. Both siderophores showed a preference for removing C-terminal iron, evidenced by the fact that k1C and k2C were much larger than k1N and k2N. Cooperativity in iron binding was observed with TAF, as the C-terminal iron was removed by TAF much faster from monoferric than from diferric Tf. With both siderophores, C-terminal monoferric Tf concentrations remained below measurable levels during incubations. This indicates that k2C and k1C are much larger than k1N. TAF and ferricrocin both removed Tf-bound iron with second-order rate constants that were comparable to those of the siderophores of several bacterial pathogens, indicating they may play a role in iron uptake in vivo and thereby contribute to the virulence of A. fumigatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Howard DH (1999) Clin Microbiol Rev 12:394–404

    Google Scholar 

  2. Byers BR, Arceneaux JE (1998) Met Ions Biol Syst 35:37–66

    Google Scholar 

  3. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1987) J Bacteriol 169:5873–5876

    Google Scholar 

  4. Govindaraju K, Cowley EA, Eidelman DH, Lloyd DK (1998) J Chromatogr B Biomed Sci Appl 705:223–230

    Google Scholar 

  5. Baker EN, Baker HM, Kidd RD (2002) Biochem Cell Biol 80:27–34

    Google Scholar 

  6. Ratledge C, Dover LG (2000) Annu Rev Microbiol 54:881–941

    Google Scholar 

  7. Bullen JJ (1981) Rev Infect Dis 3:1127–1138

    Google Scholar 

  8. Torres AG, Redford P, Welch RA, Payne SM (2001) Infect Immun 69:6179–6185

    Google Scholar 

  9. Wertheimer AM, Verweij W, Chen Q, Crosa LM, Nagasawa M, Tolmasky ME, Actis LA, Crosa JH (1999) Infect Immun 67:6496–6509

    Google Scholar 

  10. Litwin CM, Rayback TW, Skinner J (1996) Infect Immun 64:2834–2838

    Google Scholar 

  11. Sokol PA, Darling P, Woods DE, Mahenthiralingam E, Kooi C (1999) Infect Immun 67:4443–4455

    Google Scholar 

  12. Meyer JM, Neely A, Stintzi A, Georges C, Holder IA (1996) Infect Immun 64:518–523

    Google Scholar 

  13. Latge JP (2001) Trends Microbiol 9:382–389

    Google Scholar 

  14. Hissen AH, Chow JM, Pinto LJ, Moore MM (2004) Infect Immun 72:1402–1408

    Google Scholar 

  15. Diekmann H, Krezdorn E (1975) Arch Microbiol 106:191–194

    Google Scholar 

  16. Nilius AM, Farmer SG (1990) J Med Vet Mycol 28:395–403

    Google Scholar 

  17. Moore RE, Emery T (1976) Biochemistry 15:2719–2723

    Google Scholar 

  18. Adjimani JP, Emery T (1987) J Bacteriol 169:3664–3668

    Google Scholar 

  19. Haselwandter K, Winkelmann G (2002) Biometals 15:73–77

    Google Scholar 

  20. Bartholdy BA, Berreck M, Haselwandter K (2001) Biometals 14:33–42

    Google Scholar 

  21. Hordt W, Romheld V, Winkelmann G (2000) Biometals 13:37–46

    Google Scholar 

  22. Ohra J, Morita K, Tsujino Y, Tazaki H, Fujimori T, Goering M, Evans S, Zorner P (1995) Biosci Biotechnol Biochem 59:113–114

    Google Scholar 

  23. Matzanke BF, Bill E, Trautwein AX, Winkelmann G (1988) Biol Met 1:18–25

    Google Scholar 

  24. Bentley MD, Anderegg RJ, Szaniszlo PJ, Davenport RF (1986) Biochemistry 25:1455–1457

    Google Scholar 

  25. Frederick CB, Szaniszlo PJ, Vickrey PE, Bentley MD, Shive W (1981) Biochemistry 20:2432–2436

    Google Scholar 

  26. Eisendle M, Oberegger H, Zadra I, Haas H (2003) Mol Microbiol 49:359–375

    Google Scholar 

  27. Konopka K, Bindereif A, Neilands JB (1982) Biochemistry 21:6503–6508

    CAS  PubMed  Google Scholar 

  28. Harris WR, Carrano CJ, Cooper SR, Sofen SR, Avdeef AE, McArdle JV, Raymond KN (1979) J Am Chem Soc 101(20):6097–6104

    Google Scholar 

  29. Aisen P, Leibman A, Zweier J (1978) J Biol Chem 253:1930–1937

    Google Scholar 

  30. Harris WR (1983) Biochemistry 22:3920–3926

    Google Scholar 

  31. Pollack S, Vanderhoff G, Lasky F (1977) Biochim Biophys Acta 497:481–487

    Article  CAS  PubMed  Google Scholar 

  32. Wong GB, Kappel MJ, Raymond KN, Matzanke B, Winkelmann G (1983) J Am Chem Soc 105:810–815

    Google Scholar 

  33. Makey DG, Seal US (1976) Biochim Biophys Acta 453:250–256

    Article  CAS  PubMed  Google Scholar 

  34. Payne SM (1994) Meth Enzymol 235:329–344

    Google Scholar 

  35. Wiebe C, Winkelmann G (1975) J Bacteriol 123:837–842

    Google Scholar 

  36. Turcot I, Stintzi A, Xu J, Raymond KN (2000) J Biol Inorg Chem 5:634–641

    Google Scholar 

  37. Bali PK, Harris WR (1990) Arch Biochem Biophys 281:251–256

    CAS  PubMed  Google Scholar 

  38. Baldwin DA, de Sousa DM (1981) Biochem Biophys Res Commun 99:1101–1107

    CAS  PubMed  Google Scholar 

  39. Stintzi A, Raymond KN (2000) J Biol Inorg Chem 5:57–66

    Google Scholar 

  40. Wolz C, Hohloch K, Ocaktan A, Poole K, Evans RW, Rochel N, Albrecht-Gary AM, Abdallah MA, Doring G (1994) Infect Immun 62:4021–4027

    Google Scholar 

  41. Howard DH, Rafie R, Tiwari A, Faull KF (2000) Infect Immun 68:2338–2343

    Google Scholar 

  42. Ford S, Cooper RA, Evans RW, Hider RC, Williams PH (1988) Eur J Biochem 178:477–481

    CAS  PubMed  Google Scholar 

  43. Leibman A, Aisen P (1979) Blood 53:1058–1065

    CAS  PubMed  Google Scholar 

  44. Konopka K, Neilands JB (1984) Biochemistry 23:2122–2127

    Google Scholar 

  45. Warner PJ, Williams PH, Bindereif A, Neilands JB (1981) Infect Immun 33:540–545

    Google Scholar 

  46. Boelaert JR, de Locht M, Van Cutsem J, Kerrels V, Cantinieaux B, Verdonck A, Van Landuyt HW, Schneider YJ (1992) Clin Infect Dis 14:66–74

    Google Scholar 

  47. Schrettl M, Bignell E, Kragl C, Joechl C, Rogers T, Arst HN Jr, Haynes K, Haas H (2004) J Exp Med 200:1213–1219

    Google Scholar 

  48. Wendenbaum S, Demange P, Dell A, Meyer JM, Abdallah MA (1983) Tetrahedron Lett 24:4877–4880

    Google Scholar 

  49. Harris WR, Wang Z, Brook C, Yang B, Islam A (2003) Inorg Chem 42:5880–5889

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jurgen Hissen for assistance in deriving equations and for valuable discussions. Financial support from the Natural Sciences and Engineering Research Council of Canada is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Moore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hissen, A.H.T., Moore, M.M. Site-specific rate constants for iron acquisition from transferrin by the Aspergillus fumigatus siderophores N′,N′′,N′′′-triacetylfusarinine C and ferricrocin. J Biol Inorg Chem 10, 211–220 (2005). https://doi.org/10.1007/s00775-005-0630-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00775-005-0630-z

Keywords

Navigation