Skip to main content

Advertisement

Log in

Recombinant human endostatin improves anti-tumor efficacy of paclitaxel by normalizing tumor vasculature in Lewis lung carcinoma

  • Original Paper
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

Normalization of the tumor vasculature and microenvironment by several angiogenesis inhibitors has been reported. Given that recombinant human endostatin (rh-endostatin) is also an endogenous angiogenesis inhibitor, a comprehensive evaluation of the effects of rh-endostatin on tumor vasculature and microenvironment and chemotherapy sensitivity would be favorable.

Methods

Multiple treatment schedules of the combination of rh-endostatin and paclitaxel were tested in Lewis lung carcinoma. Further, we monitored microvascular density, tumor hypoxic fraction, and collagen covered tumor vessels at three different time points following the treatment of rh-endostatin, as well as the transcription of angiogenesis related factors (vascular endothelial growth factor-A and thrombospondin-1) and vasculature markers (regulator of G-protein signaling 5 and platelet/endothelial cell adhesion molecule-1).

Results

The anti-tumor efficacy of paclitaxel was significantly improved 7 days after the treatment of rh-endostatin. Tumor microvascular density was decreased by rh-endostatin, although it became even higher 7 days after termination of rh-endostatin. Non-necrotic hypoxic fraction was significantly reduced 7 days after treatment of rh-endostatin, accompanied with increased collagen covered tumor vessels and coverage of pericytes around endothelial cells. Rh-endostatin could transiently upregulate the transcription of thrombospondin-1 and modulate the imbalance between vascular endothelial growth factor-A and thrombospondin-1.

Conclusion

Rh-endostatin could normalize the tumor vasculature and microenvironment in Lewis lung carcinoma probably via modulation of the balance between vascular endothelial growth factor-A and thrombospondin-1. During the time of vascular normalization, paclitaxel treatment was found to have maximal effect on tumor growth delay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Rh-endostatin:

Recombinant human endostatin

NSCLC:

Non-small cell lung cancer

VEGF-A:

Vascular endothelial growth factor-A

TSP-1:

Thrombospondin-1

MVD:

Microvascular density

RT–PCR:

Reverse transcription polymerase chain reaction

Rgs5:

Regulator of G-protein signaling 5

PECAM-1:

Platelet/endothelial cell adhesion molecule-1

References

  • Benjaminsen IC, Graff BA, Brurberg KG, Rofstad EK (2004) Assessment of tumor blood perfusion by high-resolution dynamic contrast-enhanced MRI: a preclinical study of human melanoma xenografts. Magn Reson Med 52:269–276

    Article  PubMed  Google Scholar 

  • Bergers G, Hanahan D (2008) Modes of resistance to anti-angiogenic therapy. Nat Rev Cancer 8(8):592–603

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Jain RK (2000) Angiogenesis in cancer and other diseases. Nature 407:249–257

    Article  CAS  PubMed  Google Scholar 

  • Cerniglia GJ, Pore N, Tsai JH et al (2009) Epidermal growth factor receptor inhibition modulates the microenvironment by vascular normalization to improve chemotherapy and radiotherapy efficacy. PLoS One 4(8):e6539

    Article  PubMed  Google Scholar 

  • Cho H, Kozasa T, Bondjers C et al (2003) Pericyte-specific expression of Rgs5: implications for PDGF and EDG receptor signaling during vascular maturation. FASEB J 17(3):440–442

    CAS  PubMed  Google Scholar 

  • di Tomaso E, London N, Fuja D, Logie J, Tyrrell JA, Kamoun W, Munn LL, Jain RK (2009) PDGF-C induces maturation of blood vessels in a model of glioblastoma and attenuates the response to anti-VEGF treatment. PLoS One 4(4):e5123

    Article  PubMed  Google Scholar 

  • Dickson PV, Hamner JB, Sims TL et al (2007) Bevacizumab-induced transient remodeling of the vasculature in neuroblastoma xenografts results in improved delivery and efficacy of systemically administered chemotherapy. Clin Cancer Res 13:3942–3950

    Article  CAS  PubMed  Google Scholar 

  • Dings RP, Loren M, Heun H, McNiel E, Griffioen AW, Mayo KH, Griffin RJ (2007) Scheduling of radiation with angiogenesis inhibitors anginex and Avastin improves therapeutic outcome via vessel normalization. Clin Cancer Res 13:3395–3402

    Article  CAS  PubMed  Google Scholar 

  • Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15(3):232–239

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2006) Antiangiogenesis in cancer therapy-endostatin and its mechanisms of action. Exp Cell Res 312:594–607

    Article  CAS  PubMed  Google Scholar 

  • Folkman J (2007) Angiogenesis: an organizing principle for drug discovery? Nat Rev Drug Discov 6:273–286

    Article  CAS  PubMed  Google Scholar 

  • Fox SB, Leek RD, Weekes MP, Whitehouse RM, Gatter KC, Harris AL (1995) Quantitation and prognostic value of breast cancer angiogenesis: comparison of microvessel density, Chalkley count, and computer image analysis. J Pathol 177:275–283

    Article  CAS  PubMed  Google Scholar 

  • Fukumura D, Jain RK (2007) Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization. Microvasc Res 74:72–84

    Article  CAS  PubMed  Google Scholar 

  • Herbst RS, Hess KR, Tran HT et al (2002) Phase I study of recombinant human endostatin in patients with advanced solid tumors. J Clin Oncol 20:3792–3803

    Article  CAS  PubMed  Google Scholar 

  • Hillman GG, Singh-Gupta V, Zhang H et al (2009) Dynamic contrast-enhanced magnetic resonance imaging of vascular changes induced by sunitinib in papillary renal cell carcinoma xenograft tumors. Neoplasia 11(9):910–920

    CAS  PubMed  Google Scholar 

  • Huang G, Chen L (2008) Tumor vasculature and microenvironment normalization: a possible mechanism of antiangiogenesis therapy. Cancer Biother Radiopharm 23:661–668

    Article  CAS  PubMed  Google Scholar 

  • Huang G, Chen L (2009) Discrepancies between antiangiogenic and antitumor effects of recombinant human endostatin. Cancer Biother Radiopharm 24(5):589–596

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307:58–62

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, Duda DG, Clark JW, Loeffler JS (2006) Lessons from phase III clinical trials on anti-VEGF therapy for cancer. Nat Clin Pract Oncol 3:24–40

    Article  CAS  PubMed  Google Scholar 

  • Jain RK, di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT (2007) Angiogenesis in brain tumors. Nat Rev Neurosci 8:610–622

    Article  CAS  PubMed  Google Scholar 

  • Kashiwagi S, Tsukada K, Xu L et al (2008) Perivascular nitric oxide gradients normalize tumor vasculature. Nat Med 14(3):255–257

    Article  CAS  PubMed  Google Scholar 

  • Ling Y, Yang Y, Lu N, You QD, Wang S, Gao Y, Chen Y, Guo QL (2007) Endostar, a novel recombinant human endostatin, exerts antiangiogenic effect via blocking VEGF-induced tyrosine phosphorylation of KDR/Flk-1 of endothelial cells. Biochem Biophys Res Commun 361:79–84

    Article  CAS  PubMed  Google Scholar 

  • Loges S, Mazzone M, Hohensinner P, Carmeliet P (2009) Silencing or fueling metastasis with VEGF inhibitors: antiangiogenesis revisited. Cancer Cell 15(3):167–170

    Article  CAS  PubMed  Google Scholar 

  • Mitchell TS, Bradley J, Robinson GS, Shima DT, Ng YS (2008) RGS5 expression is a quantitative measure of pericyte coverage of blood vessels. Angiogenesis 11:141–151

    Article  CAS  PubMed  Google Scholar 

  • Palmowski M, Peschke P, Huppert J et al (2009) Molecular ultrasound imaging of early vascular response in prostate tumors irradiated with carbon ions. Neoplasia 11(9):856–863

    CAS  PubMed  Google Scholar 

  • Preda A, Novikov V, Möglich M, Turetschek K, Shames DM, Brasch RC, Cavagna FM, Roberts TP (2004) MRI monitoring of Avastin antiangiogenesis therapy using B22956–1, a new blood pool contrast agent, in an experimental model of human cancer. J Magn Reson Imaging 20:865–873

    Article  PubMed  Google Scholar 

  • Shojaei F, Ferrara N (2008) Role of the microenvironment in tumor growth and in refractoriness/resistance to anti-angiogenic therapies. Drug Resist Updat 11(6):219–230

    Article  CAS  PubMed  Google Scholar 

  • Sorensen AG, Batchelor TT, Zhang WT, Chen PJ, Yeo P, Wang M, Jennings D, Wen PY, Lahdenranta J, Ancukiewicz M, di Tomaso E, Duda DG, Jain RK (2009) A “vascular normalization index” as potential mechanistic biomarker to predict survival after a single dose of cediranib in recurrent glioblastoma patients. Cancer Res 69(13):5296–5300

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Wang J, Liu Y, Song X, Zhang Y, Li K, Zhu Y, Zhou Q, You L, Yao C (2005) Results of phase III trial of rh-endostatin (YH-16) in advanced non-small cell lung cancer (NSCLC) patients. J Clin Oncol 23:7138

    Article  Google Scholar 

  • te Velde EA, Vogten JM, Gebbink MF, van Gorp JM, Voest EE, Borel Rinkes IH (2002) Enhanced antitumor efficacy by combining conventional chemotherapy with angiostatin or endostatin in a liver metastasis model. Br J Surg 89:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Tong RT, Boucher Y, Kozin SV, Winkler F, Hicklin DJ, Jain RK (2004) Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors. Cancer Res 64:3731–3736

    Article  CAS  PubMed  Google Scholar 

  • Vermeulen PB, Gasparini G, Fox SB et al (2002) Second international consensus on the methodology and criteria of evaluation of angiogenesis quantification in solid human tumors. Eur J Cancer 38:1564–1579

    Article  CAS  PubMed  Google Scholar 

  • Winkler F, Kozin SV, Tong RT, Chae SS, Booth MF, Garkavtsev I, Xu L, Hicklin DJ, Fukumura D, di Tomaso E, Munn LL, Jain RK (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6:553–563

    CAS  PubMed  Google Scholar 

  • Zhao J, Salmon H, Sarntinoranont M (2007) Effect of heterogenous vasculature on interstitial transport within a solid tumor. Microvasc Res 73:224–236

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 30872979). We are grateful to the technique support of immunohistochemistry of Pathology Department of Jinling Hospital.

Conflict of interest statement

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longbang Chen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

432_2010_770_MOESM1_ESM.tif

Masson’s trichrome staining of subcutaneous interstitial space. Collagen and red blood cells were indicated by white and black arrows, respectively. Scale bar, 50 µm

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, G., Chen, L. Recombinant human endostatin improves anti-tumor efficacy of paclitaxel by normalizing tumor vasculature in Lewis lung carcinoma. J Cancer Res Clin Oncol 136, 1201–1211 (2010). https://doi.org/10.1007/s00432-010-0770-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-010-0770-6

Keywords

Navigation