Skip to main content

Advertisement

Log in

Loss of hippocampal interneurons and epileptogenesis: a comparison of two animal models of acquired epilepsy

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Reduced hippocampal GABAergic inhibition is acknowledged to be associated with epilepsy. However, there are no studies that had quantitatively compared the loss of various interneuron populations in different models of epilepsy. We tested a hypothesis that the more severe the loss of hippocampal interneurons, the more severe was the epilepsy. Epileptogenesis was triggered in adult rats by status epilepticus (SE) (56 SE, 24 controls) or by traumatic brain injury (TBI) (45 TBI, 23 controls). The total number of hippocampal parvalbumin (PARV), cholecystokinin (CCK), calretinin (CR), somatostatin (SOM), or neuropeptide Y (NPY) positive neurons was estimated using unbiased stereology at 1 or 6 months post-insult. The rats with TBI had no spontaneous seizures but showed increased seizure susceptibility. Eleven of the 28 rats (39 %) in the SE group had spontaneous seizures. The most affected hippocampal area after TBI was the ipsilateral dentate gyrus, where 62 % of PARV-immunoreactive (ir) (p < 0.001 compared to controls), 77 % of CR-ir (p < 0.05), 46 % of SOM-ir (p < 0.001), and 59 % of NPY-ir (p < 0.001) cells remained at 1 month after TBI. At 6 months post-TBI, only 35 % of PARV-ir (p < 0.001 compared to controls), 63 % of CCK-ir (p < 0.01), 74 % of CR-ir (p < 0.001), 55 % of SOM-ir (p < 0.001), and 51 % of NPY-ir (p < 0.001) cells were remaining. Moreover, the reduction in PARV-ir, CCK-ir, and CR-ir neurons was bilateral (all p < 0.05). Substantial reductions in different neuronal populations were also found in subfields of the CA3 and CA1. In rats with epilepsy after SE, the number of PARV-ir neurons was reduced in the ipsilateral CA1 (80 % remaining, p < 0.05) and the number of NPY-ir neurons bilaterally in the dentate gyrus (33–37 %, p < 0.01) and the CA3 (54–57 %, p < 0.05). Taken together, interneuron loss was substantially more severe, widespread, progressive, and included more interneuron subclasses after TBI than after SE. Interneurons responsible for perisomatic inhibition were more vulnerable to TBI than those providing dendritic inhibition. Unlike expected, we could not demonstrate any etiology-independent link between the severity of hippocampal interneuron loss and the overall risk of spontaneous seizures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • André V, Marescaux C, Nehlig A, Fritschy JM (2001) Alterations of hippocampal GABAergic system contribute to development of spontaneous recurrent seizures in the rat lithium-pilocarpine model of temporal lobe epilepsy. Hippocampus 11:452–468

    Article  PubMed  Google Scholar 

  • Andrioli A, Alonso-Nanclares L, Arellano JI, DeFelipe J (2007) Quantative analysis of parvalbumin-immunoreactive cells in the human epileptic hippocampus. Neuroscience 149:131–143

    Article  CAS  PubMed  Google Scholar 

  • Arellano JI, Muñoz A, Ballesteros-Yáñez I, Sola RG, DeFelipe J (2004) Histopathology and reorganization of chandelier cells in the human epileptic sclerotic hippocampus. Brain 127:45–64

    Article  CAS  PubMed  Google Scholar 

  • Bausch SB (2005) Axonal sprouting of GABAergic interneurons in temporal lobe epilepsy. Epilepsy Behav 7:390–400

    Article  PubMed  Google Scholar 

  • Bering R, Draguhn A, Diemer NH, Johansen FF (1997) Ischemia changes the coexpression of somatostatin and neuropeptide Y in hippocampal interneurons. Exp Brain Res 115:423–429

    Article  CAS  PubMed  Google Scholar 

  • Biagini G, Panuccio G, Avoli M (2010) Neurosteroids and epilepsy. Curr Opin Neurol 23:170–176

    Article  CAS  PubMed  Google Scholar 

  • Blanco MM, dos Santos JG, Jr Perez-Mendes P, Kohek SR, Cavarsan CF, Hummel M, Albuquerque C, Mello LE (2009) Assesment of seizure susceptibility in pilocarpine epileptic and nonepileptic wistar rats and of seizure reinduction with pentylenetetrazole and electroshock models. Epilepsia 50:824–831

    Article  CAS  PubMed  Google Scholar 

  • Bolkvadze T, Pitkänen A (2012) Development of post-traumatic epilepsy after controlled cortical impact and lateral fluid-percussion-induced brain injury in the mouse. J Neurotrauma 29:789–812

    Article  PubMed  Google Scholar 

  • Buckmaster PS, Dudek FE (1997) Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 385:385–404

    Article  CAS  PubMed  Google Scholar 

  • Buckmaster PS, Jongen-Rêlo AL (1999) Highly specific neuron loss preserves lateral inhibitory circuits in the dentate gyrus of kainite-induced epileptic rats. J Neurosci 19:9519–9529

    CAS  PubMed  Google Scholar 

  • Czuczwar AJ, Patsalos PN (2001) The new generation of GABA enhancers. Potential in the treatment of epilepsy. CNS Drugs 15:339–350

    Article  CAS  PubMed  Google Scholar 

  • de Lanerolle NC, Kim JH, Robbins RJ, Spencer DD (1989) Hippocampal interneuron loss and plasticity in human temporal lobe epilepsy. Brain Res 495:387–395

    Article  PubMed  Google Scholar 

  • DeFelipe J (1999) Chandelier cells and epilepsy. Brain 122:1807–1822

    Article  PubMed  Google Scholar 

  • Dinocourt C, Petanjek Z, Freund TF, Ben-Ari Y, Esclapez M (2003) Loss of interneurons innervating pyramidal cell dendrites and axon initial segments in the CA1 region of the hippocampus following pilocarpine-induced seizures. J Comp Neurol 459:407–425

    Article  PubMed  Google Scholar 

  • Ferrari D, Cysneiros RM, Scorza CA, Arida RM, Cavalheiro EA, de Almeida A-CG, Scorza FA (2008) Neuroprotective activity of omega-3 fatty acids against epilepsy-induced hippocampal damage: quantification with immunohistochemical for calcium-binding proteins. Epilepsy Behav 13:36–42

    Article  PubMed  Google Scholar 

  • Freund TF, Buzsáki G (1996) Interneurons of the hippocampus. Hippocampus 6:347–470

    Article  CAS  PubMed  Google Scholar 

  • Gorter JA, van Vliet EA, Aronica E, Lopes da Silva FH (2001) Progression of spontaneous seizures after status epilepticus is associated with mossy fibre sprouting and extensive bilateral loss of hilar parvalbumin and somatostatin-immunoreactive neurons. Eur J Neurosci 13:657–669

    Article  CAS  PubMed  Google Scholar 

  • Gulyás AI, Hájos N, Freund TF (1996) Interneurons containing calretinin are specialized to control other interneurons in the rat hippocampus. J Neurosci 16:3397–3411

    PubMed  Google Scholar 

  • Härtig W, Brauer K, Brückner G (1992) Wisteria floribunda agglutinin-labelled nets surround parvalbumin-containing neurons. NeuroReport 3:869–872

    Article  PubMed  Google Scholar 

  • Immonen RJ, Kharatishvili I, Niskanen J-P, Gröhn H, Pitkänen A, Gröhn OHJ (2009) Distinct MRI pattern in lesional and perilesional area after traumatic brain injury in rat—11 months follow-up. Exp Neurol 215:29–40

    Article  PubMed  Google Scholar 

  • Karetko-Sysa M, Skangiel-Kramska J, Nowicka D (2011) Disturbance of perineuronal nets in the perislesional area after photothrombosis is not associated with neuronal death. Exp Neurol 231:113–126

    Article  PubMed  Google Scholar 

  • Kharatishvili I, Nissinen JP, McIntosh TK, Pitkänen A (2006) A model of posttraumatic epilepsy induced by lateral fluid-percussion brain injury. Neuroscience 140:685–697

    Article  CAS  PubMed  Google Scholar 

  • Kharatishvili I, Immonen R, Gröhn O, Pitkänen A (2007) Quantitative diffusion MRI of hippocampus as a surrpgate marker for post-traumatic epileptogenesis. Brain 130:3155–3168

    Article  PubMed  Google Scholar 

  • Klausberger T, Somogyi P (2008) Neuronal diversity and temporal dynamics; the unity of hippocampal circuit operations. Science 321:53–57

    Article  CAS  PubMed  Google Scholar 

  • Kuruba R, Hattiangady B, Parihar VK, Shuai B, Shetty AK (2011) Differential susceptibility of interneurons expressing neuropeptide Y and parvalbumin in aged hippocampus to acute seizure activity. PLoS ONE 6:e24493. doi:10.1371/journal.pone.0024493

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis DA, Campbell MJ, Morrison JH (1986) An immonohistochemical characterization of somatostatin-28 and somatostatin-281-12 in monkey prefrontal cortex. J Comp Neurol 248:1–18

    Article  CAS  PubMed  Google Scholar 

  • Long L, Xiao B, Feng L, Fang Y, Li G, Li A, Mutasem MA, Chen S, Bi F, Li Y (2011) Selective loss and axonal sprouting of GABAergic interneurons in the sclerotic hippocampus induced by LiCI-pilocarpine. Int J Neurosci 121:69–85

    Article  CAS  PubMed  Google Scholar 

  • Löscher W, Nolting B (1991) The role of technical, biological and pharmacological factors in the laboratory evaluation of anticonvulsant drugs. IV. Protective indices. Epilepsy Res 9:1–10

    Article  PubMed  Google Scholar 

  • Lowenstein DH, Thomas MJ, Smith DH, McIntosh TK (1992) Selective vulnerability of dentate hilar neurons following traumatic brain injury: a potential mechanistic link between head trauma and disorders of the hippocampus. J Neurosci 12:4846–4853

    CAS  PubMed  Google Scholar 

  • Maglóczky Z (2010) Sprouting in human temporal lobe epilepsy: excitatory pathways and axons of interneurons. Epilepsy Res 89:52–59

    Article  PubMed  Google Scholar 

  • Maglóczky Z, Freund TF (2005) Impaired and repaired inhibitory circuits in the epileptic human hippocampus. Trends Neurosci 28:334–340

    Article  PubMed  Google Scholar 

  • Maglóczky ZS, Wittner L, Borhegyi ZS, Halász P, Vajda J, Czirják S, Freund TF (2000) Changes in the distribution and connectivity of interneurons in the epileptic human dentate gyrus. Neuroscience 96:7–25

    Article  PubMed  Google Scholar 

  • Maisano X, Litvina E, Tagliatela S, Aaron GB, Grabel LB, Naegele JR (2012) Differentiation and functional incorporation of embryonic stem cell-derived GABAergic interneurons in the dentate gyrus of mice with temporal lobe epilepsy. J Neurosci 32:46–61

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mathern GW, Babb TL, Pretorius JK, Leite JP (1995) Reactive synaptogenesis and neuron densities for neuropeptide y, somatostatin, and glutamate decarboxylase immunoreactivity in the epileptogenic human fascia dentate. J Neurosci 15:3990–4004

    CAS  PubMed  Google Scholar 

  • Mathern GW, Babb TL, Leite JP, Pretorius JK, Yeoman KM, Kuhlman PA (1996) The pathogenic and progressive features of chronic human hippocampal epilepsy. Epilepsy Res 26:151–161

    Article  CAS  PubMed  Google Scholar 

  • Mathern GW, Bertram EH, Babb TL, Pretorius JK, Kuhlman PA, Spradlin S, Mendoza D (1997) In contrast to kindled seizures, the frequency of spontaneous epilepsy in the limpic status model correlates with greater aberrant fascia dentate, excitatory and inhibitory axon sprouting, and increased staining for N-Methyl-D-Aspartate, AMPA and GABAA receptors. Neuroscience 77:1003–1019

    Article  CAS  PubMed  Google Scholar 

  • McIntosh TK, Vink R, Noble L, Yamakami I, Fernyak S, Soarest H, Faden AL (1989) Traumatic brain injury in the rat: characterization of a lateral fluid-percussion model. Neuroscience 28:233–244

    Article  CAS  PubMed  Google Scholar 

  • Nairismägi J, Gröhn OHJ, Kettunen MI, Nissinen J, Kauppinen RA, Pitkänen A (2004) Progression of brain damage after status epilepticus and its association with epileptogenesis: a quantitative MRI study in a rat model of temporal lobe epilepsy. Epilepsia 45:1024–1034

    Article  PubMed  Google Scholar 

  • Nissinen J, Halonen T, Koivisto E, Pitkänen A (2000) A new model of chronic temporal lobe epilepsy induced by electrical stimulation of the amygdala in rat. Epilepsy Res 38:177–205

    Article  CAS  PubMed  Google Scholar 

  • Noè F, Pool A-H, Nissinen J, Gobbi M, Bland R, Rizzi M, Balducci C, Ferraguti F, Sperk G, During MJ, Pitkänen A, Vezzani A (2008) Neuropeptide Y gene therapy decreases chronic spontaneous seizures in a rat model of temporal lobe epilepsy. Brain 131:1506–1515

    Article  PubMed  Google Scholar 

  • Ojemann GA (1987) Surgical therapy for medically intractable epilepsy. J Neurosurg 66:489–499

    Article  CAS  PubMed  Google Scholar 

  • Pavlov I, Huusko N, Drexel M, Kirchmair E, Sperk G, Pitkänen A, Walker MC (2011) Progressive loss of phasic, but not tonic GABAA receptor mediated inhibition in dentate granule cells in a model of post-traumatic epilepsy in rats. Neuroscience 194:208–219

    Article  CAS  PubMed  Google Scholar 

  • Paxinos G, Watson C (1986) The Rat Brain in Stereotaxic Coordinates. Academic Press, New York

    Google Scholar 

  • Pitkänen A, Lukasiuk K (2011) Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol 10:173–186

    Article  PubMed  Google Scholar 

  • Pitkänen A, Sutula TP (2002) Is epilepsy progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancer Neurol 1:173–181

    Article  Google Scholar 

  • Pitkänen A, Kharatishvili I, Narkilahti S, Lukasiuk K, Nissinen J (2005) Administration of diazepam during status epilepticus reduces development and severity of epilepsy in rat. Epilepsy Res 63:27–42

    Article  PubMed  Google Scholar 

  • Rattka M, Brandt C, Bankstahl M, Bröer S, Löscher W (2011) Enhanced susceptibility to the GABA antagonist pentylenetetrazole during the latent period following a pilpcarpine-induced status epilepticus in rats. Neuropharmacology 60:505–512

    Article  CAS  PubMed  Google Scholar 

  • Schmued LC, Hopkins KJ (2000) Fluoro-Jade B: a high affinity fluorescent marker for the localization of neuronal degeneration. Brain Res 874:123–130

    Article  CAS  PubMed  Google Scholar 

  • Schwaller B, Tetko IV, Tandon P, Silveira DC, Vreugdenhil M, Henzi T, Potier MC, Celio MR, Villa AEP (2004) Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures. Mol Cell Neurosci 25:650–663

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer C, Williamson JM, Lothman EW, Vezzani A, Sperk G (1995) Somatostatin, neuropeptide y, neurokinin b and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience 69:831–845

    Article  CAS  PubMed  Google Scholar 

  • Sloviter RS (1991) Permanently altered hippocampal structure, excitability, and inhibition after experimental status epilepticus in the rat: the “dormant basket cell” hypothesis and its possible relevance to temporal lobe epilepsy. Hippocampus 1:41–66

    Article  CAS  PubMed  Google Scholar 

  • Sloviter RS, Ali-Akbarian L, Horvart KD, Menkens KA (2001) Substance p receptor expression by inhibitory interneurons of the rat hippocampus: enhanced detection using improved immunocytochemical methods for the preservation and colocalization of GABA and other neuronal markers. J Comp Neurol 430:283–305

    Article  CAS  PubMed  Google Scholar 

  • Sloviter RS, Zappone CA, Harvey BD, Bumanglag AV, Bender RA, Frotscher M (2003) “Dormant basket cell” hypothesis revisited: relative vulnerabilities of dentate gyrus mossy cells and inhibitory interneurons after hippocampal status epilepsticus in the rat. J Comp neurol 459:44–76

    Article  CAS  PubMed  Google Scholar 

  • Söderpalm B (2002) Anticonvulsants: aspects of their mechanisms of action. Eur J Pain 6:3–9

    Article  PubMed  Google Scholar 

  • Sperk G, Marksteiner J, Bellmann GR, Mahata M, Ortler M (1992) Functional changes in neuropeptide Y- and somatostatin-containing neurons induced by limbic seizures in the rat. Neuroscience 50:831–846

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Mtchedlishvili Z, Bertram AE, Kapur J (2007) Selective loss of dentate hilar interneurons contributes to reduced synaptic inhibition of granule cells in an electrical stimulation-based animal model of temporal lobe epilepsy. J Comp Neurol 500:876–893

    Article  PubMed Central  PubMed  Google Scholar 

  • Thind KK, Yamawaki R, Phanwar I, Zhang G, Wen X, Buckmaster PS (2010) Initial loss but later excess of GABAergic synapses with granule cells in a rat model of temporal lobe epilepsy. J Comp Neurol 518:647–667

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Thompson HJ, Lifshitz J, Marklund N, Grady MS, Graham DI, Hovda DA, McIntosh TK (2005) Lateral fluid percussion brain injury: a 15-year review and evaluation. J Neurotrauma 22:42–75

    Article  PubMed  Google Scholar 

  • Toth Z, Hollrigel GS, Gorcs T, Soltesz I (1997) Instantaneous perturbation of dentate interneuronal networks by a pressure wave-transient delivered to the neocortex. J Neurosci 17:8106–8117

    CAS  PubMed  Google Scholar 

  • Tóth K, Erőss L, Vajda J, Halász P, Freund TF, Maglóczky Z (2010) Loss and reorganization of calretinin-containing interneurons in the epileptic human hippocampus. Brain 133:2763–2777

    Article  PubMed Central  PubMed  Google Scholar 

  • van Vliet EA, Aronica E, Tolner EA, Lopes da Silva FH, Gorter JA (2004) Progression of temporal lobe epilepsy in the rat is associated with immunocytochemical changes in inhibitory interneurons in specific regions of the hippocampal formation. Exp Neurol 187:367–379

    Article  PubMed  Google Scholar 

  • Vezzani A, Sperk G (2004) Overexpression of NPY and Y2 receptors in epileptic brain tissue: an endogenous neuroprotective mechanism in temporal lobe epilepsy? Neuropeptides 38:245–252

    Article  CAS  PubMed  Google Scholar 

  • Vreugdenhil M, Jefferys JGR, Celio MR, Schwaller B (2003) Parvalbumin-deficiency facilitates repetitive IPSCs and gamma oscillations in the hippocampus. J Neurophysiol 89:1414–1422

    Article  PubMed  Google Scholar 

  • Wasterlain CG, Shirasaka Mazarati AM, Spigelman I (1996) Chronic epilepsy with damage restricted to the hippocampus: possible mechanisms. Epilepsy Res 26:255–265

    Article  CAS  PubMed  Google Scholar 

  • West MJ, Slomianka L, Gundersen HJG (1991) Unbiased stereological estimation of the total number of neurons in the subvisions of the rat hippocampus using the optical fractionators. Anat Rec 231:482–497

    Article  CAS  PubMed  Google Scholar 

  • Wittner L, Maglóczky ZS, Borhegyi ZS, Halász P, Tóth SZ, Erőss L, Szabó Z, Freund TF (2001) Preservation of perisomatic inhibitory input of granule cells in the epileptic human hippocampus. Neuroscience 108:587–600

    Article  CAS  PubMed  Google Scholar 

  • Zhang N, Wei W, Mody I, Houser CR (2007) Altered localization of GABAA receptor subunits on dentate granule cell dendrites influences tonic and phasic inhibition in a mouse model of epilepsy. J Neurosci 27:7520–7531

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Yamawaki R, Wen X, Uhl J, Diaz J, Prince D, Buckmaster P (2009) Surviving hilar somatostatin interneurons enlarge, sprout axons, and form new synapses with granule cells in a mouse model of temporal lobe epilepsy. J Neurosci 29:14247–14256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang B, Chen X, Lin Y, Tan T, Yang Z, Dayao C, Liu L, Jiang R, Zhang J (2011a) Impairment of synaptic plasticity in hippocampus is exacerbated by methylprednisolone in a rat model of traumatic brain injury. Brain Res 1382:165–172

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Chen X, Tan T, Yang Z, Carlos D, Jiang R, Zhang J (2011b) Traumatic brain injury impairs synaptic plasticity in hippocampus in rats. Chin Med J 124:740–745

    PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the FP6 Grant LSHM-CT-2006-037315 (A.P.), Academy of Finland (A.P.), The Sigrid Juselius Foundation (A.P.), The North-Savo Regional Fund of The Finnish Cultural Foundation (N.H.), and The Finnish Epilepsy Foundation (N.H.). We thank Mr Jarmo Hartikainen and Mrs Merja Lukkari for their excellent technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asla Pitkänen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1 (PDF 28 kb)

Online Resource 2 (PDF 27 kb)

Online Resource 3 (PDF 29 kb)

Online Resource 4 (PDF 27 kb)

Online Resource 5 (PDF 25 kb)

Online Resource 6 (PDF 27 kb)

Online Resource 7 (PDF 224 kb)

429_2013_644_MOESM8_ESM.pdf

Online Resource 8. Supplementary Figure 1. Representative examples of substance P receptor (SPR) immunoreactivity (ir) in the ipsilateral septal dentate gyrus in three rats. Percentages in panels B and C indicate the magnitude in reduction of PARV immunolabeled neurons in different layers of the dentate gyrus after TBI. (A) A control rat. Arrows indicate numerous SPR-ir somata with immunopositive dendrites in the granule cell and molecular layers, and a dense fiber plexus in the hilus. (B) A rat with TBI 1 month earlier. The animal had 50% of PARV-ir neurons remaining in the ipsilateral dentate gyrus at 1 month post-TBI. Laminar analysis revealed that the rat had 91% (-9%) of PARV-ir neurons remaining in the molecular layer, 71% (-29%) in the granule cell layer, and 56% (-44%) in the hilus as compered to the control mean. Note a reduction in SPR-ir neurons and immunopositive fibers in the infragranular region and the hilus, respectively, as compared to the control rat (panel A). Arrows indicate some of the remaining SPR-ir somata. (C) A rat with TBI 6 months earlier. The animal had 35% of PARV-ir neurons remaining in the ipsilateral dentate gyrus at 6 months post-TBI. Laminar analysis revealed that the rat had 79% (-21%) of PARV-ir neurons remaining in the molecular layer, 36% (-64%) in the granule cell layer and 18% (-88%) in the hilus as compered to the control mean. Arrows indicate two remaining SPR-ir somata. Abbreviations: GCL, granule cell layer; H, hilus; MOL, molecular layer; TBI, traumatic brain injury. Scale bar equal 50 µm in all panels. (PDF 423 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huusko, N., Römer, C., Ndode-Ekane, X.E. et al. Loss of hippocampal interneurons and epileptogenesis: a comparison of two animal models of acquired epilepsy. Brain Struct Funct 220, 153–191 (2015). https://doi.org/10.1007/s00429-013-0644-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-013-0644-1

Keywords

Navigation