Skip to main content

Advertisement

Log in

Serotonin and molecular neuroimaging in humans using PET

  • Review Article
  • Published:
Amino Acids Aims and scope Submit manuscript

Abstract

The serotonergic system is one of the most important modulatory neurotransmitter systems in the human brain. It plays a central role in major physiological processes and is implicated in a number of psychiatric disorders. Along with the dopaminergic system, it is also one of the phylogenetically oldest human neurotransmitter systems and one of the most diverse, with 14 different receptors identified up to this day, many of whose function remains to be understood. The system’s functioning is even more diverse than the number of its receptors, since each is implicated in a number of different processes. This review aims at illustrating the distribution and summarizing the main functions of the serotonin (5-hydroxytryptamin, 5-HT) receptors as well as the serotonin transporter (SERT, 5-HTT), the vesicular monoamine transporter 2, monoamine oxidase type A and 5-HT synthesis in the human brain. Recent advances in in vivo quantification of these different receptors and enzymes that are part of the serotonergic system using positron emission tomography are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams KH, Hansen ES, Pinborg LH, Hasselbalch SG, Svarer C, Holm S, Bolwig TG, Knudsen GM (2005) Patients with obsessive-compulsive disorder have increased 5-HT2A receptor binding in the caudate nuclei. Int J Neuropsychopharmacol 8(3):391–401. pii: S1461145705005055

    Article  PubMed  CAS  Google Scholar 

  • Akimova E, Lanzenberger R, Kasper S (2009) The serotonin-1A receptor in anxiety disorders. Biol Psychiatry 66(7):627–635. pii: S0006-3223(09)00392-8

    Article  PubMed  CAS  Google Scholar 

  • Andersson JD, Pierson ME, Finnema SJ, Gulyas B, Heys R, Elmore CS, Farde L, Halldin C (2011) Development of a PET radioligand for the central 5-HT1B receptor: radiosynthesis and characterization in cynomolgus monkeys of eight radiolabeled compounds. Nucl Med Biol 38(2):261–272. pii: S0969-8051(10)00413-0

    Article  PubMed  CAS  Google Scholar 

  • Andries J, Lemoine L, Le Bars D, Zimmer L, Billard T (2011) Synthesis and biological evaluation of potential 5-HT(7) receptor PET radiotracers. Eur J Med Chem 46(8):3455–3461. pii: S0223-5234(11)00372-2

    Article  PubMed  CAS  Google Scholar 

  • Assem-Hilger E, Lanzenberger R, Savli M, Wadsak W, Mitterhauser M, Mien LK, Stogmann E, Baumgartner C, Kletter K, Asenbaum S (2010) Central serotonin 1A receptor binding in temporal lobe epilepsy: a [carbonyl-(11)C]WAY-100635 PET study. Epilepsy Behav 19(3):467–473. pii: S1525-5050(10)00531-7

    Article  PubMed  Google Scholar 

  • Bailer UF, Frank GK, Henry SE, Price JC, Meltzer CC, Weissfeld L, Mathis CA, Drevets WC, Wagner A, Hoge J, Ziolko SK, McConaha CW, Kaye WH (2005) Altered brain serotonin 5-HT1A receptor binding after recovery from anorexia nervosa measured by positron emission tomography and [carbonyl11C]WAY-100635. Arch Gen Psychiatry 62(9):1032–1041

    Article  PubMed  CAS  Google Scholar 

  • Bergen AW, van den Bree MB, Yeager M, Welch R, Ganjei JK, Haque K, Bacanu S, Berrettini WH, Grice DE, Goldman D, Bulik CM, Klump K, Fichter M, Halmi K, Kaplan A, Strober M, Treasure J, Woodside B, Kaye WH (2003) Candidate genes for anorexia nervosa in the 1p33–36 linkage region: serotonin 1D and delta opioid receptor loci exhibit significant association to anorexia nervosa. Mol Psychiatry 8(4):397–406. doi:10.1038/sj.mp.40013184001318

    Article  PubMed  CAS  Google Scholar 

  • Bergström M, Westerberg G, Langström B (1997) 11C-harmine as a tracer for monoamine oxidase A (MAO-A): in vitro and in vivo studies. Nucl Med Biol 24(4):287–293. pii: S0969-8051(97)00013-9

    Article  PubMed  Google Scholar 

  • Blier P, Seletti B, Gilbert F, Young SN, Benkelfat C (2002) Serotonin 1A receptor activation and hypothermia in humans: lack of evidence for a presynaptic mediation. Neuropsychopharmacology 27(2):301–308. pii: S0893133X02003184

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Ansanay H, Letty S, Marchetti-Gauthier E, Roman F, Rondouin G, Fagni L, Soumireu-Mourat B, Dumuis A (1998) 5-HT4 receptors: long-term blockade of K+ channels and effects on olfactory memory. C R Acad Sci III 321(2–3):217–221

    Article  PubMed  CAS  Google Scholar 

  • Bockaert J, Perroy J, Becamel C, Marin P, Fagni L (2010) GPCR interacting proteins (GIPs) in the nervous system: roles in physiology and pathologies. Annu Rev Pharmacol Toxicol 50:89–109. doi:10.1146/annurev.pharmtox.010909.105705

    Article  PubMed  CAS  Google Scholar 

  • Boileau I, Houle S, Rusjan PM, Furukawa Y, Wilkins D, Tong J, Selby P, Wilson AA, Kish SJ (2010) Influence of a low dose of amphetamine on vesicular monoamine transporter binding: a PET (+)[11C]DTBZ study in humans. Synapse 64(6):417–420. doi:10.1002/syn.20743

    Article  PubMed  CAS  Google Scholar 

  • Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, Chan HW, Eglen RM (1995) The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors. Br J Pharmacol 115(4):622–628

    PubMed  CAS  Google Scholar 

  • Bottlaender M, Dolle F, Guenther I, Roumenov D, Fuseau C, Bramoulle Y, Curet O, Jegham J, Pinquier JL, George P, Valette H (2003) Mapping the cerebral monoamine oxidase type A: positron emission tomography characterization of the reversible selective inhibitor [11C]befloxatone. J Pharmacol Exp Ther 305(2):467–473. doi:10.1124/jpet.102.046953

    Article  PubMed  CAS  Google Scholar 

  • Bourson A, Kapps V, Zwingelstein C, Rudler A, Boess FG, Sleight AJ (1997) Correlation between 5-HT7 receptor affinity and protection against sound-induced seizures in DBA/2J mice. N S Arch Pharmacol 356(6):820–826

    Article  CAS  Google Scholar 

  • Brown AK, George DT, Fujita M, Liow JS, Ichise M, Hibbeln J, Ghose S, Sangare J, Hommer D, Innis RB (2007) PET [11C]DASB imaging of serotonin transporters in patients with alcoholism. Alcohol Clin Exp Res 31(1):28–32

    Article  PubMed  CAS  Google Scholar 

  • Burke SM, van de Giessen E, de Win M, Schilt T, van Herk M, van den Brink W, Booij J (2011) Serotonin and dopamine transporters in relation to neuropsychological functioning, personality traits and mood in young adult healthy subjects. Psychol Med 41(2):419–429. pii: S0033291710000486

    Article  PubMed  CAS  Google Scholar 

  • Burnet PW, Eastwood SL, Harrison PJ (1996) 5-HT1A and 5-HT2A receptor mRNAs and binding site densities are differentially altered in schizophrenia. Neuropsychopharmacology 15(5):442–455. pii: S0893-133X(96)00053-X

    Article  PubMed  CAS  Google Scholar 

  • Canney DJ, Kung MP, Kung HF (1995) Amino- and amido-tetrabenazine derivatives: synthesis and evaluation as potential ligands for the vesicular monoamine transporter. Nucl Med Biol 22(4):527–535

    Article  PubMed  CAS  Google Scholar 

  • Castro ME, Pascual J, Romon T, del Arco C, del Olmo E, Pazos A (1997) Differential distribution of [3H]sumatriptan binding sites (5-HT1B, 5-HT1D and 5-HT1F receptors) in human brain: focus on brainstem and spinal cord. Neuropharmacology 36(4–5):535–542

    Article  PubMed  CAS  Google Scholar 

  • Choi WS, Lee BH, Yang JC, Kim YK (2010) Association study between 5-HT1A receptor gene C(-1019)G polymorphism and panic disorder in a Korean population. Psychiatry Investig 7(2):141–146. doi:10.4306/pi.2010.7.2.141

    Article  PubMed  CAS  Google Scholar 

  • Chugani DC, Muzik O, Chakraborty P, Mangner T, Chugani HT (1998) Human brain serotonin synthesis capacity measured in vivo with alpha-[C-11]methyl-l-tryptophan. Synapse 28(1):33–43. doi:10.1002/(SICI)1098-2396(199801)28:1<33:AID-SYN5>3.0.CO;2-D

    Article  PubMed  CAS  Google Scholar 

  • Cigler T, LaForge KS, McHugh PF, Kapadia SU, Leal SM, Kreek MJ (2001) Novel and previously reported single-nucleotide polymorphisms in the human 5-HT(1B) receptor gene: no association with cocaine or alcohol abuse or dependence. Am J Med Genet 105(6):489–497. doi:10.1002/ajmg.1473

    Article  PubMed  CAS  Google Scholar 

  • Codony X, Vela JM, Ramirez MJ (2011) 5-HT(6) receptor and cognition. Curr Opin Pharmacol 11(1):94–100. pii: S1471-4892(11)00005-1

    Article  PubMed  CAS  Google Scholar 

  • Compan V, Zhou M, Grailhe R, Gazzara RA, Martin R, Gingrich J, Dumuis A, Brunner D, Bockaert J, Hen R (2004) Attenuated response to stress and novelty and hypersensitivity to seizures in 5-HT4 receptor knock-out mice. J Neurosci 24(2):412–419. doi:10.1523/JNEUROSCI.2806-03.200424/2/412

    Article  PubMed  CAS  Google Scholar 

  • Costa-Aze VDS, Dauphin F, Boulouard M (2011) Serotonin 5-HT6 receptor blockade reverses the age-related deficits of recognition memory and working memory in mice. Behav Brain Res 222(1):134–140. doi:10.1016/j.bbr.2011.03.046

    Article  CAS  Google Scholar 

  • Daws LC, Gould GG (2011) Ontogeny and regulation of the serotonin transporter: providing insights into human disorders. Pharmacol Ther 131(1):61–79. doi:10.1016/j.pharmthera.2011.03.013

    Article  PubMed  CAS  Google Scholar 

  • De Bruyne S, La Regina G, Staelens S, Wyffels L, Deleye S, Silvestri R, De Vos F (2010) Radiosynthesis and in vivo evaluation of [11C]-labelled pyrrole-2-carboxamide derivates as novel radioligands for PET imaging of monoamine oxidase A. Nucl Med Biol 37(4):459–467. pii: S0969-8051(09)00244-3

    Article  PubMed  CAS  Google Scholar 

  • Debus F, Herth MM, Piel M, Buchholz HG, Bausbacher N, Kramer V, Luddens H, Rosch F (2010) 18F-labeling and evaluation of novel MDL 100907 derivatives as potential 5-HT2A antagonists for molecular imaging. Nucl Med Biol 37(4):487–495. doi:10.1016/j.nucmedbio.2010.02.002

    Article  PubMed  CAS  Google Scholar 

  • Demarquay G, Lothe A, Royet JP, Costes N, Mick G, Mauguiere F, Ryvlin P (2011) Brainstem changes in 5-HT(1A) receptor availability during migraine attack. Cephalalgia 31(1):84–94. doi:10.1177/0333102410385581

    Article  PubMed  CAS  Google Scholar 

  • Derry C, Benjamin C, Bladin P, le Bars D, Tochon-Danguy H, Berkovic SF, Zimmer L, Costes N, Mulligan R, Reutens D (2006) Increased serotonin receptor availability in human sleep: evidence from an [18F]MPPF PET study in narcolepsy. Neuroimage 30(2):341–348. pii: S1053-8119(05)00758-5

    Article  PubMed  Google Scholar 

  • Didelot A, Ryvlin P, Lothe A, Merlet I, Hammers A, Mauguiere F (2008) PET imaging of brain 5-HT1A receptors in the preoperative evaluation of temporal lobe epilepsy. Brain 131(Pt 10):2751–2764

    Article  PubMed  Google Scholar 

  • Drevets WC, Thase ME, Moses-Kolko EL, Price J, Frank E, Kupfer DJ, Mathis C (2007) Serotonin-1A receptor imaging in recurrent depression: replication and literature review. Nucl Med Biol 34(7):865–877

    Article  PubMed  CAS  Google Scholar 

  • Dunlap K, Fischbach GD (1981) Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. J Physiol 317:519–535

    PubMed  CAS  Google Scholar 

  • Duxon MS, Flanigan TP, Reavley AC, Baxter GS, Blackburn TP, Fone KC (1997) Evidence for expression of the 5-hydroxytryptamine-2B receptor protein in the rat central nervous system. Neuroscience 76(2):323–329. pii: S0306-4522(96)00480-0

    Article  PubMed  CAS  Google Scholar 

  • Ehlen JC, Grossman GH, Glass JD (2001) In vivo resetting of the hamster circadian clock by 5-HT7 receptors in the suprachiasmatic nucleus. J Neurosci 21(14):5351–5357. doi:21/14/5351

    PubMed  CAS  Google Scholar 

  • Enoch MA, Kaye WH, Rotondo A, Greenberg BD, Murphy DL, Goldman D (1998) 5-HT2A promoter polymorphism -1438G/A, anorexia nervosa, and obsessive-compulsive disorder. Lancet 351(9118):1785–1786. pii: S0140-6736(05)78746-8

    Article  PubMed  CAS  Google Scholar 

  • Enoch MA, Gorodetsky E, Hodgkinson C, Roy A, Goldman D (2010) Functional genetic variants that increase synaptic serotonin and 5-HT3 receptor sensitivity predict alcohol and drug dependence. Mol Psychiatry

  • Errico M, Crozier RA, Plummer MR, Cowen DS (2001) 5-HT(7) receptors activate the mitogen activated protein kinase extracellular signal related kinase in cultured rat hippocampal neurons. Neuroscience 102(2):361–367. pii: S0306-4522(00)00460-7

    Article  PubMed  CAS  Google Scholar 

  • Erritzoe D, Rasmussen H, Kristiansen KT, Frokjaer VG, Haugbol S, Pinborg L, Baare W, Svarer C, Madsen J, Lublin H, Knudsen GM, Glenthoj BY (2008) Cortical and subcortical 5-HT2A receptor binding in neuroleptic-naive first-episode schizophrenic patients. Neuropsychopharmacology 33(10):2435–2441

    Article  PubMed  CAS  Google Scholar 

  • Erritzoe D, Frokjaer VG, Haahr MT, Kalbitzer J, Svarer C, Holst KK, Hansen DL, Jernigan TL, Lehel S, Knudsen GM (2010) Cerebral serotonin transporter binding is inversely related to body mass index. Neuroimage 52(1):284–289. pii: S1053-8119(10)00394-0

    Article  PubMed  CAS  Google Scholar 

  • Erspamer V, Asero B (1952) Identification of enteramine, the specific hormone of the enterochromaffin cell system, as 5-hydroxytryptamine. Nature 169(4306):800–801

    Article  PubMed  CAS  Google Scholar 

  • Ettrup A, Hansen M, Santini MA, Paine J, Gillings N, Palner M, Lehel S, Herth MM, Madsen J, Kristensen J, Begtrup M, Knudsen GM (2011) Radiosynthesis and in vivo evaluation of a series of substituted 11C-phenethylamines as 5-HT (2A) agonist PET tracers. Eur J Nucl Med Mol Imaging 38(4):681–693. doi:10.1007/s00259-010-1686-8

    Article  PubMed  CAS  Google Scholar 

  • Ferrari MD, Farkkila M, Reuter U, Pilgrim A, Davis C, Krauss M, Diener HC (2010) Acute treatment of migraine with the selective 5-HT1F receptor agonist lasmiditan—a randomised proof-of-concept trial. Cephalalgia 30(10):1170–1178

    Article  PubMed  Google Scholar 

  • Fowler JS, MacGregor RR, Wolf AP, Arnett CD, Dewey SL, Schlyer D, Christman D, Logan J, Smith M, Sachs H et al (1987) Mapping human brain monoamine oxidase A and B with 11C-labeled suicide inactivators and PET. Science 235(4787):481–485

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Logan J, Volkow ND, Wang GJ, MacGregor RR, Ding YS (2002) Monoamine oxidase: radiotracer development and human studies. Methods 27(3):263–277. pii: S104620230200083X

    Article  PubMed  CAS  Google Scholar 

  • Fowler JS, Logan J, Volkow ND, Wang GJ (2005a) Translational neuroimaging: positron emission tomography studies of monoamine oxidase. Mol Imaging Biol 7(6):377–387. doi:10.1007/s11307-005-0016-1

    Article  PubMed  Google Scholar 

  • Fowler JS, Logan J, Wang GJ, Volkow ND, Telang F, Zhu W, Franceschi D, Shea C, Garza V, Xu Y, Ding YS, Alexoff D, Warner D, Netusil N, Carter P, Jayne M, King P, Vaska P (2005b) Comparison of monoamine oxidase a in peripheral organs in nonsmokers and smokers. J Nucl Med 46(9):1414–1420

    PubMed  CAS  Google Scholar 

  • Frank GK, Kaye WH, Meltzer CC, Price JC, Greer P, McConaha C, Skovira K (2002) Reduced 5-HT2A receptor binding after recovery from anorexia nervosa. Biol Psychiatry 52(9):896–906. pii: S0006322302013781

    Article  PubMed  CAS  Google Scholar 

  • Fukui M, Rodriguiz RM, Zhou J, Jiang SX, Phillips LE, Caron MG, Wetsel WC (2007) Vmat2 heterozygous mutant mice display a depressive-like phenotype. J Neurosci 27(39):10520–10529

    Article  PubMed  CAS  Google Scholar 

  • Gallezot JD, Nabulsi N, Neumeister A, Planeta-Wilson B, Williams WA, Singhal T, Kim S, Maguire RP, McCarthy T, Frost JJ, Huang Y, Ding YS, Carson RE (2010) Kinetic modeling of the serotonin 5-HT(1B) receptor radioligand [(11)C]P943 in humans. J Cereb Blood Flow Metab 30(1):196–210

    Article  PubMed  CAS  Google Scholar 

  • Gannon RL, Peglion JL, Millan MJ (2009) Differential influence of selective 5-HT5A vs 5-HT1A, 5-HT1B, or 5-HT2C receptor blockade upon light-induced phase shifts in circadian activity rhythms: interaction studies with citalopram. Eur Neuropsychopharmacol 19(12):887–897. pii: S0924-977X(09)00165-5

    Article  PubMed  CAS  Google Scholar 

  • Gao M, Wang M, Hutchins GD, Zheng QH (2008) Synthesis of new carbon-11 labeled benzoxazole derivatives for PET imaging of 5-HT(3) receptor. Eur J Med Chem 43(7):1570–1574. pii: S0223-5234(07)00399-6

    Article  PubMed  CAS  Google Scholar 

  • Gerstl F, Windischberger C, Mitterhauser M, Wadsak W, Holik A, Kletter K, Moser E, Kasper S, Lanzenberger R (2008) Multimodal imaging of human early visual cortex by combining functional and molecular measurements with fMRI and PET. Neuroimage 41(2):204–211. pii: S1053-8119(08)00196-1

    Article  PubMed  Google Scholar 

  • Geyer MA, Vollenweider FX (2008) Serotonin research: contributions to understanding psychoses. Trends Pharmacol Sci 29(9):445–453. pii: S0165-6147(08)00154-5

    Article  PubMed  CAS  Google Scholar 

  • Ginovart N, Meyer JH, Boovariwala A, Hussey D, Rabiner EA, Houle S, Wilson AA (2006) Positron emission tomography quantification of [11C]-harmine binding to monoamine oxidase-A in the human brain. J Cereb Blood Flow Metab 26(3):330–344

    Article  PubMed  CAS  Google Scholar 

  • Goldstein DJ, Roon KI, Offen WW, Ramadan NM, Phebus LA, Johnson KW, Schaus JM, Ferrari MD (2001) Selective seratonin 1F (5-HT(1F)) receptor agonist LY334370 for acute migraine: a randomised controlled trial. Lancet 358(9289):1230–1234. pii: S0140673601063474

    Article  PubMed  CAS  Google Scholar 

  • Gravius A, Laszy J, Pietraszek M, Saghy K, Nagel J, Chambon C, Wegener N, Valastro B, Danysz W, Istvan G (2011) Effects of 5-HT6 antagonists, Ro-4368554 and SB-258585, in tests used for the detection of cognitive enhancement and antipsychotic-like activity. Behav Pharmacol 22(2):122–135. doi:10.1097/FBP.0b013e328343d804

    Article  PubMed  CAS  Google Scholar 

  • Gunning FM, Smith GS (2011) Functional neuroimaging in geriatric depression. Psychiat Clin North Am 34(2):403. doi:10.1016/j.psc.2011.02.010

    Google Scholar 

  • Guscott MR, Egan E, Cook GP, Stanton JA, Beer MS, Rosahl TW, Hartmann S, Kulagowski J, McAllister G, Fone KC, Hutson PH (2003) The hypothermic effect of 5-CT in mice is mediated through the 5-HT7 receptor. Neuropharmacology 44(8):1031–1037. pii: S0028390803001175

    Article  PubMed  CAS  Google Scholar 

  • Halford JCG (2011) The role of serotonin in eating behavior: focus on 5-HT2C receptors 5-HT2C receptors in the pathophysiology of CNS disease. In: Di Giovanni G, Esposito E, Di Matteo V (eds) The receptors, vol 22. Humana Press, USA, pp 339–350. doi:10.1007/978-1-60761-941-3_17

  • Hannon J, Hoyer D (2008) Molecular biology of 5-HT receptors. Behav Brain Res 195(1):198–213. pii: S0166-4328(08)00152-6

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa H, Nakamura K (2010) Tryptophan hydroxylase and serotonin synthesis regulation. In: Christian PM, Barry LJ (eds) Handbook of behavioral neuroscience, vol 21. Elsevier, The Netherlands, pp 183–202

  • Haugbol S, Pinborg LH, Regeur L, Hansen ES, Bolwig TG, Nielsen FA, Svarer C, Skovgaard LT, Knudsen GM (2007) Cerebral 5-HT2A receptor binding is increased in patients with Tourette’s syndrome. Int J Neuropsychopharmacol 10(2):245–252. pii: S1461145706006559

    Article  PubMed  CAS  Google Scholar 

  • Heal DJ, Smith SL, Fisas A, Codony X, Buschmann H (2008) Selective 5-HT6 receptor ligands: progress in the development of a novel pharmacological approach to the treatment of obesity and related metabolic disorders. Pharmacol Ther 117(2):207–231. doi:10.1016/j.pharmthera.2007.08.006

    Article  PubMed  CAS  Google Scholar 

  • Hedlund PB, Sutcliffe JG (2007) The 5-HT7 receptor influences stereotypic behavior in a model of obsessive-compulsive disorder. Neurosci Lett 414(3):247–251. pii: S0304-3940(06)01332-2

    Article  PubMed  CAS  Google Scholar 

  • Hesse S, Stengler K, Regenthal R, Patt M, Becker GA, Franke A, Knupfer H, Meyer PM, Luthardt J, Jahn I, Lobsien D, Heinke W, Brust P, Hegerl U, Sabri O (2011) The serotonin transporter availability in untreated early-onset and late-onset patients with obsessive-compulsive disorder. Int J Neuropsychopharmacol 14(5):606–617. pii: S1461145710001604

    Article  PubMed  CAS  Google Scholar 

  • Hirvonen J, Karlsson H, Kajander J, Lepola A, Markkula J, Rasi-Hakala H, Nagren K, Salminen JK, Hietala J (2008) Decreased brain serotonin 5-HT1A receptor availability in medication-naive patients with major depressive disorder: an in vivo imaging study using PET and [carbonyl-11C]WAY-100635. Int J Neuropsychopharmacol 11(4):465–476. pii: S1461145707008140

    Article  PubMed  CAS  Google Scholar 

  • Holenz J, Pauwels PJ, Diaz JL, Merce R, Codony X, Buschmann H (2006) Medicinal chemistry strategies to 5-HT6 receptor ligands as potential cognitive enhancers and antiobesity agents. Drug Discov Today 11(7–8):283–299

    Article  PubMed  CAS  Google Scholar 

  • Holmes C, Arranz MJ, Powell JF, Collier DA, Lovestone S (1998) 5-HT2A and 5-HT2C receptor polymorphisms and psychopathology in late onset Alzheimer’s disease. Hum Mol Genet 7(9):1507–1509

    Article  PubMed  CAS  Google Scholar 

  • Houle S, Ginovart N, Hussey D, Meyer JH, Wilson AA (2000) Imaging the serotonin transporter with positron emission tomography: initial human studies with [11C]DAPP and [11C]DASB. Eur J Nucl Med 27(11):1719–1722

    Article  PubMed  CAS  Google Scholar 

  • Hu J, Henry S, Gallezot JD, Ropchan J, Neumaier JF, Potenza MN, Sinha R, Krystal JH, Huang Y, Ding YS, Carson RE, Neumeister A (2010) Serotonin 1B receptor imaging in alcohol dependence. Biol Psychiatry 67(9):800–803. pii: S0006-3223(10)00003-X

    Article  PubMed  CAS  Google Scholar 

  • Huang YY, Oquendo MA, Friedman JM, Greenhill LL, Brodsky B, Malone KM, Khait V, Mann JJ (2003) Substance abuse disorder and major depression are associated with the human 5-HT1B receptor gene (HTR1B) G861C polymorphism. Neuropsychopharmacology 28(1):163–169. doi:10.1038/sj.npp.1300000

    Article  PubMed  CAS  Google Scholar 

  • Huang Y, Zheng MQ, Gerdes JM (2010) Development of effective PET and SPECT imaging agents for the serotonin transporter: has a twenty-year journey reached its destination? Curr Top Med Chem 10(15):1499–1526

    PubMed  CAS  Google Scholar 

  • Ichise M, Vines DC, Gura T, Anderson GM, Suomi SJ, Higley JD, Innis RB (2006) Effects of early life stress on [11C]DASB positron emission tomography imaging of serotonin transporters in adolescent peer- and mother-reared rhesus monkeys. J Neurosci 26(17):4638–4643

    Article  PubMed  CAS  Google Scholar 

  • Jarcho JM, Chang L, Berman M, Suyenobu B, Naliboff BD, Lieberman MD, Ameen VZ, Mandelkern MA, Mayer EA (2008) Neural and psychological predictors of treatment response in irritable bowel syndrome patients with a 5-HT3 receptor antagonist: a pilot study. Aliment Pharmacol Ther 28(3):344–352

    Article  PubMed  CAS  Google Scholar 

  • Jensen SB, Olsen AK, Pedersen K, Cumming P (2006) Effect of monoamine oxidase inhibition on amphetamine-evoked changes in dopamine receptor availability in the living pig: a dual tracer PET study with [11C]harmine and [11C]raclopride. Synapse 59(7):427–434. doi:10.1002/syn.20258

    Article  PubMed  CAS  Google Scholar 

  • Johnson KW, Schaus JM, Durkin MM, Audia JE, Kaldor SW, Flaugh ME, Adham N, Zgombick JM, Cohen ML, Branchek TA, Phebus LA (1997) 5-HT1F receptor agonists inhibit neurogenic dural inflammation in guinea pigs. Neuroreport 8(9–10):2237–2240

    Article  PubMed  CAS  Google Scholar 

  • Kalbitzer J, Frokjaer VG, Erritzoe D, Svarer C, Cumming P, Nielsen FA, Hashemi SH, Baare WF, Madsen J, Hasselbalch SG, Kringelbach ML, Mortensen EL, Knudsen GM (2009) The personality trait openness is related to cerebral 5-HTT levels. Neuroimage 45(2):280–285. pii: S1053-8119(08)01267-6

    Article  PubMed  Google Scholar 

  • Kasper S, Sacher J, Klein N, Mossaheb N, Attarbaschi-Steiner T, Lanzenberger R, Spindelegger C, Asenbaum S, Holik A, Dudczak R (2009) Differences in the dynamics of serotonin reuptake transporter occupancy may explain superior clinical efficacy of escitalopram versus citalopram. Int Clin Psychopharmacol 24(3):119–125. doi:10.1097/YIC.0b013e32832a8ec8

    Article  PubMed  Google Scholar 

  • Kennett GA, Dourish CT, Curzon G (1987) Antidepressant-like action of 5-HT1A agonists and conventional antidepressants in an animal model of depression. Eur J Pharmacol 134(3):265–274

    Article  PubMed  CAS  Google Scholar 

  • Kish SJ, Tong J, Hornykiewicz O, Rajput A, Chang LJ, Guttman M, Furukawa Y (2008) Preferential loss of serotonin markers in caudate versus putamen in Parkinson’s disease. Brain 131(Pt 1):120–131

    PubMed  Google Scholar 

  • Kishi T, Fukuo Y, Yoshimura R, Okochi T, Kitajima T, Naitoh H, Umene-Nakano W, Nakamura J, Ozaki N, Iwata N (2010) Pharmacogenetic study of serotonin 6 receptor gene with antidepressant response in major depressive disorder in the Japanese population. Hum Psychopharmacol 25(6):481–486. doi:10.1002/hup.1142

    Article  PubMed  CAS  Google Scholar 

  • Koeppe RA, Frey KA, Vander Borght TM, Karlamangla A, Jewett DM, Lee LC, Kilbourn MR, Kuhl DE (1996) Kinetic evaluation of [11C]dihydrotetrabenazine by dynamic PET: measurement of vesicular monoamine transporter. J Cereb Blood Flow Metab 16(6):1288–1299. doi:10.1097/00004647-199611000-00025

    Article  PubMed  CAS  Google Scholar 

  • Kornum BR, Lind NM, Gillings N, Marner L, Andersen F, Knudsen GM (2009) Evaluation of the novel 5-HT4 receptor PET ligand [11C]SB207145 in the Gottingen minipig. J Cereb Blood Flow Metab 29(1):186–196

    Article  PubMed  CAS  Google Scholar 

  • Kranz GS, Kasper S, Lanzenberger R (2010) Reward and the serotonergic system. Neuroscience 166(4):1023–1035. pii: S0306-4522(10)00084-9

    Article  PubMed  CAS  Google Scholar 

  • Kupers R, Frokjaer VG, Erritzoe D, Naert A, Budtz-Joergensen E, Nielsen FA, Kehlet H, Knudsen GM (2011) Serotonin transporter binding in the hypothalamus correlates negatively with tonic heat pain ratings in healthy subjects: a [11C]DASB PET study. Neuroimage 54(2):1336–1343. pii: S1053-8119(10)01191-2

    Article  PubMed  Google Scholar 

  • Lanzenberger RR, Mitterhauser M, Spindelegger C, Wadsak W, Klein N, Mien LK, Holik A, Attarbaschi T, Mossaheb N, Sacher J, Geiss-Granadia T, Kletter K, Kasper S, Tauscher J (2007) Reduced serotonin-1A receptor binding in social anxiety disorder. Biol Psychiatry 61(9):1081–1089. pii: S0006-3223(06)00702-5

    Article  PubMed  CAS  Google Scholar 

  • Lanzenberger R, Wadsak W, Spindelegger C, Mitterhauser M, Akimova E, Mien LK, Fink M, Moser U, Savli M, Kranz GS, Hahn A, Kletter K, Kasper S (2010) Cortisol plasma levels in social anxiety disorder patients correlate with serotonin-1A receptor binding in limbic brain regions. Int J Neuropsychopharmacol 13(9):1129–1143. pii: S1461145710000581

    Article  PubMed  CAS  Google Scholar 

  • Leopoldo M, Lacivita E, Berardi F, Perrone R, Hedlund PB (2011) Serotonin 5-HT7 receptor agents: structure–activity relationships and potential therapeutic applications in central nervous system disorders. Pharmacol Ther 129(2):120–148. pii: S0163-7258(10)00187-7

    Article  PubMed  CAS  Google Scholar 

  • Leroy C, Bragulat V, Berlin I, Gregoire MC, Bottlaender M, Roumenov D, Dolle F, Bourgeois S, Penttila J, Artiges E, Martinot JL, Trichard C (2009) Cerebral monoamine oxidase A inhibition in tobacco smokers confirmed with PET and [11C]befloxatone. J Clin Psychopharmacol 29(1):86–88. doi:10.1097/JCP.0b013e31819e98f

    Article  PubMed  CAS  Google Scholar 

  • Lesch KP, Gross J, Franzek E, Wolozin BL, Riederer P, Murphy DL (1995) Primary structure of the serotonin transporter in unipolar depression and bipolar disorder. Biol Psychiatry 37(4):215–223

    Article  PubMed  CAS  Google Scholar 

  • Leyton M, Okazawa H, Diksic M, Paris J, Rosa P, Mzengeza S, Young SN, Blier P, Benkelfat C (2001) Brain Regional alpha-[11C]methyl-l-tryptophan trapping in impulsive subjects with borderline personality disorder. Am J Psychiatry 158(5):775–782

    Article  PubMed  CAS  Google Scholar 

  • Liechti ME, Saur MR, Gamma A, Hell D, Vollenweider FX (2000) Psychological and physiological effects of MDMA (“Ecstasy”) after pretreatment with the 5-HT(2) antagonist ketanserin in healthy humans. Neuropsychopharmacology 23(4):396–404. pii: S0893-133X(00)00126-3

    Article  PubMed  CAS  Google Scholar 

  • Liu F, Majo VJ, Prabhakaran J, Milak MS, John Mann J, Parsey RV, Dileep Kumar JS (2011) Synthesis and in vivo evaluation of [O-methyl-(11)C] N-[3, 5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)benzenesul fonamide as an imaging probe for 5-HT(6) receptors. Bioorg Med Chem 19(17):5255–5259. pii: S0968-0896(11)00547-5

    Article  PubMed  CAS  Google Scholar 

  • Livingston MG, Livingston HM (1996) Monoamine oxidase inhibitors. An update on drug interactions. Drug Saf 14(4):219–227

    Article  PubMed  CAS  Google Scholar 

  • Logan J, Fowler JS, Ding YS, Franceschi D, Wang GJ, Volkow ND, Felder C, Alexoff D (2002) Strategy for the formation of parametric images under conditions of low injected radioactivity applied to PET studies with the irreversible monoamine oxidase A tracers [11C]clorgyline and deuterium-substituted [11C]clorgyline. J Cereb Blood Flow Metab 22(11):1367–1376. doi:10.1097/00004647-200211000-00010

    Article  PubMed  CAS  Google Scholar 

  • Lovenberg TW, Baron BM, de Lecea L, Miller JD, Prosser RA, Rea MA, Foye PE, Racke M, Slone AL, Siegel BW et al (1993) A novel adenylyl cyclase-activating serotonin receptor (5-HT7) implicated in the regulation of mammalian circadian rhythms. Neuron 11(3):449–458

    Article  PubMed  CAS  Google Scholar 

  • Lucas G, Du J, Romeas T, Mnie-Filali O, Haddjeri N, Pineyro G, Debonnel G (2010) Selective serotonin reuptake inhibitors potentiate the rapid antidepressant-like effects of serotonin4 receptor agonists in the rat. PLoS ONE 5(2):e9253. doi:10.1371/journal.pone.0009253

  • Machu TK (2011) Therapeutics of 5-HT3 receptor antagonists: current uses and future directions. Pharmacol Ther 130(3):338–347. pii: S0163-7258(11)00051-9

    Article  PubMed  CAS  Google Scholar 

  • Madsen K, Erritzoe D, Mortensen EL, Gade A, Madsen J, Baare W, Knudsen GM, Hasselbalch SG (2011a) Cognitive function is related to fronto-striatal serotonin transporter levels—a brain PET study in young healthy subjects. Psychopharmacology (Berl) 213(2–3):573–581. doi:10.1007/s00213-010-1926-4

    Article  CAS  Google Scholar 

  • Madsen K, Neumann WJ, Holst K, Marner L, Haahr MT, Lehel S, Knudsen GM, Hasselbalch SG (2011b) Cerebral serotonin 4 receptors and amyloid-beta in early Alzheimer’s disease. J Alzheimers Dis 23

  • Mahesh R, Devadoss T, Pandey DK, Bhatt S, Yadav SK (2010) Design, synthesis and structure-activity relationship of novel quinoxalin-2-carboxamides as 5-HT3 receptor antagonists for the management of depression. Bioorganic Med Chem Lett 20(22):6773–6776. pii: S0960-894X(10)01264-3

    Article  CAS  Google Scholar 

  • Marner L, Gillings N, Madsen K, Erritzoe D, Baare WF, Svarer C, Hasselbalch SG, Knudsen GM (2010) Brain imaging of serotonin 4 receptors in humans with [11C]SB207145-PET. Neuroimage 50(3):855–861. pii: S1053-8119(10)00076-5

    Article  PubMed  CAS  Google Scholar 

  • Marsden CA, King MV, Fone KC (2011) Influence of social isolation in the rat on serotonergic function and memory—relevance to models of schizophrenia and the role of 5-HT6 receptors. Neuropharmacology 61(3):400–407. pii: S0028-3908(11)00112-2

    Article  PubMed  CAS  Google Scholar 

  • Martarello L, Ahmed M, Chuang AT, Cunningham VJ, Jakobsen S, Johnson CN, Matthews JC, Medhurst A, Moss SF, Rabiner EA, Ray A, Rivers D, Stemp G, Gee AD (2005) Radiolabelling and in vivo evaluation of [(11)C]Gsk215083 as a potential 5-Ht(6) Pet radioligand in the porcine brain. J Cereb Blood Flow Metab 25:S598

  • Martin-Cora FJ, Pazos A (2004) Autoradiographic distribution of 5-HT7 receptors in the human brain using [3H]mesulergine: comparison to other mammalian species. Br J Pharmacol 141(1):92–104. doi:10.1038/sj.bjp.0705576sj.bjp.0705576

    Article  PubMed  CAS  Google Scholar 

  • Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5):545–580. doi:10.1101/gad.1047403

    Article  PubMed  CAS  Google Scholar 

  • McCann UD, Szabo Z, Seckin E, Rosenblatt P, Mathews WB, Ravert HT, Dannals RF, Ricaurte GA (2005) Quantitative PET studies of the serotonin transporter in MDMA users and controls using [11C]McN5652 and [11C]DASB. Neuropsychopharmacology 30(9):1741–1750

    Article  PubMed  CAS  Google Scholar 

  • Meltzer HY (1999) The role of serotonin in antipsychotic drug action. Neuropsychopharmacology 21(2 Suppl):106S–115S. doi:10.1016/S0893-133X(99)00046-9

    PubMed  CAS  Google Scholar 

  • Meneses A (2007) Stimulation of 5-HT1A, 5-HT1B, 5-HT2A/2C, 5-HT3 and 5-HT4 receptors or 5-HT uptake inhibition: short- and long-term memory. Behav Brain Res 184(1):81–90. pii: S0166-4328(07)00327-0

    Article  PubMed  CAS  Google Scholar 

  • Meneses A, Perez-Garcia G (2007) 5-HT(1A) receptors and memory. Neurosci Biobehav Rev 31(5):705–727. pii: S0149-7634(07)00018-8

    Article  PubMed  CAS  Google Scholar 

  • Meneses A, Perez-Garcia G, Liy-Salmeron G, Flores-Galvez D, Castillo C, Castillo E (2008) The effects of the 5-HT6 receptor agonist EMD and the 5-HT7 receptor agonist AS19 on memory formation. Behav Brain Res 195(1):112–119. doi:10.1016/j.bbr.2007.11.023

    Article  PubMed  CAS  Google Scholar 

  • Messa C, Colombo C, Moresco RM, Gobbo C, Galli L, Lucignani G, Gilardi MC, Rizzo G, Smeraldi E, Zanardi R, Artigas F, Fazio F (2003) 5-HT(2A) receptor binding is reduced in drug-naive and unchanged in SSRI-responder depressed patients compared to healthy controls: a PET study. Psychopharmacology (Berl) 167(1):72–78. doi:10.1007/s00213-002-1379-5

    CAS  Google Scholar 

  • Meyer JH (2007) Imaging the serotonin transporter during major depressive disorder and antidepressant treatment. J Psychiatry Neurosci 32(2):86–102

    PubMed  Google Scholar 

  • Meyer JH, Ginovart N, Boovariwala A, Sagrati S, Hussey D, Garcia A, Young T, Praschak-Rieder N, Wilson AA, Houle S (2006) Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch Gen Psychiatry 63(11):1209–1216

    Article  PubMed  CAS  Google Scholar 

  • Milak MS, Severance AJ, Ogden RT, Prabhakaran J, Kumar JS, Majo VJ, Mann JJ, Parsey RV (2008) Modeling considerations for 11C-CUMI-101, an agonist radiotracer for imaging serotonin 1A receptor in vivo with PET. J Nucl Med 49(4):587–596

    Article  PubMed  CAS  Google Scholar 

  • Milak MS, DeLorenzo C, Zanderigo F, Prabhakaran J, Kumar JS, Majo VJ, Mann JJ, Parsey RV (2010) In vivo quantification of human serotonin 1A receptor using 11C-CUMI-101, an agonist PET radiotracer. J Nucl Med 51(12):1892–1900

    Article  PubMed  Google Scholar 

  • Milak MS, Severance AJ, Prabhakaran J, Kumar JS, Majo VJ, Ogden RT, Mann JJ, Parsey RV (2011) In vivo serotonin-sensitive binding of [11C]CUMI-101: a serotonin 1A receptor agonist positron emission tomography radiotracer. J Cereb Blood Flow Metab 31(1):243–249

    Article  PubMed  CAS  Google Scholar 

  • Miller JM, Brennan KG, Ogden TR, Oquendo MA, Sullivan GM, Mann JJ, Parsey RV (2009) Elevated serotonin 1A binding in remitted major depressive disorder: evidence for a trait biological abnormality. Neuropsychopharmacology 34(10):2275–2284

    Article  PubMed  CAS  Google Scholar 

  • Mnie-Filali O, Faure C, Lambas-Senas L, El Mansari M, Belblidia H, Gondard E, Etievant A, Scarna H, Didier A, Berod A, Blier P, Haddjeri N (2011) Pharmacological blockade of 5-HT(7) receptors as a putative fast acting antidepressant strategy. Neuropsychopharmacology 36(6):1275–1288

    Article  PubMed  CAS  Google Scholar 

  • Monti JM, Leopoldo M, Jantos H (2008) The serotonin 5-HT7 receptor agonist LP-44 microinjected into the dorsal raphe nucleus suppresses REM sleep in the rat. Behav Brain Res 191(2):184–189. doi:10.1016/j.bbr.2008.03.025

    Article  PubMed  CAS  Google Scholar 

  • Murrough JW, Henry S, Hu J, Gallezot JD, Planeta-Wilson B, Neumaier JF, Neumeister A (2011) Reduced ventral striatal/ventral pallidal serotonin1B receptor binding potential in major depressive disorder. Psychopharmacology (Berl) 213(2–3):547–553. doi:10.1007/s00213-010-1881-0

    Article  CAS  Google Scholar 

  • Nabulsi N, Huang Y, Weinzimmer D, Ropchan J, Frost JJ, McCarthy T, Carson RE, Ding YS (2010) High-resolution imaging of brain 5-HT 1B receptors in the rhesus monkey using [11C]P943. Nucl Med Biol 37(2):205–214. pii: S0969-8051(09)00255-8

    Article  PubMed  CAS  Google Scholar 

  • Narendran R, Frankle WG, Mason NS, Rabiner EA, Gunn RN, Searle GE, Vora S, Litschge M, Kendro S, Cooper TB, Mathis CA, Laruelle M (2009) Positron emission tomography imaging of amphetamine-induced dopamine release in the human cortex: a comparative evaluation of the high affinity dopamine D2/3 radiotracers [11C]FLB 457 and [11C]fallypride. Synapse 63(6):447–461. doi:10.1002/syn.20628

    Article  PubMed  CAS  Google Scholar 

  • Nash JR, Sargent PA, Rabiner EA, Hood SD, Argyropoulos SV, Potokar JP, Grasby PM, Nutt DJ (2008) Serotonin 5-HT1A receptor binding in people with panic disorder: positron emission tomography study. Br J Psychiatry 193(3):229–234

    Article  PubMed  Google Scholar 

  • Neeb L, Meents J, Reuter U (2010) 5-HT(1F) Receptor agonists: a new treatment option for migraine attacks? Neurotherapeutics 7(2):176–182. doi:10.1016/j.nurt.2010.03.003

    Article  PubMed  CAS  Google Scholar 

  • Neumaier JF, Vincow ES, Arvanitogiannis A, Wise RA, Carlezon WA Jr (2002) Elevated expression of 5-HT1B receptors in nucleus accumbens efferents sensitizes animals to cocaine. J Neurosci 22(24):10856–10863

    PubMed  CAS  Google Scholar 

  • Neumeister A, Bain E, Nugent AC, Carson RE, Bonne O, Luckenbaugh DA, Eckelman W, Herscovitch P, Charney DS, Drevets WC (2004) Reduced serotonin type 1A receptor binding in panic disorder. J Neurosci 24(3):589–591. doi:10.1523/JNEUROSCI.4921-03.2004

    Article  PubMed  CAS  Google Scholar 

  • Nikiforuk A, Kos T, Wesolowska A (2011) The 5-HT6 receptor agonist EMD 386088 produces antidepressant and anxiolytic effects in rats after intrahippocampal administration. Psychopharmacology (Berl). doi:10.1007/s00213-011-2297-1

  • Nishikawa M, Kumakura Y, Young SN, Fiset P, Vogelzangs N, Leyton M, Benkelfat C, Diksic M (2005) Increasing blood oxygen increases an index of 5-HT synthesis in human brain as measured using alpha-[(11)C]methyl-l-tryptophan and positron emission tomography. Neurochem Int 47(8):556–564. pii: S0197-0186(05)00194-4

    Article  PubMed  CAS  Google Scholar 

  • Nishikawa T, Tsuno NH, Shuno Y, Sasaki K, Hongo K, Okaji Y, Sunami E, Kitayama J, Takahashi K, Nagawa H (2010) Antiangiogenic effect of a selective 5-HT4 receptor agonist. J Surg Res 159(2):696–704. pii: S0022-4804(08)00689-6

    Article  PubMed  CAS  Google Scholar 

  • Nishizawa S, Benkelfat C, Young SN, Leyton M, Mzengeza S, de Montigny C, Blier P, Diksic M (1997) Differences between males and females in rates of serotonin synthesis in human brain. Proc Natl Acad Sci USA 94(10):5308–5313

    Article  PubMed  CAS  Google Scholar 

  • Ohno Y (2011) Therapeutic role of 5-HT1A receptors in the treatment of schizophrenia and Parkinson’s disease. CNS Neurosci Ther 17(1):58–65. doi:10.1111/j.1755-5949.2010.00211.x

    Article  PubMed  CAS  Google Scholar 

  • Okamura N, Villemagne VL, Drago J, Pejoska S, Dhamija RK, Mulligan RS, Ellis JR, Ackermann U, O’Keefe G, Jones G, Kung HF, Pontecorvo MJ, Skovronsky D, Rowe CC (2010) In vivo measurement of vesicular monoamine transporter type 2 density in Parkinson disease with (18)F-AV-133. J Nucl Med 51(2):223–228

    Article  PubMed  Google Scholar 

  • Okazawa H, Leyton M, Benkelfat C, Mzengeza S, Diksic M (2000) Statistical mapping analysis of serotonin synthesis images generated in healthy volunteers using positron-emission tomography and alpha-[11C]methyl-l-tryptophan. J Psychiatry Neurosci 25(4):359–370

    PubMed  CAS  Google Scholar 

  • Olivier B, van Oorschot R (2005) 5-HT1B receptors and aggression: a review. Eur J Pharmacol 526(1–3):207–217. pii: S0014-2999(05)00980-5

    Article  PubMed  CAS  Google Scholar 

  • Pandey GN, Dwivedi Y, Ren X, Rizavi HS, Faludi G, Sarosi A, Palkovits M (2006) Regional distribution and relative abundance of serotonin(2c) receptors in human brain: effect of suicide. Neurochem Res 31(2):167–176. doi:10.1007/s11064-005-9006-6

    Article  PubMed  CAS  Google Scholar 

  • Parker CA, Cunningham VJ, Martarello L, Rabinera EA, Searle GE, Gee AD, Davy M, Johnson CN, Ahmed M, Gunn RN, Laruelle M (2008) Evaluation of the novel 5-HT6 receptor radioligand, [C-11]GSK-215083 in human. Neuroimage 41:T20–T20. doi:10.1016/j.neuroimage.2008.04.194

    Google Scholar 

  • Parsey RV, Ogden RT, Miller JM, Tin A, Hesselgrave N, Goldstein E, Mikhno A, Milak M, Zanderigo F, Sullivan GM, Oquendo MA, Mann JJ (2010) Higher serotonin 1A binding in a second major depression cohort: modeling and reference region considerations. Biol Psychiatry 68(2):170–178

    Article  PubMed  CAS  Google Scholar 

  • Paterson LM, Tyacke RJ, Nutt DJ, Knudsen GM (2010) Measuring endogenous 5-HT release by emission tomography: promises and pitfalls. J Cereb Blood Flow Metab 30(10):1682–1706

    Article  PubMed  CAS  Google Scholar 

  • Paterson LM, Kornum BR, Nutt DJ, Pike VW, Knudsen GM (2011) 5-HT radioligands for human brain imaging with PET and SPECT. Med Res Rev. doi:10.1002/med.20245

  • Pazos A, Probst A, Palacios JM (1987a) Serotonin receptors in the human brain—III. Autoradiographic mapping of serotonin-1 receptors. Neuroscience 21(1):97–122

    Article  PubMed  CAS  Google Scholar 

  • Pazos A, Probst A, Palacios JM (1987b) Serotonin receptors in the human brain—IV. Autoradiographic mapping of serotonin-2 receptors. Neuroscience 21(1):123–139

    Article  PubMed  CAS  Google Scholar 

  • Phebus LA, Johnson KW, Zgombick JM, Gilbert PJ, Van Belle K, Mancuso V, Nelson DL, Calligaro DO, Kiefer AD Jr, Branchek TA, Flaugh ME (1997) Characterization of LY344864 as a pharmacological tool to study 5-HT1F receptors: binding affinities, brain penetration and activity in the neurogenic dural inflammation model of migraine. Life Sci 61(21):2117–2126. pii: S0024320597008850

    Article  PubMed  CAS  Google Scholar 

  • Popa D, Lena C, Fabre V, Prenat C, Gingrich J, Escourrou P, Hamon M, Adrien J (2005) Contribution of 5-HT2 receptor subtypes to sleep-wakefulness and respiratory control, and functional adaptations in knock-out mice lacking 5-HT2A receptors. J Neurosci 25(49):11231–11238

    Article  PubMed  CAS  Google Scholar 

  • Pouzet B, Didriksen M, Arnt J (2002) Effects of the 5-HT6 receptor antagonist, SB-271046, in animal models for schizophrenia. Pharmacol Biochem Be 71(4):635–643

    Article  CAS  Google Scholar 

  • Quist JF, Barr CL, Schachar R, Roberts W, Malone M, Tannock R, Basile VS, Beitchman J, Kennedy JL (2003) The serotonin 5-HT1B receptor gene and attention deficit hyperactivity disorder. Mol Psychiatry 8(1):98–102. doi:10.1038/sj.mp.4001244

    Article  PubMed  CAS  Google Scholar 

  • Reimold M, Knobel A, Rapp MA, Batra A, Wiedemann K, Strohle A, Zimmer A, Schonknecht P, Smolka MN, Weinberger DR, Goldman D, Machulla HJ, Bares R, Heinz A (2011) Central serotonin transporter levels are associated with stress hormone response and anxiety. Psychopharmacology (Berl) 213(2–3):563–572. doi:10.1007/s00213-010-1903-y

    Article  CAS  Google Scholar 

  • Roberts AJ, Hedlund PB (2011) The 5-HT(7) receptor in learning and memory. Hippocampus. doi:10.1002/hipo.20938

  • Rodd ZA, Bell RL, Oster SM, Toalston JE, Pommer TJ, McBride WJ, Murphy JM (2010) Serotonin-3 receptors in the posterior ventral tegmental area regulate ethanol self-administration of alcohol-preferring (P) rats. Alcohol 44(3):245–255. pii: S0741-8329(10)00034-0

    Article  PubMed  CAS  Google Scholar 

  • Rosa-Neto P, Diksic M, Okazawa H, Leyton M, Ghadirian N, Mzengeza S, Nakai A, Debonnel G, Blier P, Benkelfat C (2004) Measurement of brain regional alpha-[11C]methyl-l-tryptophan trapping as a measure of serotonin synthesis in medication-free patients with major depression. Arch Gen Psychiatry 61(6):556–563. doi:10.1001/archpsyc.61.6.556

    Article  PubMed  CAS  Google Scholar 

  • Rosa-Neto P, Diksic M, Leyton M, Mzengeza S, Benkelfat C (2005) Stability of alpha-[11C]methyl-l-tryptophan brain trapping in healthy male volunteers. Eur J Nucl Med Mol Imaging 32(10):1199–1204. doi:10.1007/s00259-005-1829-5

    Article  PubMed  Google Scholar 

  • Ruf BM, Bhagwagar Z (2009) The 5-HT1B receptor: a novel target for the pathophysiology of depression. Curr Drug Targets 10(11):1118–1138

    Article  PubMed  CAS  Google Scholar 

  • Russo O, Cachard-Chastel M, Riviere C, Giner M, Soulier JL, Berthouze M, Richard T, Monti JP, Sicsic S, Lezoualc’h F, Berque-Bestel I (2009) Design, synthesis, and biological evaluation of new 5-HT4 receptor agonists: application as amyloid cascade modulators and potential therapeutic utility in Alzheimer’s disease. J Med Chem 52(8):2214–2225. doi:10.1021/jm801327q

    Article  PubMed  CAS  Google Scholar 

  • Salomon L, Lanteri C, Godeheu G, Blanc G, Gingrich J, Tassin JP (2007) Paradoxical constitutive behavioral sensitization to amphetamine in mice lacking 5-HT2A receptors. Psychopharmacology (Berl) 194(1):11–20. doi:10.1007/s00213-007-0810-3

    Article  CAS  Google Scholar 

  • Santhosh L, Estok KM, Vogel RS, Tamagnan GD, Baldwin RM, Mitsis EM, Macavoy MG, Staley JK, van Dyck CH (2009) Regional distribution and behavioral correlates of 5-HT(2A) receptors in Alzheimer’s disease with [(18)F]deuteroaltanserin and PET. Psychiatry Res 173(3):212–217. pii: S0925-4927(09)00083-3

    Article  PubMed  CAS  Google Scholar 

  • Saudou F, Amara DA, Dierich A, Lemeur M, Ramboz S, Segu L, Buhot MC, Hen R (1994) Enhanced aggressive-behavior in mice lacking 5-Ht1b receptor. Science 265(5180):1875–1878

    Article  PubMed  CAS  Google Scholar 

  • Schwartz K, Weizman A, Rehavi M (2005) Decreased platelet vesicular monoamine transporter density in habitual smokers. Eur Neuropsychopharmacol 15(2):235–238. pii: S0924-977X(04)00193-2

    Article  PubMed  CAS  Google Scholar 

  • Segu L, Lecomte MJ, Wolff M, Santamaria J, Hen R, Dumuis A, Berrard S, Bockaert J, Buhot MC, Compan V (2010) Hyperfunction of muscarinic receptor maintains long-term memory in 5-HT4 receptor knock-out mice. PLoS ONE 5 (3):e9529. doi:10.1371/journal.pone.0009529

  • Seidel MF, Müller W (2011) Differential pharmacotherapy for subgroups of fibromyalgia patients with specific consideration of 5-HT3 receptor antagonists. Expert Opin Pharmacother 12(9):1381–1391. doi:10.1517/14656566.2011.557362

    Article  PubMed  CAS  Google Scholar 

  • Selvaraj S, Hoshi R, Bhagwagar Z, Murthy NV, Hinz R, Cowen P, Curran HV, Grasby P (2009) Brain serotonin transporter binding in former users of MDMA (‘ecstasy’). Br J Psychiatry 194(4):355–359

    Article  PubMed  Google Scholar 

  • Serretti A, Artioli P, De Ronchi D (2004) The 5-HT2C receptor as a target for mood disorders. Expert Opin Ther Targets 8(1):15–23. doi:10.1517/14728222.8.1.15

    Article  PubMed  CAS  Google Scholar 

  • Shelton J, Bonaventure P, Li X, Yun S, Lovenberg T, Dugovic C (2009) 5-HT7 receptor deletion enhances REM sleep suppression induced by selective serotonin reuptake inhibitors, but not by direct stimulation of 5-HT1A receptor. Neuropharmacology 56(2):448–454. pii: S0028-3908(08)00457-7

    Article  PubMed  CAS  Google Scholar 

  • Shih JC, Ridd MJ, Chen K, Meehan WP, Kung MP, Seif I, De Maeyer E (1999) Ketanserin and tetrabenazine abolish aggression in mice lacking monoamine oxidase A. Brain Res 835(2):104–112. pii: S0006-8993(99)01478-X

    Article  PubMed  CAS  Google Scholar 

  • Sibon I, Benkelfat C, Gravel P, Aznavour N, Costes N, Mzengeza S, Booij L, Baker G, Soucy JP, Zimmer L, Descarries L (2008) Decreased [18F]MPPF binding potential in the dorsal raphe nucleus after a single oral dose of fluoxetine: a positron-emission tomography study in healthy volunteers. Biol Psychiatry 63(12):1135–1140. pii: S0006-3223(07)01160-2

    Article  PubMed  CAS  Google Scholar 

  • Simpson HB, Lombardo I, Slifstein M, Huang HY, Hwang DR, Abi-Dargham A, Liebowitz MR, Laruelle M (2003) Serotonin transporters in obsessive-compulsive disorder: a positron emission tomography study with [(11)C]McN 5652. Biol Psychiatry 54(12):1414–1421. pii: S0006322303005444

    Article  PubMed  CAS  Google Scholar 

  • Soliman A, Bagby RM, Wilson AA, Miler L, Clark M, Rusjan P, Sacher J, Houle S, Meyer JH (2011) Relationship of monoamine oxidase A binding to adaptive and maladaptive personality traits. Psychol Med 41(5):1051–1060. pii: S0033291710001601

    Article  PubMed  CAS  Google Scholar 

  • Soyka M, Preuss UW, Koller G, Zill P, Bondy B (2004) Association of 5-HT1B receptor gene and antisocial behavior in alcoholism. J Neural Transm 111(1):101–109. doi:10.1007/s00702-003-0064-0

    Article  PubMed  CAS  Google Scholar 

  • Spindelegger C, Lanzenberger R, Wadsak W, Mien LK, Stein P, Mitterhauser M, Moser U, Holik A, Pezawas L, Kletter K, Kasper S (2009) Influence of escitalopram treatment on 5-HT 1A receptor binding in limbic regions in patients with anxiety disorders. Mol Psychiatry 14(11):1040–1050

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Hajicek N, Kozasa T (2009) Regulation and physiological functions of G12/13-mediated signaling pathways. Neurosignals 17(1):55–70. doi:10.1159/000186690

    Article  PubMed  CAS  Google Scholar 

  • Taylor TN, Caudle WM, Shepherd KR, Noorian A, Jackson CR, Iuvone PM, Weinshenker D, Greene JG, Miller GW (2009) Nonmotor symptoms of Parkinson’s disease revealed in an animal model with reduced monoamine storage capacity. J Neurosci 29(25):8103–8113

    Article  PubMed  CAS  Google Scholar 

  • Tecott LH, Sun LM, Akana SF, Strack AM, Lowenstein DH, Dallman MF, Julius D (1995) Eating disorder and epilepsy in mice lacking 5-HT2c serotonin receptors. Nature 374(6522):542–546. doi:10.1038/374542a0

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR (2006) 5-ht5A receptors as a therapeutic target. Pharmacol Ther 111(3):707–714. pii: S0163-7258(06)00003-9

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Soffin EM, Roberts C, Kew JN, de la Flor RM, Dawson LA, Fry VA, Coggon SA, Faedo S, Hayes PD, Corbett DF, Davies CH, Hagan JJ (2006) SB-699551-A (3-cyclopentyl-N-[2-(dimethylamino)ethyl]-N-[(4’-{[(2-phenylethyl)amino]me thyl}-4-biphenylyl)methyl]propanamide dihydrochloride), a novel 5-ht5A receptor-selective antagonist, enhances 5-HT neuronal function: Evidence for an autoreceptor role for the 5-ht5A receptor in guinea pig brain. Neuropharmacology 51(3):566–577. pii: S0028-3908(06)00121-3

    Article  PubMed  CAS  Google Scholar 

  • Tillinger A, Sollas A, Serova LI, Kvetnansky R, Sabban EL (2010) Vesicular monoamine transporters (VMATs) in adrenal chromaffin cells: stress-triggered induction of VMAT2 and expression in epinephrine synthesizing cells. Cell Mol Neurobiol 30(8):1459–1465. doi:10.1007/s10571-010-9575-z

    Article  PubMed  CAS  Google Scholar 

  • Tong J, Boileau I, Furukawa Y, Chang LJ, Wilson AA, Houle S, Kish SJ (2011) Distribution of vesicular monoamine transporter 2 protein in human brain: implications for brain imaging studies. J Cereb Blood Flow Metab

  • Tsai SJ, Liu HC, Liu TY, Wang YC, Hong CJ (1999) Association analysis of the 5-HT6 receptor polymorphism C267T in Alzheimer’s disease. Neurosci Lett 276(2):138–139. pii: S0304-3940(99)00802-2

    Article  PubMed  CAS  Google Scholar 

  • Tsao CW, Lin YS, Chen CC, Bai CH, Wu SR (2006) Cytokines and serotonin transporter in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry 30(5):899–905. pii: S0278-5846(06)00056-X

    Article  PubMed  CAS  Google Scholar 

  • Twarog BM, Page IH (1953) Serotonin content of some mammalian tissues and urine and a method for its determination. Am J Physiol 175(1):157–161

    PubMed  CAS  Google Scholar 

  • Vander Borght TM, Kilbourn MR, Koeppe RA, DaSilva JN, Kuhl DE, Frey KA (1995) In vivo imaging of the brain vesicular monoamine transporter. J Nucl Med 36(12):2252–2260

    PubMed  CAS  Google Scholar 

  • Varnäs K, Nyberg S, Halldin C, Varrone A, Takano A, Karlsson P, Andersson J, McCarthy D, Smith M, Pierson ME, Soderstrom J, Farde L (2011a) Quantitative analysis of [11C]AZ10419369 binding to 5-HT1B receptors in human brain. J Cereb Blood Flow Metab 31(1):113–123

    Article  PubMed  CAS  Google Scholar 

  • Varnäs K, Nyberg S, Karlsson P, Pierson ME, Kagedal M, Cselenyi Z, McCarthy D, Xiao A, Zhang M, Halldin C, Farde L (2011b) Dose-dependent binding of AZD3783 to brain 5-HT1B receptors in non-human primates and human subjects: a positron emission tomography study with [11C]AZ10419369. Psychopharmacology (Berl) 213(2–3):533–545. doi:10.1007/s00213-011-2165-z

    Article  CAS  Google Scholar 

  • Villemagne VL, Okamura N, Pejoska S, Drago J, Mulligan RS, Chetelat G, Ackermann U, O’Keefe G, Jones G, Gong S, Tochon-Danguy H, Kung HF, Masters CL, Skovronsky DM, Rowe CC (2011) In vivo assessment of vesicular monoamine transporter type 2 in dementia with lewy bodies and Alzheimer disease. Arch Neurol 68(7):905–912

    Article  PubMed  Google Scholar 

  • Visser AK, van Waarde A, Willemsen AT, Bosker FJ, Luiten PG, den Boer JA, Kema IP, Dierckx RA (2011) Measuring serotonin synthesis: from conventional methods to PET tracers and their (pre)clinical implications. Eur J Nucl Med Mol Imaging 38(3):576–591. doi:10.1007/s00259-010-1663-2

    Article  PubMed  CAS  Google Scholar 

  • Vogt IR, Shimron-Abarbanell D, Neidt H, Erdmann J, Cichon S, Schulze TG, Muller DJ, Maier W, Albus M, Borrmann-Hassenbach M, Knapp M, Rietschel M, Propping P, Nothen MM (2000) Investigation of the human serotonin 6 [5-HT6] receptor gene in bipolar affective disorder and schizophrenia. Am J Med Genet 96(2):217–221. doi:10.1002/(SICI)1096-8628(20000403)96:2<217:AID-AJMG17>3.0.CO;2-0

    Article  PubMed  CAS  Google Scholar 

  • Volk B, Nagy BJ, Vas S, Kostyalik D, Simig G, Bagdy G (2010) Medicinal chemistry of 5-HT5A receptor ligands: a receptor subtype with unique therapeutical potential. Curr Top Med Chem 10(5):554–578

    Article  PubMed  CAS  Google Scholar 

  • Wang JL, Oya S, Parhi AK, Lieberman BP, Ploessl K, Hou C, Kung HF (2010a) In vivo studies of the SERT-selective [18F]FPBM and VMAT2-selective [18F]AV-133 radiotracers in a rat model of Parkinson’s disease. Nucl Med Biol 37(4):479–486. pii: S0969-8051(10)00028-4

    Article  PubMed  CAS  Google Scholar 

  • Wang JL, Oya S, Parhi AK, Lieberman BP, Ploessl K, Hou C, Kung HF (2010b) In vivo studies of the SERT-selective [18F]FPBM and VMAT2-selective [18F]AV-133 radiotracers in a rat model of Parkinson’s disease. Nucl Med Biol 37(4):479–486. pii: S0969-8051(10)00028-4

    Article  PubMed  CAS  Google Scholar 

  • Wesolowska A (2010) Potential role of the 5-HT6 receptor in depression and anxiety: an overview of preclinical data. Pharmacol Rep 62(4):564–577

    PubMed  CAS  Google Scholar 

  • Wesolowska A, Nikiforuk A, Stachowicz K, Tatarczynska E (2006) Effect of the selective 5-HT7 receptor antagonist SB 269970 in animal models of anxiety and depression. Neuropharmacology 51(3):578–586. pii: S0028-3908(06)00123-7

    Article  PubMed  CAS  Google Scholar 

  • Wimalasena K (2011) Vesicular monoamine transporters: structure-function, pharmacology, and medicinal chemistry. Med Res Rev 31(4):483–519. doi:10.1002/med.20187

    Article  PubMed  CAS  Google Scholar 

  • Witkin JM, Baez M, Yu J, Barton ME, Shannon HE (2007) Constitutive deletion of the serotonin-7 (5-HT(7)) receptor decreases electrical and chemical seizure thresholds. Epilepsy Res 75(1):39–45. pii: S0920-1211(07)00105-2

    Article  PubMed  CAS  Google Scholar 

  • Witte AV, Floel A, Stein P, Savli M, Mien LK, Wadsak W, Spindelegger C, Moser U, Fink M, Hahn A, Mitterhauser M, Kletter K, Kasper S, Lanzenberger R (2009) Aggression is related to frontal serotonin-1A receptor distribution as revealed by PET in healthy subjects. Hum Brain Mapp 30(8):2558–2570. doi:10.1002/hbm.20687

    Article  PubMed  Google Scholar 

  • Wooten D, Hillmer A, Murali D, Barnhart T, Schneider ML, Mukherjee J, Christian BT (2011a) An in vivo comparison of cis- and trans-[(18)F]mefway in the nonhuman primate. Nucl Med Biol. pii: S0969-8051(11)00111-9

  • Wooten DW, Moraino JD, Hillmer AT, Engle JW, Dejesus OJ, Murali D, Barnhart TE, Nickles RJ, Davidson RJ, Schneider ML, Mukherjee J, Christian BT (2011b) In vivo kinetics of [F-18]MEFWAY: a comparison with [C-11]WAY100635 and [F-18]MPPF in the nonhuman primate. Synapse 65(7):592–600. doi:10.1002/syn.20878

    Article  PubMed  CAS  Google Scholar 

  • Xu R, Hong J, Morse CL, Pike VW (2010) Synthesis, structure-affinity relationships, and radiolabeling of selective high-affinity 5-HT4 receptor ligands as prospective imaging probes for positron emission tomography. J Med Chem 53(19):7035–7047. doi:10.1021/jm100668r

    Article  PubMed  CAS  Google Scholar 

  • Yatham LN, Liddle PF, Shiah IS, Lam RW, Adam MJ, Zis AP, Ruth TJ (2001) Effects of rapid tryptophan depletion on brain 5-HT(2) receptors: a PET study. Br J Psychiatry 178:448–453

    Article  PubMed  CAS  Google Scholar 

  • Yosifova A, Mushiroda T, Stoianov D, Vazharova R, Dimova I, Karachanak S, Zaharieva I, Milanova V, Madjirova N, Gerdjikov I, Tolev T, Velkova S, Kirov G, Owen MJ, O’Donovan MC, Toncheva D, Nakamura Y (2009) Case-control association study of 65 candidate genes revealed a possible association of a SNP of HTR5A to be a factor susceptible to bipolar disease in Bulgarian population. J Affect Disord 117(1–2):87–97. pii: S0165-0327(09)00003-2

    Article  PubMed  CAS  Google Scholar 

  • Zhang MR, Haradahira T, Maeda J, Okauchi T, Kida T, Obayashi S, Suzuki K, Suhara T (2002) Synthesis and preliminary PET study of the 5-HT7 receptor antagonist [C-11]DR4446. J Label Compd Rad 45(10):857–866. doi:10.1002/jlcr.606

    Article  CAS  Google Scholar 

  • Zhang QJ, Li LB, Niu XL, Liu J, Gui ZH, Feng JJ, Ali U, Hui YP, Wu ZH (2011) The pyramidal neurons in the medial prefrontal cortex show decreased response to 5-hydroxytryptamine-3 receptor stimulation in a rodent model of Parkinson’s disease. Brain Res 1384:69–79. pii: S0006-8993(11)00194-6

    Article  PubMed  CAS  Google Scholar 

  • Zhu L, Liu Y, Plossl K, Lieberman B, Liu J, Kung HF (2010) An improved radiosynthesis of [18F]AV-133: a PET imaging agent for vesicular monoamine transporter 2. Nucl Med Biol 37(2):133–141. pii: S0969-8051(09)00253-4

    Article  PubMed  CAS  Google Scholar 

  • Zou BC, Dong L, Wang Y, Wang SH, Cao MB (2007) Expression and role of 5-HT7 receptor in brain and intestine in rats with irritable bowel syndrome. Chin Med J (Engl) 120(23):2069–2074

    CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Alexander Neumeister, Assoc. Prof., Mount Sinai School of Medicine and VA Connecticut Healthcare System, who provided 5-HT1B data for the figure. We thank the medical and technical teams of the Department of Psychiatry and Psychotherapy (S. Kasper, C. Spindelegger, P. Stein, M. Fink, U. Moser, E. Akimova, A. Hahn) and the PET Center at the Department of Nuclear Medicine (W. Wadsak, M. Mitterhauser, K. Kletter, R. Dudczak, G. Karanikas, L.-K. Mien, D. Häusler).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rupert Lanzenberger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saulin, A., Savli, M. & Lanzenberger, R. Serotonin and molecular neuroimaging in humans using PET. Amino Acids 42, 2039–2057 (2012). https://doi.org/10.1007/s00726-011-1078-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00726-011-1078-9

Keywords

Navigation